a generating function associated with the generalized STIRLING NUMBERS

ROBERT FRAY
Florida State University, Tallahassee,Florida

1. INTRODUCTION

E. T. Bell [2] has defined a set of generalized Stirling numbers of the second kind $S_{k}(n, r)$; the numbers $S_{1}(n, r)$ are the ordinary Stirling numbers of the second kind. Letting $\lambda(n)$ denote the number of odd $S_{1}(n+1,2 r+1)$ Carlitz [3] has shown that

$$
\sum_{n=0}^{\infty} \lambda(n) x^{n}=\prod_{n=0}^{\infty}\left(1+x^{x^{n}}+{x^{2}}^{n+1}\right)
$$

In Section 3, we shall determine the generating function for the number of odd generalized Stirling numbers $S_{2}(n, r)$. Indeed we shall prove the following theorem.

Theorem. Let $\omega(\mathrm{n})$ denote the number of odd generalized Stirling numbers $S_{2}(n+r, 4 r)$; then

$$
\sum_{n=0}^{\infty} \omega(n) x^{n}=\prod_{n=0}^{\infty}\left(1+x^{3^{\circ} 2^{n}}+{x^{2}}^{n+2}\right)
$$

Later Carlitz [4] obtained the generating function for the number of $S_{1}(n, r)$ that are relatively prime to p for any given prime p. It would be of interest to obtain such a generating function for the generalized Stirling numbers $S_{k}(n, r)$. At present the apparent difficulty with the method used herein is that, except for the case $k=2$ and $p=2$, the basic recurrence (2.4) for $S_{k}(n, r)$ with $k>1$ is a recurrence of more than three terms, whereas for the cases that have been solved we had a three-term recurrence. In Section 4, we shall discuss this problem for the numbers $S_{2}(n, r)$ and the prime $p=3$; several congruences will also be obtained for this case.

[^0]
2. PRELIMINARIES

The numbers $\mathrm{S}_{\mathrm{k}}(\mathrm{n}, \mathrm{r})$ maybe defined by introducing an operator τ which transforms t^{n} into $\left(\mathrm{e}^{\mathrm{t}}-1\right)^{\mathrm{n}}$. Powers of τ are defined recursively as follows:

$$
\begin{equation*}
\tau_{\mathrm{t}}^{\mathrm{u}^{\mathrm{n}}}=\tau\left(\tau^{\mathrm{u}-1} \mathrm{t}^{\mathrm{n}}\right) \tag{2.1}
\end{equation*}
$$

where u is a positive integer. We shall also define $\tau^{0} t^{n}=t^{n}$ 。The generalized Stirling numbers are then defined by

$$
\text { (2.2) } \quad-\quad \tau^{k_{t} r}=r!\sum_{n=0}^{\infty} S_{k}(n, r) \frac{t^{n}}{n!} .
$$

Hence $S_{1}(n, r)$ is the ordinary Stirling number of the second kind (see [5_{0} pp. 42-43]) and $S_{0}(\mathrm{n}, \mathrm{r})=\delta(\mathrm{n}, \mathrm{r})$, the Kronecker delta. From (2.1) and (2.2) we can readily see [$2, \mathrm{p}$. 93] that

$$
\begin{equation*}
S_{j+k}(n, r)=\sum_{i=r}^{n} S_{j}(n, i) S_{k}(i, r) \tag{2.3}
\end{equation*}
$$

Hence the numbers $S_{k}(n, r)$ can be derived from the ordinary Stirling numbers of the second kind by repeated matrix multiplication (see [5, p. 34]).

Becker and Riordan [1] have studied some of the arithmetic properties of these numbers; in particular, they obtained for $S_{k}(n, r)$ the period modulo p , a prime. In the same paper they derived the following basic recurrence modulo p (equation (5.4)):

$$
\begin{align*}
S_{k}\left(n+p^{s}, r\right) \equiv & \sum_{j=0}^{k-1} \sum_{i} \tag{2.4}\\
& \binom{s+j-1}{j} S_{j}(n, i) S_{k-j}(i+1, r) \\
& +\sum_{j=1}^{S}\binom{s+k-1-j}{k-1} S_{k}\left(n, r-p^{j}\right)(\bmod p)
\end{align*}
$$

