$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n(k+1)}}{F_{n} F_{n+1} \cdots F_{n+2 k+1}}= & \frac{1}{(F)_{2 k}} \sum_{j=0}^{2 k}(-1)^{\frac{1}{2} j(j+1)-j k}\left\{\begin{array}{c}
2 k \\
j
\end{array}\right\} A_{2 k-j+1} \\
& -\frac{1}{(F)_{2 k}} \sum_{j=0}^{2 k}(-1)^{\frac{1}{2} j(j+1)-j k}\left\{\begin{array}{c}
2 k \\
j
\end{array}\right\} \\
& \cdot \sum_{n=1}^{j} \frac{(-1)^{n}}{F_{n} F_{n+2 k-j+1}}
\end{aligned}
$$

where now $\left\{\begin{array}{c}2 \mathrm{k} \\ \mathrm{j}\end{array}\right\}$ and $\mathrm{A}_{2 \mathrm{k}-\mathrm{j}+1}$ are expressed in terms of Fibonacci numbers. REFERENCE

1. Brother Alfred Brousseau, "Summation of Infinite Fibonacci Series," Fibonacci Quarterly, Vol. 7 (1969), pp. 143-168.
[Continued from page 476.]
$\rho=1$ stems from its application to the partitioning of integers into distinct Fibonacci numbers. These applications are investigated in the papers listed in References. When ρ is a root of unity, series (1) again has partition theoretic congruence which we exploited to some extent in Section 5.

REFERENCES

1. L. Carlitz, "Fibonacci Representations," Fibonacci Quarterly, Vol. 6, 1968, pp. 193-220.
2. L. Carlitz, "Fibonacci Representations - II," Fibonacci Quarterly, Vol. 8, 1970, pp. 113-134.
3. H. H. Ferns, "On Representations of Integers as Sums of Distinct Fibonacci Numbers," Fibonacci Quarterly, Vol. 3, 1965, pp. 21-30.
4. V. E. Hoggatt, Jr., and S. L. Basin, "Representations by Complete Sequences," Fibonacci Quarterly, Vol. 1, No. 3, pp. 1-14.
5. D. A. Klarner, "Representations of N as a Sum of Distinct Elements from Special Sequences," Fibonacci Quarterly, Vol. 4, 1966, pp. 289306.
