ELEMENTARY PROBLEMS AND SOLUTIONS

Edited By
A. P. HILLMAN

University of New Mexico, Albuquerque, New Mexico

Send all communications regarding Elementary Problems and Solutions to Professor A. P. Hillman, Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, 87106. Each problem or solution should be submitted in legible form, preferably typed in double spacing, on a separate sheet or sheets in the format used below. Solutions should be received within three months of the publication date.

B-118 Proposed by J. L. Brown, Jr., Pennsylvania State University, State College, Pa.

Let $F_{1}=1=F_{2}$ and $F_{n+2}=F_{n+1}+F_{n}$ for $n \geq 1$. Show for all $n \geq$ 1 that

$$
\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{~F}_{\mathrm{k}} / 2^{\mathrm{k}}\right)<2
$$

B-119 Proposed by Jim Woolum, Clayton Valley High School, Concord, Calif.

What is the area of an equilateral trapezoid whose bases are $\mathrm{F}_{\mathrm{n}-1}$ and $\mathrm{F}_{\mathrm{n}+1}$ and whose lateral side is F_{n} ?

B-120 Proposed by Phil Mana, University of New Mexico, Albuquerque, N. Mex.
Find a simple function g such that $g(n)$ is an integer when n is an integer and $g(m+n)-g(m)-g(n)=m n$.

B-121 Proposed by Phil Mana, University of New Mexico, Albuquerque, N. Mex.

Let $\mathrm{n}, \mathrm{q}, \mathrm{d}$, and r be integers with $\mathrm{n} \geq 0, \mathrm{~d}>0, \mathrm{n}=\mathrm{qd}+\mathrm{r}$, and $0 \leq r<d$. Prove that

$$
\mathrm{F}_{\mathrm{n}} \equiv\left(\mathrm{~F}_{\mathrm{d}+1}\right)^{\mathrm{q}_{\mathrm{r}}}\left(\bmod \mathrm{~F}_{\mathrm{d}}\right)
$$

B-122 Proposed by A.J. Montleaf, Univ. of New Mex., Albuquerque, N. Mex. Show that

$$
\begin{aligned}
\sin [(2 \mathrm{k}+1) \theta] / \sin \theta=2 \cos [2 \mathrm{k} \theta] & +2 \cos [2(\mathrm{k}-1) \theta]+2 \cos [2(\mathrm{k}-2) \theta] \\
& +\cdots+2 \cos [2 \theta]+1
\end{aligned}
$$

and obtain the analogous formula for $\mathrm{F}_{(2 \mathrm{k}+1) \mathrm{m}} / \mathrm{F}_{\mathrm{m}}$ interms of Lucas numbers. B-123 (From B-102, Proposed by G. L. Alexanderson, Univ. of Santa Clara, Santa Clara, California.

Show that all the positive integral solutions of $x^{2}+(x \neq 1)^{2}=z^{2}$ are given by

$$
x_{n}=\left(P_{n+1}\right)^{2}-\left(P_{n}\right)^{2} ; z_{n}=\left(P_{n+1}\right)^{2}+\left(P_{n}\right)^{2} ; n=1,2, \cdots ;
$$

where P_{n} is the Pell number defined by $P_{1}=1, P_{2}=2$, and $P_{n+2}=2 P_{n+1}$ $+\mathrm{P}_{\mathrm{n}}$.

SOLUTIONS

A NON-HOMOGENEOUS DIFF ERENCE EQUATION

B-100 Proposed by J. A. H. Hunter, Toronto, Canada.

