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For n a positive integer, the sequence a,,*::,ay, is said to be a per-
fect sequence for n if (a) each integer i in the range 1< i< n appears
exactly twice in the sequence, and (b) the double occurrence of i in the
sequence is separated by exactly i entries. Thus 41312432 is a per-
fect sequence for n = 4. The problem of determining all integers n having
a perfect sequence is posed in [1] and resolved in [2] and [3]. In particular,
n has an associated perfect sequence if and only if n = 3 or 4 (Mod 4).

In [4] , the problem is generalized by introducing the notion of a perfect
s-sequence for an integer n. Namely, a perfect s-sequence for n (with s,
n > 0) is a sequence of length sn such that (a) each of the integers 1,2,---,
n occurs exactly s times in the sequence and (b) between any two consecutive
occurrences of the integer i there are exactly i entries. The problem of
determining all s and n for which there are perfect s-sequences is then
posed in [4] . (The existence of a perfect s-sequence for any n with s > 2 is
yet in doubt.) It is shown in [4] that no perfect 3-sequences exist for n = 2,
3, 4, 5, and 6. '

The following theorems expand upon the above results pertaining to the
non-existence of perfect s-sequences for various classes of n and s.

Theorem 1. Let s = 2t. Then there is no generalized s-sequence for
n = 1 or 2 (Mod 4).

Proof., Let p; denote the position of the first occurrence of the integer
i (1 =1i=n) in the sequence, The integer i then occurs in positions p;»
p; + GA+1),---, p; + (s -1)(i+ 1). The sn integers p; *+ ji+ 1) (with 1 = 1,
se+,n; j =0,1,--+,s8 - 1) are however the integers 1,-..,sn in some order.
Thus
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the latter equality yields

(s-1s fu+1Hn+2) _ sSn(sn+1)
sP + 5 { 5 1} 5

or

n{(s + 1)n - (3s - 5)}

P = 1

Inasmuch as P is an integer, the numerator N = n{(s +1)n - (3s - 5)} must
be divisible by 4. But for n = 1 (Mod 4),

I

N =(s+1)-(@Bs-5 = -4t+6 = 2 (Mod 4) ,

where s = 2t, which is impossible. Similarly, for n = 2 (Mod 4),

N

1

2{2(s +1) - (3s - 5)} = -4t+14 = 2 (mod 4)
which is also impossible.

We now extend the results in [4] by proving there is no 3-sequence for
n=2 3,4, 5, 6, or 7 (Mod9). Actually we show somewhat more in the next
theorem,

Theorem 2, Let s = 6r +3 (with r > 0), Then there is no perfect s-
sequence for any n =2, 3, 4, 5, 6, or 7 (Mod 9).

Proof, Let 9 denote the position that integer i occurs for the (3r +
2)th time (i. e., 9 is the position of the "middle'" occurrence of i), Then i
occurs in positions ¢ +j(i+1) for j = -2(2r+1), -3r, ++-, 3r, (3r+ 1)
The sn integers 9 +ji+1) (with i = 1,**",n; j = -Br+ 1), **,3r +1)
are then the integers 1, 2, 3, ***, sn in some order., Thus
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n 31+ . sn
E Z {qi+j(i+1)} =Z k2 .
k=1

i=1 j=-(3r+1)

Letting

n
Q=) & ,
i=1

and noting that the linear terms onthe left-hand side of thelast equation éancel,

we have

fBr+1)@Er+2)s\fn+Ym+2)(@n+3) -\
sQ + 2l 6 }{ 3 1}

_ sn(sn +1)(2sn + 1)
6

Cancelling out s and collecting terms yields Q = M/18, where the numerator

M is given by
M = (198r% + 198r + 50)n3 - (81r2 + 27r - 9)n? - (117r% + 117r + 23)n .

Inasmuch as Q is an integer, the numerator M must be divisible by 9. But

M = 50n° - 23n = 5m3 -n) (Mod 9).
It is easily verified from the latter that for the values of n under considera-
tion, namely, n = 2, 3, 4, 5, 6, or 7 (Mod 9) we have M =3 or 6 (Mod 9).
Thus M is not divisible by 9 which provides a contradiction,
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FIBONACCIAN ILLUSTRATION OF L'HOSPITAL'S RULE

Allan Scott
Phoenix, Arizona

In [1] there is the statement: using the convention Fy/F, = 1. [Fn =

F o +*F o Fo=0F =1].

In this note it will be shown how the equation F, /FO = 1 follows naturally

from L'Hospital's Rule applied to the continuous function

FX = \—/—5— @" - ¢ cos mx) [ = 2711 +1/5)]

FX obviously reduces to the Fibonacci numbers Fn when n = 0, 1,
12, 3, *** . Then

—1-— d) - ¢ cosmx)

\/—— B di @ - ¢ cos mx)
\/—

FO — (" - ¢ cos mx) -qu- @* - ¢ cos mx)

xX=0 x=0

(log ¢~ - (log )¢ ™ cos mx + ¢ X mrsin mx
(log )™ - (log "1 ¢ ™ cos mx + ¢ = sin wx -

_ logé - log ¢ -1
log¢ - log ¢!

(Continued on p. 150.)



