Bernoulli Bibliography

K


Back to Index       Back to J       On to L


KAIRIES H.H.,
[1] Definitionen der Bernoulli-Polynome mit Hilfe ihrer Multiplikationstheoreme, Manuscr. Math., 8 (1973), 363-369.
Z248.39003; M48#2057; R1973,8V304

KAIRIES H.H.: see also DICKEY L.J., KAIRIES H.H., SHANK H.S.

Z626.10012; M88g:05018

KALLIES J.,
[1] Verallgemeinerte Dedekindsche Summen und ein Gitterpunktproblem im n-dimensionalen Raum, J. Reine Angew. Math., 344 (1983), 22-37.
Z508.10007; M86d:11004; R1984,1A98

[2] Ein Beitrag zur Arithmetik der Bernoullischen Zahlen imaginär-quadratischer Zahlkörper, J. Reine Angew. Math., 361 (1985), 73-94.
Z561.12001; M87g:11031; R1986,4A399

KALLIES J., SNYDER C.,
[1] On the values of partial zeta functions of real quadratic fields at nonpositive integers, Math. Nachr., 175 (1995), 159-191.
Z856.11053; M96k:11137

KALYUZHNYI V.N.,
[1] A $p$-adic analogue of the Hurwitz zeta function.(Russian) Teor. Funktsii Funktsional. Anal. i Prilozhen., no. 40 (1983), 74-79.
Z555.12007; M85h:11078; R1984,2A321

[2] The power moment problem on a $p$-adic disk. Teor. Funktsii Funktsional. Anal. i Prilozhen., no. 39 (1983), 56-61.
Z561.12005; M85b:11077; R1984,1B135

[3] On certain sums with Stirling and Bernoulli numbers. (Russian) Vestnik Kharkov. Gos. Univ., no. 286 (1986), 87-94.
Z626.10011; M88g:05018

KAMIENNY S.,
[1] Modular curves and unramified extensions of number fields, Compositio Math., 47 (1982), no. 2, 223-225.
Z501.12011; M84e:12011; R1983,4A370

[2] Points of order $p$ on elliptic curves over $ Q(\sqrt p)$, Math. Ann., 262 (1982), no. 4, 413-424.
Z489.14010; M84g:14047; R1983,5A390

[3] Rational points on modular curves and abelian varieties, J. Reine Angew. Math., 359 (1985), 174-187.
Z569.14002; M86j:11061; R1986,4A589

[4] p-torsion in elliptic curves over subfields of $ Q(\mu_p)$, Math. Ann., 280 (1988), no. 3, 513-519.
Z626.14024; M90a:11061

[5] On $J_1(p)$ and the kernel of the Eisenstein ideal, J. Reine Angew. Math., 404 (1990), 203-208.
Z705.14025; M90m:11171; R1990,9A341

KAMIENNY S., STEVENS G.,
[1] Special values of L-functions attached to $X_1(N)$, Composito Math., 49 (1983), no. 1, 121-142.
Z519.14018; M84g:14021; R1983,11A588

KAMNITZER J.: see BORWEIN J.M., BROADHURST D.J., KAMNITZER J.

KANEKO M.,
[1] A recurrence formula for the Bernoulli numbers, Proc. Japan Acad. Ser. A, 71 (1995), 192-193.
Z854.11012; M96i:11022; R1996,4V266

[2] Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux 9 (1997), no. 1, 221-228.
Z887.11011; M98k:11013; R1998,4A85

[3] Multiple zeta values and poly-Bernoulli numbers (Japanese), Seminar Reports of the Department of Mathematics, Tokyo Metropolitan University, 1997, 42 pp.

[4] The Akiyama-Tanigawa algorithm for Bernoulli numbers. J. Integer Seq. 3 (2000), no. 2, Article 00.2.9, 6 pp. (electronic).
Z0982.11009; M2001k:11026

KANEKO M., KUROKAWA N., WAKAYAMA M.,
[1] A variation of Euler's approach to values of the Riemann zeta-function. Kyushu J. Math. 57 (2003), no. 1, 175-192.