3. PROOF OF THEOREM

For $p=2$ we have from (2.4) that

$$
\mathrm{S}_{2}(\mathrm{n}+4, \mathrm{r}) \equiv \mathrm{S}_{2}(\mathrm{n}+1, \mathrm{r})+\mathrm{S}_{2}(\mathrm{n}, \mathrm{r}-4) \quad(\bmod 2)
$$

Hence if we let
(3.1)

$$
S_{n}(x)=\sum_{r=0}^{n} S_{2}(n, r) x^{r}
$$

it follows that

$$
\begin{equation*}
\mathrm{S}_{\mathrm{n}+4}(\mathrm{x})+\mathrm{S}_{\mathrm{n}+1}(\mathrm{x})+\mathrm{x}^{4} \mathrm{~S}_{\mathrm{n}}(\mathrm{x}) \equiv 0(\bmod 2) \tag{3.2}
\end{equation*}
$$

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} be the roots of the equation

$$
y^{4}+y+x^{4}=0
$$

in $F[y]$, where $F=G F(2, x)$, the function field obtained by adjoining the indeterminate x to the finite field $\mathrm{GF}(2)$. Also let

$$
\begin{equation*}
\phi_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{j}=1}^{4} \alpha_{\mathrm{j}}^{\mathrm{n}} \tag{3,3}
\end{equation*}
$$

Then from the definition of the α^{\prime} s we see that

$$
\phi_{0}(\mathrm{x})=\phi_{1}(\mathrm{x})=\phi_{2}(\mathrm{x})=\phi_{4}(\mathrm{x})=0, \phi_{3}(\mathrm{x})=1
$$

Moreover

$$
\begin{equation*}
\phi_{\mathrm{n}+4}(\mathrm{x})=\phi_{\mathrm{n}+1}(\mathrm{x})+\mathrm{x}^{4} \phi_{\mathrm{n}}(\mathrm{x}) ; \tag{3,4}
\end{equation*}
$$

hence

$$
\phi_{5}(\mathrm{x})=0, \quad \phi_{6}(\mathrm{x})=1 .
$$

Now put

$$
\begin{equation*}
\bar{S}_{\mathrm{n}}(\mathrm{x})=\left(\mathrm{x}^{3}+\mathrm{x}+1\right) \boldsymbol{\phi}_{\mathrm{n}}(\mathrm{x})+\mathrm{x}^{2} \boldsymbol{\phi}_{\mathrm{n}+1}(\mathrm{x})+\mathrm{x} \boldsymbol{\phi}_{\mathrm{n}+2}(\mathrm{x})+\boldsymbol{\phi}_{\mathrm{n}+3}(\mathrm{x}) \tag{3.5}
\end{equation*}
$$

Then

$$
\begin{array}{ll}
\bar{S}_{0}(\mathrm{x})=1 & \overline{\mathrm{~S}}_{2}(\mathrm{x})=\mathrm{x}^{2} \\
\overline{\mathrm{~S}}_{1}(\mathrm{x})=\mathrm{x} & \overline{\mathrm{~S}}_{3}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{x}+2
\end{array}
$$

Referring to the table at the end of the paper we see that by (3.1)

$$
\bar{S}_{\mathrm{n}}(\mathrm{x}) \equiv \mathrm{S}_{\mathrm{n}}(\mathrm{x}) \quad(\bmod 2)
$$

for $\mathrm{n}=0,1,2$, and 3. Therefore we see from (3.2), (3.4), and (3.5) that

$$
\begin{equation*}
\bar{S}_{\mathrm{n}}(\mathrm{x}) \equiv \mathrm{S}_{\mathrm{n}}(\mathrm{x}) \quad(\bmod 2) \tag{3.6}
\end{equation*}
$$

for all non-negative integers n.
From (3.3) we have with a little calculation that

$$
\begin{aligned}
\sum_{n=0}^{\infty} \phi_{n}(x) t^{n} & =\sum_{j=1}^{4} \frac{1}{1-\alpha_{j} t} \\
& =\frac{t^{3}}{1+t^{3}+x^{4} t^{4}} \\
& =\sum_{n=0}^{\infty} t^{n} \sum_{3 k+j+3=n}\binom{k}{j} x^{4 j} ;
\end{aligned}
$$

therefore

$$
\begin{equation*}
\phi_{n}(x)=\sum_{k}\binom{k}{n-3 k-3} x^{4(n-3 k-3)} . \tag{3.7}
\end{equation*}
$$