Let $u_{n+2}=u_{n+1}+u_{n}-1$, with $u_{1}=1$ and $u_{2}=3$. Find the general solution for u_{n}

Solution by F. D. Parker, St. Lawrence University, Canton, N.Y.
The general solution of the difference equation is $u_{n}=c_{1} a^{n}+c_{2} b^{n}+1$, where c_{1} and c_{2} are arbitrary constants, $a=(1+\sqrt{5}) / 2$ and $b=(1-\sqrt{5}) /$ 2. Since $u_{1}=1$ and $u_{2}=3$, we find the particular solution to be

$$
u_{n}=\frac{2}{\sqrt{5}} a^{n-1}-\frac{2}{\sqrt{5}} b^{n-1}+1=2 \mathrm{~F}_{\mathrm{n}-1}+1
$$

Also solved by L. Carlitz; Herta T. Freitag; William T. Jackson; Douglas Lind; William C. Lombard; C.B.A. Peck; Lt. A.G. Shannon, R.A.N; David Zeitlin; and the proposer.

A SEQUENCE OF SEQUENCES

B-101 Proposed by Thomas P. Dence, Bowling Green State Univ., Bowling Green, Ohio.
Let $x_{i, n}$ be defined by $x_{1, n}=1, x_{2, n}=n$, and $x_{i+2, n}=x_{i+1, n}+x_{i, n}$. Express $x_{i, n}$ as a function of F_{n} and $n_{\text {。 }}$

Solution by Douglas Lind, University of Virginia, Charlottesville, Virginia
We claim $x_{i, n}=F_{i}+(n-1) F_{i-1^{\circ}}$ This is clearly true for $i=1,2$ and all n. Since both expressions obey the same second-order recurrence relation in i and agree in the first two values, they must coincide for all i and n.

Also solved by Gerald Edgar, Herta T. Freitag, William C. Lombard, John W. Milson, F. D. Parker, David Zeitlin, and the proposer.

NOTE: The problem editor misstated the problem as "Express $x_{i, n}$ in terms of F_{n} and n " instead of "Express $x_{i, n}$ in terms of n and F_{i} " The proposer intended that $\mathrm{F}_{\mathrm{i}-1}$ in the solution printed above be expressed in terms of F_{i}, as one might do, for example, using the result of $\mathrm{B}-42$.

PELL-PYTHAGOREAN TRIPLES

B-102 Proposed by Gerald L. Alexanderson, Univ. of Santa Clara, Santa Clara, Calif.

The Pell sequence $1,2,5,12,29, \cdots$ is defined by $P_{1}=1, P_{2}=2$ and $P_{n+2}=2 P_{n+1}+P_{n}$. Let $\left(P_{n+1}+i P_{n}\right)^{2}=x_{n}+i y_{n}$, with x_{n} and y_{n} real and let $z_{n}=\left|x_{n}+i y_{n}\right|$. Prove that the numbers x_{n}, y_{n}, and z_{n} are the lengths of the sides of a right triangle and that x_{n} and y_{n} are consecutive integers for every positive integer n. Are there any other positive integral solutions of $x^{2}+(x \pm 1)^{2}=z^{2}$ than $(x, z)=\left(x_{n}, z_{n}\right)$?
Solution by Herta T. Freitag, Hollins, Virginia.
(A) $z_{n}=\left|x_{n}+i y_{n}\right|=\sqrt{x_{n}^{2}+y_{n}^{2}}$; hence x_{n}, y_{n}, and z_{n} may be interpreted as lengths of the sides of a right triangle.
(B) To show that $y_{n}-x_{n}=1$:

Since $x_{n}=P_{n+1}^{2}-P_{n}^{2}$ and $y_{n}=2 P_{n+1} P_{n}$, we need to show that

$$
\left|2 P_{n+1} P_{n}-P_{n+1}^{2}+P_{n}^{2}\right|=1
$$

Proof by mathematical induction:
(1) $\left|2 P_{2} P_{1}-P_{2}^{2}+P_{1}^{2}\right|=1$, hence the statement is correct for $n=1$.
(2) Assume the formula correct for $\mathrm{n}=\mathrm{k}$, $\mathrm{i}_{\mathrm{o}} \mathrm{e}_{\mathrm{o}}$, assume that:

$$
\left|2 P_{k+1} P_{k}-P_{k+1}^{2}+P_{k}^{2}\right|=1
$$

Then,

$$
\begin{aligned}
\left|2 P_{k+2} P_{k+1}-P_{k+2}^{2}+P_{k+1}^{2}\right| & =\left|2\left(2 P_{k+1}+P_{k}\right) P_{k+1}-\left(2 P_{k+1}+P_{k}\right)^{2}+P_{k+1}^{2}\right| \\
& =\left|P_{k+1}^{2}-2 P_{k} P_{k+1}-P_{k}^{2}\right|=1 .
\end{aligned}
$$