KANEKO M., ZAGIER D.,
[1] Supersingular $j$-invariants, hypergeometric series, and Atkin's orthogonal polynomials. Computational perspectives on number theory (Chicago, IL, 1995), 97-126, AMS/IP Stud. Adv. Math., 7, Amer. Math. Soc., Providence, RI, 1998.
Z0955.11018; M99b:11064; R01.11-13A418

KANEKO M.: see also ARAKAWA T., KANEKO M.,

KANEKO M.: see also ARAKAWA T., IBUKIYAMA T., KANEKO M.

KANELLOS S.G.,
[1] On Bernoulli's numbers, Bull. Soc. Math. Grèce, 28 (1954); 101-106. (Greek, English summary.)
Z57.01002; M15-855d; R1956,2755

KANEMITSU S.,
[1] On some bounds for values of Dirichlet's L-function $L(s, \chi)$ at the point $s=1$, Mem. Fac. Sci. Kyushu Univ., Ser. A, 31 (1977), no. 1, 15-23.
Z351.10024; M55#12655; R1977,12A103

[2] Omega theorems for divisor functions, Tokyo J. Math., 7 (1984), no. 2, 399-419.
Z556.10031; M87c:11085; R1985,10A141

KANEMITSU S., KUZUMAKI T.,
[1] On a generalization of the Maillet determinant. Number theory (Eger, 1996), 271-287, de Gruyter, Berlin, 1998.
Z920.11071; M99h:11122

[2] On a generalization of the Maillet determinant. II. Acta Arith. 99 (2001), no. 4, 343-361.
Z0984.11056; M2002h:11115

KANEMITSU S., SHIRATANI K.,
[1] An application of the Bernoulli functions to character sums, Mem. Fac. Sci. Kyushu Univ., Ser. A, 30 (1976), no. 1, 65-73.
Z336.10031; M54#249; R1976,9A151

[2] Applications of Bernoulli functions to Dirichlet character sums. (Japanese). Characteristics of arithmetic functions (Proc. Sympos., Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1975). Sûrikaisekikenkyûsho Kôkyûroku, No. 274, (1976), 148-151.
Z336.10033; M56#15578

KANEMITSU S., SITARAMACHANDRA RAO R.,
[1] On a conjecture of P. Chowla and of S. Chowla and H. Walum, I, J. Number Theory, 20 (1985), no. 3, 255-261.
Z467.10031; M87d:11072a; R1986,1A110

[2] On a conjecture of S. Chowla and Walum, II, J. Number Theory, 20 (1985), no. 2, 103-120.
Z467.10032; M87d:11072b; R1986,1A111

KANEMITSU S.: see also ISHIBASHI M., KANEMITSU S.

KANO H.,
[1] On the equation $s(1^k+s^k+ \cdots +x^k)+r = by^z$, Tokyo J. Math., 13 (1990), no. 2, 441-448.
Z722.11022; M91m:11022; R1991,9A121

KANOU N.,
[1] Transcendency of zeros of Eisenstein series. Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 5, 51-54.
Z0973.11051; M2001k:11068; R01.03-13A.173

KAPTEYN J.C., KAPTEYN W.,
[1] Die Höheren Sinus. Sitzungsber. d. Kais. Akad. d. Wiss. in Wien, 93 (1886), 807-868.
J18.0371.02

KAPTEYN W.,
[1] Expansion of functions in terms of Bernoulli polynomials, Proc. Intern. Math. Congress, Toronto, (1924), Reprinted v.1 (1967), 605-609.
J54.0323.02

KARAMATSU Y.,
[1] On Fermat's last theorem and the first factor of the class number of the cyclotomic field, 2, TRU Math., 16 (1980), no. 1, 23-29.
Z465.10010; M82a:10020; R1981,4A113

[2] Ribenboim's criteria and some criteria for the first case of Fermat's last theorem, TRU Math., 17 (1981), no.1, 25-38.
Z472.10021; M83a:10023; R1982,3A143

[3] A note on the first case of Fermat's last theorem. Prospects of mathematical science (Tokyo, 1986), pp. 73-77. World Sci. Publishing, Singapore, 1988.
Z654.10017; M89i:11043

KARAMATSU Y.:see also ABE S., KARAMATSU Y.

