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1. INTRODUCTION 

Our object of study Is the generating series 

(1) 
n=l \ / 

where the coefficients e(n) are polynomials in p , . and where { u } is the 
sequence defined by 

(2) iii = l s u2 = 2, u = u - + u 0 for n > 2 . 
w J L 9 n n-1 n~2 

Theorem 1. The values assumed by the coefficients €(n) as n = 0, 
1, 2, ° °° range over a finite set if and only if p is one of the numbers 0, 
-1 ,0) , or ooz

? where oo and u)2 are the complex cube roots of unity. 
The theorem has applications to partition theory. It implies the exist-

ence of certain symmetries, which we illustrate In Section 5, among the par-
titions of integers into terms of the sequence {u }. Sections 3 and 4 are 
devoted to the proof of Theorem 1. In Section 2S some preliminary recursion 
formulas are obtained, which find application in Sections 3 and 4. 

For an added comment, see note at conclusion of this article. 
2. RECURSION FORMULAS FOR €(n) 

For each natural number n9 let p(n) denote the largest index k for 
which u, < n„ Thus p(n) is defined by the condition that 

(3) u , v ^ n < u M l 1 

Writing e(m) = 0 for negative m$ we prove that 
Lemma 1. For n > 1, e(n) satisfies the recursion 

467 
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(4) €(n) = p€(n - u^) +p€(ri - u ^ ) - p2€(n - 2 1 1 ^ ) , 

where we have written V for v(n). 
For a fixed natural number n, write f(x) = g(x) if f(x) and g(x) are 

formal power series whose difference contains only terms of degree greater 
than n. Then (1) and (3) imply that 

i/(n) 
€(m)xx±l = 

m=0 

From (2) and (3) it follows that 

n , v 
_ . V(R) / u \ 

n m=l \ ' 

(I^P^I^XM-1. 1 - px V - f)K V'X + p 2 x ^ 

so that 

(i - PXU" - p.""-' • P * > - I ) X ; «•»),•». f t (i • o > ) 
^ m=0 m=l * ' 

Equating coefficients of x , we find that 

(5) €(n) - p€(n - u^) - p€(n - u ^ ) + p2£(n - 2u ) 

is the coefficient of x in 

V-2 ( u \ 
r r ( i + p x m ) . 
m=i \ / 

Now from the identity 

V-2 

m v ' 
m=l 
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(an immediate consequence of (2)), it is clear that 

V-2 / u \ 

EH") cleg [ 1 I 1 + Px J = Uy - 2 =£ n - 2 , 
m=l \ / 

so that (5) vanishesj proving the lemma. 
In sequel 5 a shall denote a natural number and we shall write a for 

i>(a). From the inequalities 

u , . < 2 u ^ a + u < u , . + u = u , o 5 a+1 a a a+1 a a+2 
u l 0 = u + u i 1 < a + u l i ^ 2 u i 1 < u , o 9 a+2 Q a+1 a+1 a+X cr+3 

u , < a + u , < u . - + u , < u , , - for n > 2 , a+n a+n a+1 cr+n a+n+1 

we obtain 

m\ „/ . \ i or + n + 1 if 0 < n < 2 
<6 ) y ( a + Vn» = a + n if 2 , n 

Applying the fundamental recursion (4), 

(7) c(a + u ) = p€(a - u x ) + p€(a) - p2c(a - u^) , 

(8) €(a + u 1 ) = P€(a - u^) + p€(a) , 

€(a + u ) = p€(a) + p€(a + u ) - p2c(a - u ^ ) 

from which it follows that 

(9) €(a + u a + 2 ) = p( l + p)€(a) - p3€(a - ua) 

Lemma 2„ For h ^ 1 and p / 1 we have 

h+1 
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For k > 1, Eq. (6) and Lemma 1 imply that 

(11) 6(a + u a + 2 k ) = pe(a) + P€(a + V 2 f c _ 2 ) 

since the term P2 €(a - u
a + 2k_3) vanishes. Multiplying both sides of (11) by 

P and summing, 

h -1 -h h " 1 

Sp_kc(a + w> = eri^~e (a) + Sp "ke(a + W • 
k=2 -1 ~ p k=l 

so that, for h — 2, 

€(a + W = P(1i"-Pph"1} 6(a) + p h _ l £ ( a + V2> 

An appeal to (9) proves the lemma, 
Lemma 39 For h ^ 1 and p / 1 we have 

h+1 
(12) €( a + « W u > = P ( 1 l - p } €<a> ' 

