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1. INTRODUCTION 

E. T. Bell [2] has defined a set of generalized Stirling numbers of the 
second kind S, (n,r); the numbers Sj(n,r) are the ordinary Stirling numbers 
of the second kind,, Letting X(n) denote the number of odd Si(n + 1, 2r + 1) 
Carlitz [ 3] has shown that 

00 n °° n n+i 
X Mn)xn = n (1 + x2. + x2 ) . 
n=o n=o 

In Section 3, we shall determine the generating function for the number 
of odd generalized Stirling numbers S2(n,r). Indeed we shall prove the fol-
lowing theorem, 

Theorem, Let cu(n) denote the number of odd generalized Stirling num-
bers S2(n + r, 4r); then 

£ o>(n)xn = n (1 + x3"2 + x2 ) . 
n=o n=o 

Later Carlitz [4] obtained the generating function for the number oi 
Si(n, r) that are relatively prime to p for any given prime p. It would be oi 
interest to obtain such a generating function for the generalized Stirling num-
bers S, (n, r). At present the apparent difficulty with the method used herein 
is that, except for the case k = 2 and p = 2, the basic recurrence (2.4) for 
S, (n, r) with k > 1 is a recurrence of more than three terms, whereas for 
the cases that have been solved we had a three-term recurrence,, In Section4, 
we shall discuss this problem for the numbers S2(n, r) and the prime p = 3; 
several congruences will also be obtained for this case, 
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2. PRELIMINARIES 

The numbers S, (n, r) maybe defined by introducing an operator r which 
transforms t into (e - 1) . Powers of r are defined recursively a s 
follows: 

(2.1) r t = T(T t ) , 

where u is a positive integer,. We shall also define T°t = t . The general-
ized Stirling numbers are then defined by 

(2.2) '- T V = r! 2]Sk(n3r) L-

Hence Si(n, r) is the ordinary Stirling number of the second kind (see [ 5* 
pp. 42-43]) and S0(n, r) = 8(ns r) , the Kronecker delta. From (2.1) and (2.2) 
we can readily see [ 2, p„ 93] that 

n 
(2.3) Si+k( n s r ) = X^ S i ( n 3 i ) S k ( i ' r ) 

J i=r •* 

Hence the numbers S, (n, r) can be derived from the ordinary Stirling numbers 
of the second kind by repeated matrix multiplication (see [ 5, p. 34]). 

Becker and Riordan [1] have studied some of the arithmetic properties 
of these numbers; in particular, they obtained for S, (n, r) the period modulo 
p, a prime. In the same paper they derived the following basic recurrence 
modulo p (equation (5.4)): 

(2.4) Sk(n + pS,r) , ^ E IS + { " *) s > ' i )Sk i ( i + 1 > T ) 

j=o i \ ] / J J 

s / - \ 
+ E ( s + k - ! ~ j | S. (n, r - pJ) (mod p) 

j=* I k - 1 J k 
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3C PROOF OF THEOREM 

F o r p = 2 we have from (2.4) that 

S2(n + 4, r) = S2(n + 1, r) + S2(n, r - 4) (mod 2) 

Hence if we le t 

n 

(3.1) Sn(x) = ] P s 2 ( n , r ) x r , 

r=o 

it follows that 

(3.2) Sn+4{x) + Sn+1(x) + x4Sn(x) = 0 (mod 2) .. 

Let ai, a2, a3, and a± be the roo t s of the equation 

y4 + y + x4 = 0 

in F [ y ] , where F = GF(2,x)5 the function field obtained by adjoining the 

inde te rmina te x to the finite field GF(2). Also let 

4 

(3.3) </>n(x) = J V . 
3 = 1 

Then from the definition of the aTs we see that 

/ • 

$ 0 ( x ) = <f>t(x) = <f>2(x) = $ 4 (x ) = 0, <£3(x) = 1 . J 
I 

Moreover 

(3-4) 4>n+4(x) = « n + 1 (x ) + x ^ n ( x ) ; 

hence 
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<£5(x) = 0, </>6(x) = 1 . 

Now put 

(3.5) Sn(x) = (x3 + x + l )0 n (x ) + x ^ n + i ( x ) + x0 n + 2 (x ) + 0 n + 3 (x ) . 