KARANDE B.K., THAKARE N.K.,
[1] On the unification of Bernoulli and Euler polynomials, Indian J. Pure Appl. Math., 6 (1975), no. 1, 98-107.
Z343.33010; M54#110; R1977,6V412

KAREL M.L.,
[1] Fourier coefficients of certain Eisenstein series. Bull. Amer. Math. Soc., 78 (1972), 828-830.
Z255.10030; M45#6760; R1973,4A560

[2] Fourier coefficients of certain Eisenstein series. Ann. Math. (2), 99 (1974), no.1, 176-202.
Z279.10024; M49#8935; R1974,7A749

KARPENKOV O.N.,
[1] Combinatorics of multiboundary singularities of the series $B\sp l\sb n$ and the Bernoulli-Euler numbers. (Russian) Funktsional. Anal. i Prilozhen. 36 (2002), no. 1, 78-81; translation in Funct. Anal. Appl. 36 (2002), no. 1, 65-67.
M2003e:58058

KARST E.,
[1] On the coefficients of $\sum_{x=1}^n x^k/\sum_{x=1}^n x^m$, written in terms of n, Pi Mu Epsilon J. 4 (1964), 11-14.

KASUBE H.: see GANDHI J.M., KASUBE H., SURYANARAYANA D.

KATAYAMA K.,
[1] On Ramanujan's formula for values of Riemann zeta function at positive odd integers, Acta Arith., 22 (1973), 149-155.
Z248.10032; M48#252; R1973,9A139

[2] On the values of Eisenstein series, Tokyo J. Math., 1 (1978), no. 1, 157-188.
Z391.10022; M80f:10029; R1979,1A148

[3] Corrections to: "On the values of Eisenstein series", Tokyo J. Math., 5 (1982), no. 1, 115-116.
M83j:10025

[4] Barnes' multiple zeta function and Apostol's generalized Dedekind sum. Tokyo J. Math. 27 (2004), no. 1, 57-74.
M2005e:11050

KATAYAMA K., OHTSUKI M.,
[1] On a theorem of Shintani, Tokyo J. Math., 16 (1993), no. 1, 155-170.
Z802.11015; M94e:11042

KATO K., KUROKAWA N., SAITO T.,
[1] Number theory. 1. Fermat's dream. Translations of Mathematical Monographs, 186. Iwanami Series in Modern Mathematics. American Mathematical Society, Providence, RI, 2000. xvi+154 pp.
M2000i:11002

KATSURADA H.,
[1] An explicit formula for the Fourier coefficients of Siegel-Eisenstein series of degree $3$, Nagoya Math. J. 146 (1997), 199-223.
Z882.11026; M98g:11051; R1999,7A484

[2] Rapidly convergent series representations for $\zeta(2n+1)$ and their $\chi$-analogue, Acta Arith. 90 (1999), no. 1, 79-89.

