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NOTATION: ¥t = F2 = 1 and F n + 2 = F n + 1 + F n ; 
Li = 1, L2 = 3, and L n + 2 = L f l + 1 + L n . 

PROPOSED PROBLEMS 

B-220 Proposed by Guy A R. Guillotte, Montreal, P. Q., Canada. 

Let p be the m prime. Prove that p and p - are twin 
primes (i. e. , p + = p + 2) if and only if 

m 

X X + 1 "Pn) = Pm " 
n=l 

B-221 Proposed by R. Garfield, College of Insurance, New York, N. Y. 

Prove that 

n=l n=l 

545 
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B-222 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Find a formula for K where Kj = 1 and 

K n + 1 = ( K 1 + K 2 + . . . +Kn) + F 2 n + 1 . 

B-223 Proposed by Edgar Karst, University of Arizona, Tuscon, Arizona. 

Find a solution of 

x y + (x + 3 ) y - (x + 4 ) y = uV + (u + 3)V - (u + 4)V 

in the form 

x = F , y = F , u = L , and v = L . m J n* v s 

B-224 Proposed by Lawrence Somer, Champaign, Illinois. 

Let m be a fixed posit ive integer . P rove that no t e r m in the sequence 

Fj[, F 3 , F 5 , F 7 , • • • is divisible by 4m - 1. 

B-225 Proposed by John Me, Berkeley, California. 

Let ao> " ' ' , a . « be constants and le t {f } be a sequence of in tegers 
satisfying 

f . = a. ..f . , + a. 0 f . 0 + ••• + a f ; n = 0, 1, 2, ' " • . 
n+j j - 1 n+j-1 j - 2 n+j-2 o n 

Find a n e c e s s a r y and sufficient condition for {f } to have the p roper ty that 

every in teger m is an exact d iv isor of some f. . 

SOLUTIONS 

A SEQUENCE OF MULTIPLES OF 12 

B-202 Proposed by Richard M. Grassl, University of New Mexico, Albuquerque, New Mexico. 

Let F | , F 2 , • ' • be the Fibonacci Sequence 1, 1, 2, 3 , 5, 8, • •• with 

F ,_o = F _,.- + F . Let n+2 n+1 n 
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Gn = F4n-2 + F4n + F4n+2 • 

(i) Find a recursion formula for the sequence Gl9 G2, 
(ii) Show that each G is a multiple of 12. 

Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

(i) The sequence {G } satisfies G « = 7G - - G since each of the 
sequences {F4 _2}5 {F. }, and {F. 2 } has this recursion relation. 

(ii) Since GQ = 0 and Gj = 12, mathematical induction using Part (i) 
proves that 12|G for n ^ 0. 

Also solved by T. £ Stanley, Gregory Wulczyn, and the Proposer. 

A SEQUENCE OF MULTIPLES OF 168 

B-203 Proposed by Richard M. Grassl, University of New Mexico, Albuquerque, New Mexico. 

Show that F g _4 + F g + F g . is always a mult iple of 168„ 

Solution by T. £ Stanley, City University, London, England. 

The following generalizes on B-202 and B-203. 
Let 

E(n,k,r) = F. + F. + F. . 
kn-r kn kn+r 

The formulas 

Fkn+r F r - l F k n + F r F k n + l 
F k n - r = ( - 1 } ( F r - l F k n - F r F k n - l } 

are well-known. Thus? if r is even, we have 

E(n,k5r) = ( F r + )Fr_1 + l ) F k n . 

Now F, divides F, for each n and so E(n,ksr) is a multiple of 
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(F + 2F - + 1)F. r r - 1 k 

for even r . Then E (n ,8 ,4 ) i s a mult iple of (3 + 4 + 1 ) 2 1 = 168, which 

es t ab l i shes B-203. 

Also solved by Gregory Wulczyn and the Proposer. 

Edi to r f s Note; Combining thoughts from the solutions of B-202 and 

B-203 , one can show that F, _2 + F. + F. 2 i s a mult iple of (L + 1)F, 

for n = 1, 2 , 3 , • • • . 

GENERATING FUNCTION FOR F0 -
2 n - l 

B-204 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

Let Fi = Fo = 1 and F j 0 = F ^ + F . Show that 1 L n+2 n+1 n 

(i) Ftx + F2x2 + Fgx3 + F7x4 + • • • = (x - x 2 ) / ( l - 3x + x2) for | x | < 

(3 - N / 5 ) / 2 . 

(ii) 1 + 2x + 3x2 + 4x3 + • • • = 1/(1 - x)2 for |x | ^ 1. 

(iii) nF i + (n - 1)F, + (n - 2)F5 + • • • + 2 F 3 n _ 2 + F ^ = F 2 n + 1 - 1. 

Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

(i) Let 

f(x) = (1 - x ) / ( l - 3x + x 2 ) 

and le t i t s Maclaur in expansion be 

(1) f(x) = c0 + Cjx + c2x2 + c3x3 + • • • . 

Then (1) converges for | x | ^ | r | , where r i s the root of 1 - 3x + x2 = 0 of 

l e a s t absolute value* i. e. , r = (3 - \ f 5 ) / 2 . Multiplying both s ides of (1) by 

1 - 3x + x2 gives us 

(2) 1 - x = (1 - 3x + x2 )c0 + Cjx + c2x2 + - - . ) . 
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Expanding the r 
of (2), leads to 
Expanding the right side of (2) and equating coefficients of x m on both sides 

(3) c0 = 1, ct = 25 c n + 2 - 3 c n + 1 + cn = 0 for n > 0 . 

This implies that c = F 9 - and Part (i) is proved. 
(ii) This follows by term-by-term differentiation of 

1 + X + X? + • • • = 1/(1 - X) , [x| < 1 . 

(iii) Let Gn = nF t + (n - 1)F3 + 2F 2 n _ 2 + F 2 n _ r Then the generating 
function for the G is found by multiplying the series of Parts (i) and (ii) to 
be 

1/[(1 - x)(l - 3x + x2)] = Gt + G2x + G3x2 + e9° . 

This implies that Gt = 1, G2 = 4? G3 = 12, and 

(4) G ±Q - 4G ^ + 4G ± 1 - G = 0 . 
v ' n+3 n+2 n+1 n 

Since F 0 M - 1 satisfies the same initial conditions and the same recur-2n+l 
rence relation (4) as G , Par t (iii) is established. 

Also solved by the Proposer. 

ANOTHER CONVOLUTION FOR ?2 ± 

B-205 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

Show that 

(2n - l ) F j + (2n - 3)F3 + (2n - 5)F5 + • • • + 3 F 2 n _ 3 + F ^ ^ = L 2 n - 2 . 

fin 
where L is the n . Lucas number (i. e. , Lj = 1, L2 = 3, L „ = L

n + i 
+ L ). n 
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Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

The solution is s i m i l a r to that of B-204. Instead of P a r t (ii) of B-204, 

one uses 

1 + 3x + 5x2 + • • . = (1 + x ) / ( l - x ) 2 , | x | < 1 , 

which may be obtained by differentiating t e r m - b y - t e r m in 

y + y3 + y 5 + . . „ = y / ( l - y2)f | x | < l , 

and then substi tut ing y2 = x. 

A GEOMETRIC SERIES 

B-206 Proposed by Guy A. Guillotte, Montreal, Quebec, Canada. 

Let a = (1 + \J'E)/2 and sum 

00 

E: aF ,- + F 
n n+1 n 

n=l 

Solution by C. B. A. Peck, State College, Pennsylvania. 

F r o m the Fibonacci Quar te r ly ; Vol. 1, No. 3 , p . 54, 

1 1 + 1 -V _L T? a = aF ,- + F n+1 n 

Hence the sum is 

( l / a 2 ) [ l - (1/a)] = l / ( a 2 - a) = 1 , 

s ince a2 - a - 1 = 0 . 

Also solved by Gregory Wulczyn and the Proposer. 
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ANOTHER GEOMETRIC SERIES 

B-207 Proposed by Guy A Guillotte, Montreal, Quebec, Canada. 

Sum 

~ * F + \f5 F ,- + F l 0 
n=l n n+1 n+2 

Solution by C. B. A. Peck, State College, Pennsylvania. 

The equation 

F + ^ F ± 1 + F _ L O = L ± 1 + \ | 5 F ± 1 = 2 a n + 1 
n n+1 n+2 n+1 n+1 

along with B-206, show that the sum desired here is l /28 

Also solved by Gregory Wulczyn and the Proposer. 

FIBONACCI NOTE SERVICE 
The Fibonacci Quar te r ly i s offering a se rv ice in which it will be p o s -

sible for i t s r e a d e r s to s ecu re background notes for a r t i c l e s . This will apply 
to the following: 
(1) Short abs t r ac t s of extensive r e s u l t s , de r iva t ions , and numer ica l data. 
(2) Brief a r t i c l e s summar iz ing a l a rge amount of r e s e a r c h . 
(3) Ar t i c l e s of s tandard s ize for which additional background m a t e r i a l may 

be obtained. 
Ar t i c l e s in the Quar te r ly for which this note se rv ice i s available will 

indicate the fact together with the number of pages in question. Reques ts for 
these notes should be made to: 

B ro the r Alfred Brousseau 
S t Mary ? s College 
Moraga , Calif. 94575 

The notes will be Xeroxed* 
The p r i ce for this s e rv ice i s four cents a page (including pos tage , m a -

t e r i a l s , and labor) . 