For k > 1, Eqe (16) and Lemma 1 imply that 

€( a + V2k+1> = P C ( a ) + P 6 ( a + V 2 k + 1 ) • 

Treating this in the same manner as (11), we get 

(i3) «a + v2h+i> = p ( 1 r p p " 1 ) e(a) + ph_le(a + v3> 

for h ^ 2. But (6), (8) and Lemma 1 imply that 

€(a + u a + 3 ) = p€(a) + P€(a + u ^ ) - p2€(a - u^) = p( l + p)€(a) 
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Inserting this identity in (13), we arrive at (12) 9 which is seen to hold for h = 
1 as well. 

3. NECESSITY THAT p = 0, - 1 , 00, or 0* 

We can now prove that if the coefficients €(1), €(2), €(3), 9 9 e range 
over a finite set of values, then p must be one of the numbers 0, -1,CL) , or 
co2,. 

From (1) and (2), it is clear that €(1) = p and v(l) = 1. Taking a = 
1 and a = ^(a) = 1 in (12), 

€ ( i + u ) =pq-ph +i i 
€ U U2h+2; 1 - p 

for h ^ 1. If these values all lie in a finite set, then p must be either zero 
or a root of unity. 

Taking h = 1 in (12), we get for a ^ 0, 

(14) €(a + u 3 ) = p ( l +p)€(a) . 

Letting af, a", aftf, • • • , and o*, or", a!?f
5
 eo° be defined by 

af 

a" 

am 

etc. , we obtain by iterating (14), 

€(a( t )) = p\l +P)te(s) ; 

since these values all lie in a finite set, p ( l + p) must either be zero or a 
root of unity. Thus, either p = 0, p = - 1 , or both p and 1 +P are TOOtS 
of unity, in which case it is a simple deduction that p = a) or p = w2. 

= a + u a + 3 , af = Ka?) , 

= a ? + u
a t+3 ' a ? ? " ^ ( a ? ? ) s 

0?!+o 
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4. SUFFICIENCY OF p = 0, - 1 , CO , or CO2; THE METHOD OF DESCENT 

If p = 0, it follows directly from (1) that €(0) = 1 and €(n) = 0 for 
n f 0. For the case p = - 1 , cos or co2, we shall employ a method of descent. 

The next lemma is needed only for p = co or co2. It is valid, however, 
for all P . 

Lemma 4. For each natural number n, €(n) -P €(n - u^) either van-
ishes or is of the form P €(m) for some h — 0 and some m < n. 

We define a finite descending chain of natural numbers n > n > 

n > • • • as follows: 

nt°> = n, ^( 0 ) = V = „ ( „ ) . 

If 

n ^ < 2u 
" Vk)-1 ' 

(k) the chain terminates at n ; if, on the other hand, 

n(k) * 2>u ' 
, „. (k+1) , „(k+l) u define n and v by 

n*+1> = n ( k ) - u ^ , , ( k + 1 ) = , ( k ) - 1 . 

(k) (k) 
Firs t , we show by induction on k that P - v(n ')? for if the chain 

extends to n^ , then 

< (k) (k+1) 
„<k+i) ^(k)^ v.(k)_1 

and 

(k+1) (k) 
i;(k)_1 „(k)+1 j / k ) ^ ^(k) „(k+i)+1 
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Next, applying (4) to n , we arrive at 

. ( .«) - Pe<»« - uv(w, . p je,n<«», - p . ^ D - ,, >{ , 

it follows that 

€(n) - pe(n - uu) = pkJe(n( k )) - pe(n(k) - u ( k ))f . 

