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Send all communications concerning Advanced Problems and Solutions to 
Raymond Whitney, Mathematics Department, Lock Haven State College, Lock 
Haven, Pennsylvania, 17745* This department especially welcomes problems 
believed to be new or extending old results. Proposers should submit solu-
tions or other information that will assist the editor, To facilitate their con-
sideration, solutions should be submitted on separate signed sheets within three 
months after publication of the problems,, 

H-119 Proposed by L* Car isfz, Duke Univers i ty , Durham, N o * Ca ro l i na . 

Put 

H < » . n . ^ | | | ; - ^ * ( - i ) ( ) - ) ( - " - ' ) ( » - - _ » - i ) 
/ 

/ n - j + p - k \ / p - k + i \ 
• \ p - k A •* ; 

Show that H(m,n,p) = 0 unless m, n,p are all even and that 

min(m,n*p) t v. 
xT/o O O \ x ^ t i\T (m + n + p - r )J 
H(2m,2n,2p) = £ (-1) r , r , ( m _ r ) , g _ r ) , fe _ r ) , = 

(The formula 

H(2m, 2n) / m + n \ 2 

{ m ) • 

where 

»«-.-> - s£«-« i ^( i r ) ) (""j 1 + J )C-=r , X m "i -"" J ) 
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is proved in the Fibonacci Quar te r ly , Vol. 4 (1966) , pp. 323-325.) 

H-120 Proposed by M . N . S . Swamy, Nova Scotia Technical College, Halifax,, 
Canada. 

The Fibonacci polynomials a r e defined by 

fn+1(x) = x . fn(x) + fn_lW 

fi(x) = 1, f2(x) = x . 

If z = f (x) . f (y) then show that 

(i) z sa t is f ies the r e c u r r e n c e re la t ion, 

z ,. - xv • z lo - (x2 + y2 + 2)z , - x y z , + z = 0 . n+4 J n+3 x J n+2 J n+l n 

n 
(ii) (x + y)2 • ]T z = (z , - z ) - (xy - l)(z _,_, - z ). x J V r n+2 n - l v J x n+l n 

H-121 Proposed by H, H. Ferns, University of Victoria,, Victoria, B.C., Canada. 

Prove the following identity. 

?j° Vk Fmi+K =\FnTkj 
1=1 X 

Fnk+A " FX <m * k> > 

w h e r e F is the n Fibonacci number , m, A a r e any in tegers o r ze ro and 

k is an even in teger or ze ro . 

Wri te the form the identity t akes if k i s an odd in teger . 

Find an analogous identity involving Lucas number s . 

H-122 Proposed by R. E. Whitney, Lock Haven State College, Lock Haven, Pa„ 

Let F denote the n Fibonacci number expres sed in b a s e 2. Con-
n th 

s ide r the o r d e r e d a r r a y F - ^ F s ° ° ° . Let g denote the n digit of th is 
a r r a y . Find a formula for g . If poss ib le , genera l ize for any base . 
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H-70 Proposed by C . A e Church, J r . , W e V i rg in ia U n i v 9 / Morgantown, W . V i r g i n i a . 

For n = 2m5 show that the total number of k-combinations of the first 
n natural numbers such that no two elements i and i + 2 appear together in 
the same selection is F2 , and if n = 2m + 1, the total is F F , 

m+2 m+2 m+35 

Solut ion and comments by the proposer-

For his quick solution of the "probleme desmenages" Kaplanskyf2l gives 
two results for combinations with restricted positions. We state them in the 
following form: 

The number of k-combinations of the first n natural numbers, on a 
line, with no two consecutive is 

a) r ~ : • n ; o< k<^j- i / n - k + l \ I k I 
if arranged on a circle, so that 1 and n are consecutive, the number is 

n / n - k \ 
n - k 1 k J (2) ^ ^ x r : ~ l , 0 < k < | 

See also [4, p0 198Je Summed over k, (1) and (2) give the Fibonacci and 
Lucas numbers, respectively,, 

For the problem as stated we use (1). 
The restriction that i and i + 2 cannot appear in any selection can be 

stated as (a) no two consecutive even integers appear and (b) no two consecu-
tive odd integers appears 

If n = 2m, a k-combination with the stated restrictions will be made 
up of s integers from among the m even, no two consecutive, and k - s 
from among the m odd, no two consecutive Thus there are 

k 
(3) v / m - s + 1 \ / m - (k - s) + l \ 

k\ s A k-s / 
k-combinations of the first 2m natural numbers such that i and i + 2 do not 
appear. 
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Summing (3) over k we get the total number 

2R?] k F2 = V y / m - s + l \ / m - ( k - s ) + 1\ 
m + 2 ~ feo s=o\ s A k ~ S / 

with the usual condition that 

(>) 
0 for b > a > 0 

For n = 2m + 1 we choose s from among the m even integers, no 
two consecutive, and k - s from among the m + 1 odd integers, no two con-
secutive, to get that there are 

k 
(4) 

s=< 

yx / m - s + l \ / m - (k - s) + 2 \ 

k\ s )\ k-s / 
k-combinations of the first 2m + 1 natural numbers such that i and i + 2 do 
not appear. 