KATSURADA M.,
[1] Power series and asymptotic series associated with the Lerch zeta-function. Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), no. 10, 167-170.
Z937.11035; M99m:11098; R1999,7B23

[2] Rapidly convergent series representations for $\zeta(2n+1)$ and their $\chi$-analogue. Acta Arith. 90 (1999), no. 1, 79-89.
Z933.11042; M2000f:11101

KATSURADA M., MATSUMOTO K.,
[1] The mean values of Dirichlet $L$-functions at integer points and class numbers of cyclotomic fields. Nagoya Math. J., 134 (1994), 151-172.
Z806.11036; M95d:11108; R1995,6A292

[2] Explicit formulas and asymptotic expansions for certain mean square of Hurwitz zeta-functions. II. New trends in probability and statistics, Vol. 4 (Palanga, 1996), 119-134, VSP, Utrecht, 1997.
Z929.11027; M2000c:11145

KATZ N.M.,
[1] p-adic L-functions via moduli of elliptic curves, Proc. Symp. Pure Math., 29 (1975), 479-506.
Z317.14009; M55#5635

[2] The congruences of Clausen - von Staudt and Kummer for Bernoulli-Hurwitz numbers, Math. Ann., 216 (1975), 1-4.
Z303.10028; M52#8136; R1976,2A539

[3] Higher congruences between modular forms, Ann. of Math. (2), 101 (1975), no. 2, 332-367.
Z356.10020; M54#5120; R1976,1A516

[4] p-adic L-functions for CM-fields, Invent. Math., 49 (1978), no. 3, 199-297.
Z439.12010; M80h:10039; R1979,7A400

[5] Divisibilities, congruences and Cartier duality, J. Fac. Sci. Univ. Tokyo, Ser. IA, 28 (1981), no. 3, 667-678.
Z559.14032; M83h:10067; R1982,11A355

KAWASAKI T.,
[1] On the class number of real quadratic fields, Mem. Fac. Sci. Kyushu Univ., Ser. A, 35 (1981), no. 1, 159-171.
Z459.12003; M82g:12006; R1981,9A275

KAZANDZIDIS G.S.,
[1] On sums of like powers of the numbers less than $N$ and prime to $N$, Prakt. Akad. Athenon, 44 (1969), (1970), 148-158.
Z264.10009; M46#5230

[2] On the Bernoulli polynomials, Bull. Soc. Math. Grèce, 10 (1969), 151-182.
Z197.31901; M43#4756

KELISKY R.P.,
[1] Congruences involving combinations of the Bernoulli and Fibonacci numbers, Proc. Nat. Acad. Sci. U.S.A., 43 (1957), no. 12, 1066-1069.
Z84.27004; M19-941d; R1960,4A589

[2] On formulas involving both the Bernoulli and Fibonacci numbers, Scripta Math., 23 (1957), no. 1-4, 27-35.
Z84.06605; M20#5300; R1960,3784

KELLER W., LÖH G.,
[1] The criteria of Kummer and Mirimanoff extended to include 22 consecutive irregular pairs, Tokyo J. Math., 6 (1983), no. 2, 397-402.
Z553.10009; M85h:11014; R1984,10A93

KELLNER B.,
[1] Über irreguläre Paare höherer Ordnungen. Diplomarbeit, Göttingen, 2002.

[2] On irregular prime power divisors of the Bernoulli numbers. Math. Comp. 76 (2007), no. 257, 405-441.

KERVAIRE M.A., MILNOR J.W.,
[1] Bernoulli numbers, homotopy groups, and a theorem of Rohlin, Proc. Intern. Congress of Math., Edinburgh 1958, Cambridge Univ. Press, 1960, 454-458.
Z119.38503; M22#12531; R1961,8A349

[2] Groups of homotopy spheres, I, Ann. of Math., 77 (1963), no. 3, 504-537.
Z115.40505; M26#5584; R1964,10A305

KHAN R.A.,
[1] A simple derivation of a formula for $\sum_{k=1}^n k^r$, Fibonacci Quart., 19 (1981), no. 2, 177-180.
M82e:05010; R1981,9V438

KHANNA I.K.,
[1] A new type of generalization of Bernoulli and Euler numbers and its applications, Progr. Math. (Varanasi), 20 (1986), no. 2, 83-89.
Z699.10022; M88g:11008