Combining (3.1), (3.5), (3.6) and (3.7) we have

$$
\begin{aligned}
\sum_{r=0}^{n} S_{2}(n, r) x^{r} \equiv & \sum_{k}\binom{k-1}{n-3 k-1} x^{4(n-3 k)} \\
& +x\left(\sum_{k}\binom{k}{n-3 k-3} x^{4(n-3 k-3)}+\sum_{k}\binom{k}{n-3 k-1} x^{4(n-3 k-1)}\right) \\
& +x^{2} \sum_{k}\binom{k}{n-3 k-2} x^{4(n-3 k-2)}+x^{3} \sum_{k}\binom{k}{n-3 k-3} x^{4(n-3 k-3)}
\end{aligned}
$$

Comparing coefficients we see that

$$
\begin{array}{ll}
\mathrm{S}_{2}(\mathrm{n}, 4 \mathrm{j}) \equiv\binom{\mathrm{r}}{\mathrm{j}-1} & (\mathrm{j}=\mathrm{n}-3 \mathrm{r}-3) \tag{3.8}\\
\mathrm{S}_{2}(\mathrm{n}, 4 \mathrm{j}+1) \equiv\binom{\mathrm{r}}{\mathrm{j}} & (\mathrm{j}=\mathrm{n}-3 \mathrm{r}-3 \text { or } \mathrm{n}-3 \mathrm{r}-1) \\
\mathrm{S}_{2}(\mathrm{n}, 4 \mathrm{j}+2) \equiv\binom{\mathrm{r}}{\mathrm{j}} & (\mathrm{j}=\mathrm{n}-3 \mathrm{r}-2) \\
\mathrm{S}_{2}(\mathrm{n}, 4 \mathrm{j}+3) \equiv\binom{\mathrm{r}}{\mathrm{j}} & (\mathrm{j}=\mathrm{n}-3 \mathrm{r}-3),
\end{array}
$$

where the modulus 2 is understood in each congruence.
Let $\boldsymbol{\theta}_{\mathrm{j}}(\mathrm{n})$ denote the number of odd $\mathrm{S}_{2}(\mathrm{n}, \mathrm{k}), 0 \leq \mathrm{k} \leq \mathrm{n}$, with

$$
\mathrm{k} \equiv \mathrm{j}(\bmod 4) \quad(\mathrm{j}=0,1,2,3)
$$

By the first congruence in (3.8) we see that

$$
\mathrm{S}_{2}(\mathrm{n}+1,4 \mathrm{j}+4) \equiv\binom{\mathrm{r}}{\mathrm{j}}(\bmod 2)(\mathrm{j}=\mathrm{n}-3 \mathrm{r}-3)
$$

and hence

$$
\begin{equation*}
\boldsymbol{\theta}_{0}(\mathrm{n}+1)=\boldsymbol{\theta}_{3}(\mathrm{n}) \tag{3.9}
\end{equation*}
$$

Similarly since

$$
\mathrm{S}_{2}(\mathrm{n}+2,4 \mathrm{j}+4) \equiv\binom{\mathrm{r}}{\mathrm{j}}(\bmod 2)(\mathrm{j}=\mathrm{n}-3 \mathrm{r}-2)
$$

it follows that

$$
\begin{equation*}
\theta_{0}(\mathrm{n}+2)=\theta_{2}(\mathrm{n}) \tag{3.10}
\end{equation*}
$$

In a like manner we obtain

$$
\begin{aligned}
\theta_{1}(\mathrm{n}) & =\theta_{3}(\mathrm{n})+\theta_{2}(\mathrm{n}+1) \\
& =\theta_{0}(\mathrm{n}+1)+\theta_{0}(\mathrm{n}+3) ;
\end{aligned}
$$

the second equation follows from (3.9) and (3.10). Since all θ_{j} (n) may be expressed in terms of $\theta_{0}(n)$ it will suffice to determine the generating function for $\boldsymbol{\theta}_{0}(\mathrm{n})$ alone.