This, however, means that correctness of the statement for $n=k$ causes its correctness for $n=k+1$, and the query is settled.
(C) No, there are no other positive integral solutions of $x^{2}+(x \pm 1)^{2}=z^{2}$ than $(x, z)=\left(x_{n}, z_{n}\right)$. This, however, is only a hunch; I was unable to establish the unicitr.

Also solved by the proposer.
NOTE: See proposed problem B-123.

AN INCREASING SEQUENCE

B-103 Proposed by Douglas Lind, Univ. of Virginia, Charlottesville, Va.
Let

$$
a_{n}=\sum_{d \mid n} F_{d} \quad(n \geq 1)
$$

where the sum is over all divisors d of n. Prove that $\left\{a_{n}\right\}$ is a strictly increasing sequence. Also show that

$$
\sum_{n=1}^{\infty} \frac{F_{n} x^{n}}{1-x^{n}}=\sum_{n=1}^{\infty} a_{n} x^{n}
$$

Solution by Gerald Edgar, Boulder, Colorado.
For $\mathrm{n} \geq 1$, we have

$$
a_{n+1}=\sum_{d \mid(n+1)} F_{d} \geq F_{1}+F_{n+1}>F_{n+1}
$$

Observe that

$$
\begin{aligned}
& \mathrm{a}_{1}=1=\mathrm{F}_{2}, \\
& \mathrm{a}_{2}=2=\mathrm{F}_{3}, \\
& \mathrm{a}_{3}=3=\mathrm{F}_{4},
\end{aligned}
$$

and that for $n>3$, since $(n-1) \nless n$ and $(n-2) \nmid n$,

$$
a_{n}=\sum_{d \mid n} F_{d} \leqslant F_{n}+\sum_{i=1}^{n-3} F_{i}=F_{n}+F_{n-1}-1<F_{n+1}
$$

so that in all cases for $n \geq 1$, we have $a_{n} \leq F_{n+1}$.
Therefore, for all $n \geq 1, a_{n}<a_{n+1}$, so that $\left\{a_{n}\right\}$ is a strictly increasing sequence. Also, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n} x^{n} & =\sum_{n=1}^{\infty}\left(\sum_{d \mid n} F_{d}\right) x^{n} \\
& =\sum_{d=1}^{\infty}\left(\sum_{d \mid n}^{\infty} x^{n}\right) F_{d} \quad \text { (rearranging terms) } \\
& =\sum_{d=1}^{\infty}\left(\sum_{i=1}^{\infty} x^{i d}\right) F_{d} \\
& =\sum_{d=1}^{\infty}\left(\frac{x^{d}}{1-x^{d}}\right) F_{d} \\
& =\sum_{d=1}^{\infty} \frac{F_{d} x^{d}}{1-x^{d}}
\end{aligned}
$$

Also solved by the proposer.

TELESCOPING SERIES

B-104 Proposed by H. H. Ferns, Victoria, British Columbia.
Show that

$$
\sum_{n=1}^{\infty} \frac{F_{2 n+1}}{L_{n} L_{n+1} L_{n+2}}=\frac{1}{3}
$$

where F_{n} and L_{n} are the $n^{\text {th }}$ Fibonacci and $n^{\text {th }}$ Lucas numbers, respectively.