Then 

S0(x) = 1 S2(x) = x 

33 Si(x)' = x S3(x) = x3 + x + 2 

Refer r ing to the table at the end of the pape r we see that by (3.1) 

S (x) = S (x) (mod 2) n n 

for n = 0, ' l , 2, and 36 There fo re we see f rom (3.2), (3.4), and (3.5) that 

(3.6) Sn(x) = Sn(x) (mod 2) 

for a l l non-negat ive in tegers n* 

F r o m (3.3) we have with a l i t t l e calculat ion that 

n=o j=l ^ 

t3 

1 + t3 + x4t4 

n=o 3k+j+3=n 

k ) *fl . 
J x 

therefore 

(3.7) * (x) = V ( ) 
Y \ n - 3 k - 3 / 

x4(n-3k-3) 
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Combining (3.1), (3.5), (3.6) and (3.7) we have 

r=o k \ ' 

x \Y( k \x4(n-3k-3) + Y I k \x^ 
X ( ^ ^ - 3 k - 3 J x ^ n - 3 k - - l j x 

x2 Y( k \ x4(n"3k-2) +x*Yl k ^ x ' M n - 3k-2iX X Y\n-3k-3/ 
x4(n-3k-

(mod 2) 

Compar ing coefficients we see that 

S2(n,4j) = ( j ! x ) (j = n - 3 r - 3) 

(3.8) 
S2(n, 4j + 1) = / r ] (j = n - 3r - 3 o r n - 3r - 1) 

S 2 ( n , 4 j + 2 ) = [*") (j = n - 3r - 2) 

S2(n,4j + 3) = ( * ) (j = n - 3r - 3) , 

w h e r e the modulus 2 is understood in each congruence, 

Let 0.(n) denote the number of odd S2(n,k), 0 < k < n, with 

k = j (mod 4) (j = 0 , 1 , 2 , 3 ) . 

By the f i rs t congruence in (3.8) we see that 

S2(n + 1, 4j + 4) = | r | (mod 2) (j = n - 3r - 3) , 

and hence 

(3.9) 0ofo + D = W 

Simi lar ly s ince 

S2(n + 29 4j + 4) = / A (mod 2) (j = n - 3r - 2) 
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it follows that 

(3.10) 0o(n + 2) = 02(n) . 

In a l ike manne r we obtain 

flito = 03 fa) + 02(n + 1) 

= 0o(n + 1) + 0o(n + 3) ; 

the second equation follows from (3.9) and (3.10). Since al l 0.(n) may be 

e x p r e s s e d in t e r m s of 0Q(YL) it wil l suffice to de te rmine the generat ing func-

tion for 0o(n) alone. 

Now by (3.8) 

S2(2n5 4j) = ( _r
 ± | (mod 2) (j = 2n - 3r - 3) . 

F r o m this it follows that 

S2(2n, 4j) = 0 (mod 2) 

un less 

j = r + 1 (mod 2) . 

Hence if we le t 

r = 2r? + s9 j - 1 = 2j? + s (s = 0,1) , 

then 

S2(2n3 4j) = j r
f j (mod 2) (jf = n - 3r? - 2s - 2) , 

and the re fo re 
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(3.11) 00(2n) = e2(n) + 03(n - 1) 

= 0o(n + 2) +6>0(n) . 

Similarlyj s ince 

S2(2n + 1), 4j) = / _r
 x J (mod 2) (j = 2n - 3r - 2) , 

we have 

S2(2n + 1 ,4j) = 0 (mod 2) 

un less 

r = j = 1 (mod 2) • 

Letting 

r = 2rT + 1, j - = 2jT + 1 

we get 

S 2 ( 2 n + l , 4 j ) = | r
f j (mod 2) (jT = n - 3r» - 3) . 

The re fo re 

(3.12) 0o(2n + 1) - 03(n) = 0o(n + 1) . 

If we le t 

<o(n) = 0o(n + 4) 

we obtain f rom (3.11) and (3.12) that 

o>(2n) = o>(n) + o>(n - 2) 
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and 

o>'(2n + 1) = &)(n - 1) . 

Since 0O(D = 80(2) = 0O(3) = 0, we have o>(n) = 0 for n < 0, and these 
equations for co(n) a r e valid for al l n = 0 , 1 , 2? • 8» . Hence we have 

^ o>(n)xn = J2 ^ (2n)x 2 n + ^ co(2n + i)x: 

n=o n=o n=o 

2n+i 

^ co(n)x2n + J^ w ( n " 2 ) x 2 n + ^ w(n - 1) 
n=o n=o n=o 

x2n+i 

oo 
2n (1 + x3 + x4) V * co(n)x; 

n=o 

n a + x3*2 +x2 n + 2) , 
n=o 

and the t heo rem is proved* 
F r o m this genera t ing function we see that o>(n) a lso denotes the number 

of par t i t ions 

n = n0 + ni • 2 + n2 . 22 + n3 • 23 + • • - (n. = 0, 3,4) . 