Now by (3.8)

$$
\mathrm{S}_{2}(2 \mathrm{n}, 4 \mathrm{j}) \equiv\binom{\mathrm{r}}{\mathrm{j}-1}(\bmod 2) \quad(\mathrm{j}=2 \mathrm{n}-3 \mathrm{r}-3)
$$

From this it follows that

$$
\mathrm{S}_{2}(2 \mathrm{n}, 4 \mathrm{j}) \equiv 0 \quad(\bmod 2)
$$

unless

$$
j \equiv r+1 \quad(\bmod 2)
$$

Hence if we let

$$
r=2 r^{\prime}+s, j-1=2 j^{\prime}+s \quad(s=0,1)
$$

then

$$
\mathrm{S}_{2}(2 \mathrm{n}, 4 \mathrm{j}) \equiv\binom{\mathrm{r}^{\prime}}{\mathrm{j}^{\prime}}(\bmod 2) \quad\left(\mathrm{j}^{\prime}=\mathrm{n}-3 \mathrm{r}^{\prime}-2 \mathrm{~s}-2\right),
$$

and therefore

$$
\begin{aligned}
\boldsymbol{\theta}_{0}(2 \mathrm{n}) & =\boldsymbol{\theta}_{2}(\mathrm{n})+\boldsymbol{\theta}_{3}(\mathrm{n}-1) \\
& =\boldsymbol{\theta}_{0}(\mathrm{n}+2)+\boldsymbol{\theta}_{0}(\mathrm{n})
\end{aligned}
$$

Similarly, since

$$
\left.\mathrm{S}_{2}(2 \mathrm{n}+1), 4 \mathrm{j}\right) \equiv\binom{\mathrm{r}}{\mathrm{j}-1}(\bmod 2)(\mathrm{j}=2 \mathrm{n}-3 \mathrm{r}-2)
$$

we have

$$
\mathrm{S}_{2}(2 \mathrm{n}+1,4 \mathrm{j}) \equiv 0 \quad(\bmod 2)
$$

unless

$$
r \equiv j \equiv 1(\bmod 2)
$$

Letting

$$
\mathrm{r}=2 \mathrm{r}^{\prime}+1, \quad \mathrm{j}=2 \mathrm{j}^{\prime}+1
$$

we get

$$
\mathrm{S}_{2}(2 \mathrm{n}+1,4 \mathrm{j}) \equiv\binom{\mathrm{r}^{\prime}}{\mathrm{j}^{\prime}} \quad(\bmod 2) \quad\left(\mathrm{j}^{\prime}=\mathrm{n}-3 \mathrm{r}^{\prime}-3\right)
$$

Therefore

$$
\begin{equation*}
\theta_{0}(2 \mathrm{n}+1)=\theta_{3}(\mathrm{n})=\boldsymbol{\theta}_{0}(\mathrm{n}+1) \tag{3.12}
\end{equation*}
$$

If we let

$$
\omega(\mathrm{n})=\boldsymbol{\theta}_{0}(\mathrm{n}+4)
$$

we obtain from (3.11) and (3.12) that

$$
\omega(2 n)=\omega(n)+\omega(n-2)
$$

and

$$
\omega(2 n+1)=\omega(n-1)
$$

Since $\theta_{0}(1)=\theta_{0}(2)=\theta_{0}(3)=0$, we have $\omega(\mathrm{n})=0$ for $\mathrm{n}<0$, and these equations for $\omega(\mathrm{n})$ are valid for all $\mathrm{n}=0,1,2, \cdots$ 。 Hence we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \omega(n) x^{n} & =\sum_{n=0}^{\infty} \omega(2 n) x^{2 n}+\sum_{n=0}^{\infty} \omega(2 n+1) x^{2 n+1} \\
& =\sum_{n=0}^{\infty} \omega(n) x^{2 n}+\sum_{n=0}^{\infty} \omega(n-2) x^{2 n}+\sum_{n=0}^{\infty} \omega(n-1) x^{2 n+1} \\
& =\left(1+x^{3}+x^{4}\right) \sum_{n=0}^{\infty} \omega(n) x^{2 n} \\
& =\prod_{n=0}^{\infty}\left(1+x^{3^{\bullet} 2^{n}}+x^{2^{2 n+2}}\right)
\end{aligned}
$$

and the theorem is proved.
From this generating function we see that $\omega(\mathrm{n})$ also denotes the number of partitions

$$
\mathrm{n}=\mathrm{n}_{0}+\mathrm{n}_{1} \cdot 2+\mathrm{n}_{2} \cdot 2^{2}+\mathrm{n}_{3} \cdot 2^{3}+\cdots \quad\left(\mathrm{n}_{\mathrm{j}}=0,3,4\right)
$$

4. THE CASE $\mathrm{p}=3$

We shall now consider the above problem for the prime $p=3$. Since the work is similar to that of Section 3, many of the details will be omitted.