Solution by L. Carlitz, Duke University, Durham, N.C.
It is easily verified that

$$
\mathrm{F}_{\mathrm{n}+1} \mathrm{~L}_{\mathrm{n}+2}-\mathrm{F}_{\mathrm{n}+2} \mathrm{~L}_{\mathrm{n}}=\mathrm{F}_{2 \mathrm{n}+1}
$$

Thus

$$
\sum_{n=1}^{N} \frac{F_{2 n+1}}{L_{n} L_{n+1} L_{n+2}}=\sum_{n=1}^{N}\left(\frac{F_{n+1}}{L_{n} L_{n+1}}-\frac{F_{n+2}}{L_{n+1} L_{n+2}}\right)=\frac{F_{2}}{L_{1} L_{2}}-\frac{F_{N+2}}{L_{N+1} L_{N+2}}
$$

and therefore

$$
\sum_{n=1}^{\infty} \frac{F_{2 n+1}}{L_{n} L_{n+1} L_{n+2}}=\frac{1}{3}
$$

Also solved by Douglas Lind, F. D. Parker, Lt. A. G. Shannon, David Zeitlin, and the proposer.

A PERIODIC SEQUENCE

B-105 Proposed by Phil Mana, University of New Mex., Albuquerque, New Mex.
Let g_{n} be the number of finite sequences $c_{1}, c_{2}, \cdots, c_{n}$, with $c_{1}=1$, each c_{i} in $\{0,1\},\left(c_{i}, c_{i+1}\right)$ never (0,0), and (c_{i}, c_{i+1}, c_{i+2}) never ($0,1,0$).

Prove that for every integer $s>1$ there is an integer t with $t \leq s^{3}-3$ and g_{t} an integral multiple of s.

Solution by Douglas Lind, University of Virginia, Charlottesville, Va.

Acceptable sequences of length n can be produced by appending a " 1 " to all sequences of length $\mathrm{n}-1$, and a " 110 " to those of length $\mathrm{n}-3$. Then all n -sequences not included are not acceptable since they violate the given restraints. It follows that $g_{n}=g_{n-1}+g_{n-3}$. Put $I_{k}=\left(g_{k}, g_{k+1}, g_{k+2}\right)$. Each I_{k} determines the entire sequence g_{n} by using the above recurrence relation. Thus modulo $s>1$, if $I_{j} \equiv I_{k}$, then $\left\{g_{n}\right\}$ is periodic with period $\leq|j-k|$. Now there are $(s-1)^{3}$ possible distinct triplets (a, b, c) modulo s such that a, b, c $=0(\bmod s)$. Also $(s-1)^{3}<s^{3}-5$ for $s>1$. Thus either one of $I_{1}, I_{2}, \cdots, I_{S-5}$ contains a 0 , in which case there is a $t \leq s^{3}-3$ such that g_{t} $\equiv 0(\bmod s)$, or $I_{j} \equiv I_{k}(\bmod s)$ for some $j, k \leq s^{3}-3$ with $j \neq k_{\text {。 }}$ But then $\left\{\mathrm{g}_{\mathrm{n}}\right\}$ has period $\mathrm{t}=|\mathrm{j}-\mathrm{k}|>0$, so $\mathrm{g}_{\mathrm{t}} \equiv \mathrm{g}_{0}=0(\bmod \mathrm{~s})$, where here $\mathrm{t}<\mathrm{s}^{3}-3$ 。

Also solved by Robert L. Mercer and the proposer.

All subscription correspondence should be addressed to Brother U. Alfred, St. Mary's College, Calif. All checks ($\$ 4.00$ per year) should be made out to the Fibonacci Association or the Fibonacci Quarterly. Manuscripts intended for publication in the Quarterly should be sent to Verner E. Hoggatt, Jr., Mathematics Department, San Jose State College, San Jose, Calif. All manuscripts should be typed, double-spaced. Drawings should be made the same size as they will appear in the Quarterly, and should be done in India ink on either vellum or bond paper. Authors should keep a copy of the manuscripts sent to the editors.