40 THE CASE p = 3 

We shal l now cons ider the above p rob l em for the p r i m e p = 3e Since 

the work is s i m i l a r to that of Section 3, many of the deta i ls will be omitted,, 

F r o m (2.4) we have 

(4.1) S2(n + 9, j) = 2S2(n + 35 j) + 2S2(n + 1, j) + S2(n3 j - 9) (mod 3) . 

The re fo re le t t ing 
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n 
(4.2) Sn(x) - £ s 2 ( n , j ) x 3

 f 

j=0 

we have 

(4.3) S (x) = 2S <x) + 2S (x) + x9S (x) (mod 3) 
n+9 n+3 n+i n 

Let ai, a2, • • • , a9 be the roo t s of the equation 

y9 + y3 + y - X9 = 0 

in F [ y ] , where F = GF(3 ,x) . Then if 

<b (x) = \ ^ a . 

we see that 

(4.4) <f>Q(x) - <^(x) = . . . = </>7(x) - 0, 08(x) = 1 . 

Moreover 

(4.5) <*> ^ (x) = x9</> (x) - <f> MM -<£ ^ ( x ) , ^n+9 ^n n+l n+3 

and hence 

(4.6) <J>9{x) = <t>10(x) = . . . = 4>13(x) = </>15(x) = 0, <j>u(x) = <£16(x) = - 1 . 

If we let 

f0(x) = S0(x) + S2(x) + S8(x) 

fi(x) - Si(x) + S7(x) 
(4.7) 

f2(x) = S0(x) + S6(x) 

f.(x) =• S8„j(x) 
J (j = 3, 4, . . . , 8) 
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and 

(4.8) Sn(x) = £ f j < X ) V j ( x ) , 

it is clear from (4.3), (4.4), • • •, (4.8) that 

(4.9) Sn(x) = SQ(X) (mod 3) (n = 0,1, 2, • • •) . 

As in Section 3 we see that 

k\fi\f_-nh
x»h 

n=o n=o 6k+8+r=n 2J+h=r * ' * ' 
and hence 

,4.10, * „ « - £ < - D ° + t ^ ) ( n . e k
, . , . s j ) ^ * ' t « ) . 

By expanding (4.8), comparing coefficients and combining terms we have, 
for instance, from (4.2), (4.9), and (4.10) that 

S2(n + 9, 9h + 9) = J ] (-l)n + k lk)[l) (mod 3) 

and 

but 

S2(n+8, 9h+8) = J ] (-l)n+k (^j(^) (mod 3) , 

S2(n+8, 9h + 6) s £ (-Dn+kjQ(i) ^ j ' l ) ^ 1 ) ) <™d3> > 



A GENERATING FUNCTION ASSOCIATED 
366 WITH THE GENERALIZED STIRLING NUMBERS Nov„ 1967 

where the summations are over all nonnegative integers j and k such that 
h = n - 6k - 2j. The numbers S2(n, 9h + j) for j = 0,1,- • • • , 5 are more 
compile at ed. 

At this point the method employed in Section 3 seems to fail. As was 
mentioned in Section 1, the apparent difficulty in this case is the fact that the 
recurrence (4.1) is a four-term recurrence. If we consider the generalized 
Stirling number S3(n, r) and the prime p = 2 we again get a four-term recur-
rence; the development of the problem in this case is very similar to our work 
in the present section. 

TABLE 
Generalized Stirling Numbers of the Second Kind S2(n, r) 

n ^ v 
1 

2 

3 

4 

5 

6 

7 

8 

1 

1 

2 

5 

15 

52 

203 

877 

4140 

2 

1 

6 

32 

175 

1012 

6230 

40819 

3 

1 

12 

110 

945 

8092 

70756 

4 -

1 

20 

280 

3465 

40992 

5 

1 

30 

595 

10010 

6 

1 

42 

1120 

7 

1 

56 

8 

1 

REFERENCES 

1. H. W, Becker and John Riordan, 'fThe Arithmetic of Bell and Stirling Num-
bers , M American Journal of Mathematics, VoL 70 (1948), pp. 385-394. 

2. E. T. Bell, "Generalized Stirling Transforms of Sequences, M American 
Journal of Mathematics,,, VoL 61 (1939), pp. 89-101. 

3. L„ Carlitz, "Single Variable Bell Polynomials, n Collectanea Mathematica, 
VoL 14 (1962), pp. 13-25. 

4. L, Carlitz, "Some Partition Problems Related to the Stirling Numbers of 
the Second Kind, " Acta Arithmetica, VoL 10 (1965), pp. 409-422. 

5. J. Riordan, Combinatorial Analysis, John Wiley, New York, 1958. 
• • • • • 