From (2.4) we have

$$
\begin{equation*}
\mathrm{S}_{2}(\mathrm{n}+9, \mathrm{j}) \equiv 2 \mathrm{~S}_{2}(\mathrm{n}+3, \mathrm{j})+2 \mathrm{~S}_{2}(\mathrm{n}+1, \mathrm{j})+\mathrm{S}_{2}(\mathrm{n}, \mathrm{j}-9)(\bmod 3) \tag{4.1}
\end{equation*}
$$

Therefore letting

$$
\begin{equation*}
S_{n}(x)=\sum_{j=0}^{n} S_{2}(n, j) x^{j}, \tag{4.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathrm{S}_{\mathrm{n}+9}(\mathrm{x}) \equiv 2 \mathrm{~S}_{\mathrm{n}+3}(\mathrm{x})+2 \mathrm{~S}_{\mathrm{n}+1}(\mathrm{x})+\mathrm{x}^{9} \mathrm{~S}_{\mathrm{n}}(\mathrm{x}) \quad(\bmod 3) \tag{4.3}
\end{equation*}
$$

Let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{9}$ be the roots of the equation

$$
\mathrm{y}^{9}+\mathrm{y}^{3}+\mathrm{y}-\mathrm{x}^{9}=0
$$

in $F[y]$, where $F=G F(3, x)$. Then if

$$
\phi_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{j}=1}^{9} \alpha_{\mathrm{j}}^{\mathrm{n}}
$$

we see that

$$
\begin{equation*}
\phi_{0}(\mathrm{x})=\phi_{1}(\mathrm{x})=\cdots=\phi_{7}(\mathrm{x})=0, \phi_{8}(\mathrm{x})=1 \tag{4.4}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\phi_{\mathrm{n}+9}(\mathrm{x})=\mathrm{x}^{9} \phi_{\mathrm{n}}(\mathrm{x})-\phi_{\mathrm{n}+1}(\mathrm{x})-\phi_{\mathrm{n}+3}(\mathrm{x}) \tag{4.5}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\boldsymbol{\phi}_{9}(\mathrm{x})=\boldsymbol{\phi}_{10}(\mathrm{x})=\cdots=\boldsymbol{\phi}_{13}(\mathrm{x})=\boldsymbol{\phi}_{15}(\mathrm{x})=0, \boldsymbol{\phi}_{14}(\mathrm{x})=\boldsymbol{\phi}_{16}(\mathrm{x})=-1 \tag{4.6}
\end{equation*}
$$

If we let
(4.7)

$$
\left\{\begin{array}{l}
\mathrm{f}_{0}(\mathrm{x})=\mathrm{S}_{0}(\mathrm{x})+\mathrm{S}_{2}(\mathrm{x})+\mathrm{S}_{8}(\mathrm{x}) \\
\mathrm{f}_{1}(\mathrm{x})=\mathrm{S}_{1}(\mathrm{x})+\mathrm{S}_{7}(\mathrm{x}) \\
\mathrm{f}_{2}(\mathrm{x})=\mathrm{S}_{0}(\mathrm{x})+\mathrm{S}_{6}(\mathrm{x}) \\
\mathrm{f}_{\mathrm{j}}(\mathrm{x})=\mathrm{S}_{8-\mathrm{j}}(\mathrm{x}) \quad(\mathrm{j}=3,4, \cdots, 8)
\end{array}\right.
$$

and

$$
\begin{equation*}
\bar{S}_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{j}=0}^{8} \mathrm{f}_{\mathrm{j}}(\mathrm{x}) \phi_{\mathrm{n}+\mathrm{j}}(\mathrm{x}) \tag{4.8}
\end{equation*}
$$

it is clear from (4.3), (4.4), \cdots, (4.8) that
(4.9)