If n is the last term in the chain, then (4) applied to n yields 

€(n(k)) -pe (n ( k ) - u ( k ) ) ={ 

p€(m(k) - Vk>V if n(k)* 2>u 
P l e ( > - i ) " p } if n<k) = 2>>-i 

Hence, in the first case, 

€(n) - p€(n - uv) = p k + 1€(n ( k ) - u (fe) ) 

Finally, (4) applied to u, yields 

€(ut) = p + P€(ut_2) , 

so that 

(15) ( 0 if t = 1 or t 
p€(u t_2) otherw 

= 2 
otherwise 

Therefore, the second case results in 

€(n) - pe(n 
( 0 if P{k) < 3 

U ) = 1 k+2 ) otherwise 
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and the lemma is proved. 
Lemma 5. If k ^ 2 and p = - l , co , or co2, then €(a + u , ) either 

vanishes or is of the form ±p €(m) for some t ^ 0 and some m < a + u ,, . 
0"+K 

If k is odds the result is a direct consequence of Lemma 3. 
If k is even and p = - 1 , then Lemma 2 implies that €(a + u , ) 

equals either €(a - u .) or -€(a) - €(a - u ) which, according to (8), in turn 
equals £(a + u - ) . 

If is is even and p = <JO or p = u>?, then Lemma 2 implies that 

€(a + u a + k ) 
p |e(a) - p€(a - u )} if k = 0 (mod 3) 
-€(a) - 6(a - u ) if k = 2 (mod 3) 
-pe(a - u ) if k = 1 (mod 3) 

In the first case, Lemma 4 yields the desired form; in the third case, the r e -
sult is manifest. Finally, in the second case, Eq. (8) gives 

-€(a) - €(a - u a ) = -P2e(a + u ^ ) . 

To complete the proof of the theorem, we show by a method of descent 
that if p = - 1 , k>, or co2, then for every n, either 

€(n) = rtp* 

for some t ^ 0, or 

€(n) = 0 . 

Suppose this were false. Then choosing the smallest positive n for which 
the theorem fails, we need only apply Lemma 5 to arrive at a contradiction. 
Hence, it suffices to show that n admits a representation 

v 
with k ^ 2. We may assume that n f u^, since (15) easily implies that 
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L,m) eW) — r - r p -

which is of the required form for p = - 1 , CO, or co2
8 Taking 

a = n - u^ , 

we therefore have a > 09 Now 

so that 

a = n - u , < V l - u , = V l , 

a = i/(a) < i/ - 2 . 

Therefore, 

n = a + u = a + u j , 

where k > 2e 

5. APPLICATIONS AND GENERALIZATION 

Theorem 1 can be interpreted as a statement about partitions of natural 
numbers as sums of distinct terms of the sequence {u } defined by (2). 

Letting A, ,(N) denote the number of ways N can be written as a 
sum 

N = % + Un2
 + - " + U n h ' 

where h = d (mod k) and 

nt < n2 < • • • < nh f 

Theorem 1 asserts that 
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A 2 , 0 ( N ) " A 2 , 1 ( N ) ' 
A 3 , 0 ( N ) " A 3 , 1 ( N ) • 
A 3 , 0 ( N ) " A 3 , 2 ( N ) 

are all bounded as N varies over the natural numbers; moreover, if k ^ 3, 
then there exists d such that the difference 

Ak,o( N ) - \ , d ( N ) 

is not bounded. 

that 
Theorem 1 can be proven in the same way for any sequence {v } such 

V = V ., + V 0 , 
n n-1 n-2 

and can be interpreted as an analogous assertion about partitions of the form 

N = v + v + nt n2 + v, n h 

Lemma 5, however, has more precise consequences for the sequence 
{u } defined by (2). It is easy to see that €(N) = 0 or ±1 if p = - 1 , and 
that €(N) = 0, ±1, ±0J9 or ±co2 if P = to2. The partition-theoretic conse-
quence of this observation is that for each N, 

A2,0<N) A2>1(N) 

and 

A3,0(N> " A 3 , 1 ( N ) A3>1(N) A3)2(N) A 3 , 2 ( N ) - A3,0<N)I S l -

NOTE: The truth of Theorem 1 for the special case p = 1 is a consequence 
of results found in [4], The special case p = 1 is also a consequence of r e -
sults found in later papers (see [5] and [1]). The interest in series (1) for 

[Continued on page 511. ] 


