Chapter Introduction
NAG Fortran Library Contents

## E01 – Interpolation

E01 Chapter Introduction
 RoutineName Mark ofIntroduction Purpose E01AAFExample TextExample Data 1 Interpolated values, Aitken's technique, unequally spaced data, one variable E01ABFExample TextExample Data 1 Interpolated values, Everett's formula, equally spaced data, one variable E01AEFExample TextExample Data 8 Interpolating functions, polynomial interpolant, data may include derivative values, one variable E01BAFExample Text 8 Interpolating functions, cubic spline interpolant, one variable E01BEFExample TextExample Data 13 Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one variable E01BFFExample TextExample Data 13 Interpolated values, interpolant computed by E01BEF, function only, one variable E01BGFExample TextExample Data 13 Interpolated values, interpolant computed by E01BEF, function and first derivative, one variable E01BHFExample TextExample Data 13 Interpolated values, interpolant computed by E01BEF, definite integral, one variable E01DAFExample TextExample Data 14 Interpolating functions, fitting bicubic spline, data on rectangular grid E01RAFExample TextExample Data 9 Interpolating functions, rational interpolant, one variable E01RBFExample TextExample Data 9 Interpolated values, evaluate rational interpolant computed by E01RAF, one variable E01SAFExample TextExample Data 13 Interpolating functions, method of Renka and Cline, two variables E01SBF 13 Interpolated values, evaluate interpolant computed by E01SAF, two variables E01SGFExample TextExample Data 18 Interpolating functions, modified Shepard's method, two variables E01SHF 18 Interpolated values, evaluate interpolant computed by E01SGF, function and first derivatives, two variables E01TGFExample TextExample Data 18 Interpolating functions, modified Shepard's method, three variables E01THF 18 Interpolated values, evaluate interpolant computed by E01TGF, function and first derivatives, three variables

Chapter Introduction
NAG Fortran Library Contents

© The Numerical Algorithms Group Ltd, Oxford, UK. 2004