$$
\bar{S}_{n}(x) \equiv S_{n}(x) \quad(\bmod 3) \quad(n=0,1,2, \cdots)
$$

As in Section 3 we see that

$$
\sum_{n=0}^{\infty} \phi_{n}(x) t^{n}=\sum_{n=0}^{\infty} t^{n} \sum_{6 k+8+r=n}(-1)^{k} \sum_{2 j+h=r}\binom{k}{j}\binom{j}{h}(-1)^{h} x^{9 h}
$$

and hence
(4.10)

$$
\phi_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{k}}(-1)^{\mathrm{n}+\mathrm{k}} \sum_{\mathrm{j}}\binom{\mathrm{k}}{\mathrm{j}}\binom{\mathrm{j}}{\mathrm{n}-6 \mathrm{k}-8-2 \mathrm{j}} \mathrm{x}^{9(\mathrm{n}-8-6 \mathrm{k}-2 \mathrm{j})} .
$$

By expanding (4.8), comparing coefficients and combining terms we have, for instance, from (4.2), (4.9), and (4.10) that

$$
\mathrm{S}_{2}(\mathrm{n}+9,9 \mathrm{~h}+9) \equiv \sum_{\mathrm{j}, \mathrm{k}}(-1)^{\mathrm{n}+\mathrm{k}}\binom{\mathrm{k}}{\mathrm{j}}\binom{\mathrm{j}}{\mathrm{~h}}(\bmod 3)
$$

and

$$
\mathrm{S}_{2}(\mathrm{n}+8,9 \mathrm{~h}+8) \equiv \sum_{j, \mathrm{k}}(-1)^{\mathrm{n}+\mathrm{k}}\binom{\mathrm{k}}{\mathrm{j}}\binom{\mathrm{j}}{\mathrm{~h}}(\bmod 3)
$$

but

$$
\mathrm{S}_{2}(\mathrm{n}+8,9 \mathrm{~h}+6) \equiv \sum_{\mathrm{j}, \mathrm{k}}(-1)^{\mathrm{n}+\mathrm{k}}\left\{\binom{\mathrm{k}}{\mathrm{j}}\binom{\mathrm{j}}{\mathrm{~h}}+\binom{\mathrm{k}}{\mathrm{j}+1}\binom{\mathrm{j}+1}{\mathrm{~h}}\right\}(\bmod 3)
$$

where the summations are over all nonnegative integers j and k such that $\mathrm{h}=\mathrm{n}-6 \mathrm{k}-2 \mathrm{j}$. The numbers $\mathrm{S}_{2}(\mathrm{n}, 9 \mathrm{~h}+\mathrm{j})$ for $\mathrm{j}=0,1, \cdots, 5$ are more complicated.

At this point the method employed in Section 3 seems to fail. As was mentioned in Section 1, the apparent difficulty in this case is the fact that the recurrence (4.1) is a four-term recurrence. If we consider the generalized Stirling number $S_{3}(n, r)$ and the prime $p=2$ we again get a four-term recurrence; the development of the problem in this case is very similar to our work in the present section.

TABLE
Generalized Stirling Numbers of the Second Kind $S_{2}(n, r)$

n	1	2	3	4	5	6	7	8
1	1							
2	2	1						
3	5	6	1					
4	15	32	12	1				
5	52	175	110	20	1			
6	203	1012	945	280	30	1		
7	877	6230	8092	3465	595	42	1	
8	4140	40819	70756	40992	10010	1120	56	1

REFERENCES

1. H. W. Becker and John Riordan, "The Arithmetic of Bell and Stirling Numbers, " American Journal of Mathematics, Vol. 70 (1948), pp. 385-394.
2. E. T. Bell, "Generalized Stirling Transforms of Sequences, " American Journal of Mathematics, Vol. 61 (1939), pp. 89-101.
3. L. Carlitz, "Single Variable Bell Polynomials, " Collectanea Mathematica, Vol. 14 (1962), pp. 13-25.
4. L. Carlitz, "Some Partition Problems Related to the Stirling Numbers of the Second Kind, " Acta Arithmetica, Vol. 10 (1965), pp. 409-422.
5. J. Riordan, Combinatorial Analysis, John Wiley, New York, 1958.

[^0]: *Supported in part by NSF grant GP-1593.