Summed over k, (4) gives the total number 

m+l k 
F F 

m+2 m+3 •fisr-.-r-t-n 
It is also of interest to consider the circular analog of this problem by 

way of (2)0 

For n = 2m, 2 and 2m are taken to be consecutive as are 1 and 2m. 
- 1. By the same argument as before we find that there are 

k 
v-̂  m ^ m - s s=o (m - s\ m /m - (k - s) \ 

s J m - (k - s) \ k - s J 

circular k-combinations such that i and i + 2 do not appear and a total of 
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2 H k 
L2 = V V m ('m - s \ ni / m - (k - s ) \ 

m S s=o m - s I s / m - *k " s^ V k " s / ' 

F o r n = 2m + 1, 2 and 2m a r e consecutive as a r e 1 and 2m + 1 and 
we have the total 

m k 
L L ^4 

m m+l 
V V m / m ~ s \ m + l / m - (k - s) + l \ 
fco s^o m " s I s / m - * - s ) + 1 \ k - s / 

Mixed r e s u l t s can also be obtained using both (1) and (2). F o r example , 

one can take l inear combinations on the evens and c i r cu l a r combinations on 

the odds. 

R e m a r k s . The prob lem posed in H-70 f i r s t appeared in the l i t e r a tu r e in 

a paper by N. S. Mendelsohn ["3J; an explicit formula was not obtained. The 

f i rs t explicit formula was given by M. Abramson [l, l emma 3j„ AbramsonTs 

solution for the number of k-combinat ions such that i and i + 2 do not 

appear together is 

W / n - 2k + s + 2 \ / k - s \ 

k\ k-s M s ) 
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H-73 Proposed by V .E . Hoggatt,Jr8/ San Jose State ColIege/ San Jose, Cal i f . 

Let f0(x) = 0, ft(x) = 1 
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and fn+2(x) = xfn + i (x) + fn(x) , n - 0 

and let b (x) and B (x) be the polynomials in H-69; show 

f ^ (x) = xB (x2) , 2n+2 nv 

and 

f <x) = b (x2) . 2n+l n 

Thus t he re is an int imate re la t ionship between the Fibonacci polynomials , f (x) 

and the Morgan-Voyce polynomials b (x) and B (x)„ 

Solut ion by Douglas L ind , U n i v . of V i r g i n i a , Char lo t tesv i l le , V i r g i n i a . 

Usingthe explicit r ep re sen ta t ions of B (x) and b (x) given in H-69, and 

of f (x) given in B-74, we find 

2n-2r+i c t . 
x = f2n+2(x) > 

2n-2r - , v 

These re la t ions have been given by Rc Ae Hayes \_ "Fibonacci and Lucas Po ly-
nomia l s , " (Mas te r ' s Thes is ) ; equations (3.4-1) and (3 .4-2)] . 

H-77 Proposed by V . E . Hogga t t , J r 0 / San Jose State Co l lege , San Jose, C a l i f . 

Show 

2n+i / _ , i \ 

= hi) F2k+2j+l _ 5 L2n+2k+2 

for al l in tegers k. Set k = -(n + 1) and der ive 

5W F - ^ n 
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a resu l t of S. G. Guba P rob l em No* 174, Issue No, 4, July-August 1965, p . 
' 73 of Matematika V. SkSle. 

Solution by L. Carlifz, Duke University, Durham, North Carolina. 

Since 

n 0 n 
L = a + B , F = — 

where 

n ^ s n a - p ' 

a = | (1 + V 5 ) 5 ]8 = I (1 - V 5 ) 

1 + Q'2 = o^V5 , 1 + p2 = -pV5 , 

it follows that 

n / \ n / \ k+2^ 

= a k ( l + a2) - £ k ( T + j32)n 

a - j8 

= ( a k + n - ( - l ) n /3 k + n ) (V5) n 

V 5 

( 5 ( n - l ) / 2 L , A (n odd) 
_ J k+n 

( 5 F k + n (n even) , 

thus general iz ing the s ta ted result0 In pa r t i cu l a r , for k = -n , we get 

§(")*-
j 2 . 5 M / 2 (nodd) 

J I 0 . (n even) . 

Note that 



-2n-i+2j 
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2 f 7 2 n + l \ F _ f / 2 n + l \ F +
2 ^ / 2 n + l \ 

-5(";l)w^£(T1)', 
S(2"-/) 

2n+i-2j 

3=l 

so that 

2 > . i „ r i F 2 J + 1 

Sfr1) F 2 j + i " 5 n 

Similarly, we have 
n / \ 

SO ';) Lk+2. = « k a + C 2) n + /ska + /s2)r 

fck+n + ( - l ) n^k + n) (V5)n 

i 5 L, , (n even) 

k+n 
5 ( n + 1 ) / V (n odd) . 

k+n In particular, since 

gfflw-W •$(?)--*-?(T) -2n+2j 

so that 

LATE ACKNOWLEDGEMENT: Problems H-64, H-71, H-72, H-73, and H-77 
were also solved by M. N. S. Swamy. 
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