KHANNA I.K., PANDAY P.,
[1] Extended Bernoulli numbers and its applications, Ganita, 35 (1984), no. 1-2, 26-34 (1987).
Z632.10009

KHOVANSKII A.N.,
[1] Some identities connected with Bernoulli numbers. (Russian), Izvestiya Kazan. Filial. Akad. Nauka. SSSR. Ser. Fiz.-Mat. Tehn. Nauk., 1 (1948), 93-94.
M14-138c

KIDA M.,
[1] Kummer's criterion for totally real number fields. Tokyo J. Math., 14 (1991), no.2, 309-317.
Z758.11031; M92j:11135

KIM DAE SAN: see JANG YOUNGHO, KIM DAE SAN.

KIM E.E., TOOLE B.A.,
[1] Ada and the first computer. Scientific American, May 1999, 76-81.

KIM EUN-SUP: see CHO HAE-SOOK, KIM EUN-SUP.

KIM HAN SOO, KIM TAEKYUN,
[1] On a $q$-analogue of the $p$-adic log gamma functions and related integrals. Number theory and related topics (Masan, 1994; Pusan, 1994), 67--75, Pyungsan Inst. Math. Sci., Seoul, 1995.
M97h:11013

[2] Remark on $q$-analogues of $p$-adic $L$-functions. Number theory and related topics (Masan, 1994; Pusan, 1994), 76--83, Pyungsan Inst. Math. Sci., Seoul, 1995.
M97g:11016

[3] On certain values of $p$-adic $q$-$L$-functions. Rep. Fac. Sci. Engrg. Saga Univ. Math. 23 (1995), no. 1-2, 1-7.
Z820.11071; M96f:11153; R1997,4A262

[4] Some congruences for Bernoulli numbers. II. Rep. Fac. Sci. Engrg. Saga Univ. Math. 24 (1996), no. 2, 5 pp.
Z869.11016; M98g:11018; R1996,12A142

[5] On $q$-$\log$-gamma-functions. Bull. Korean Math. Soc. 33 (1996), no. 1, 111-118.
Z865.11059; M97b:11025

[6] Remark on $p$-adic $q$-Bernoulli numbers. Algebraic number theory (Hapcheon/Saga, 1996). Adv. Stud. Contemp. Math. 1 (1999), 127-136.
M2000g:11112

KIM HAN SOO, LIM PIL-SANG, KIM TAEKYUN,
[1] A remark on $p$-adic $q$-Bernoulli measure. Bull. Korean Math. Soc. 33 (1996), no. 1, 39--44.
Z855.11062; M97b:11145

KIM HOIL: see JANG YOUNGHO, KIM HOIL.

KIM J.H.: see JANG L.C., KIM J.H., KIM T., LEE D.H., PARK D.W., RYOO C.S.

KIM JAE MOON,
[1] Class numbers of certain real abelian fields, Acta Arith., 72 (1995), no. 4, 335-345.
Z841.11056; M96j:11152; R1996,10A248

[2] Class numbers of real quadratic fields, Bull. Austral. Math. Soc., 57 (1998), no. 2, 261-274.
Z980.47404; M98m:11117; R01.03-13A173

[3] Units and cyclotomic units in ${Z}\sb p$-extensions, Nagoya Math. J. 140 (1995), 101-116.
Z848.11055; M96m:11100

KIM MIN-SOO, KIM TAEKYUN
[1] An explicit formula on the generalized Bernoulli number with order $n$. Indian J. Pure Appl. Math. 31 (2000), no. 11, 1455-1461.
Z0966.11014; M2002c:11017

KIM MIN-SOO, SON JIN-WOO
[1] On Bernoulli numbers. J. Korean Math. Soc. 37 (2000), no. 3, 391-410.
Z971.11057; M2001g:11020

[2] On a multidimensional Volkenborn integral and higher order Bernoulli numbers. Bull. Austral. Math. Soc. 65 (2002), no. 1, 59-71.
Z0996.11017; M2003d:11029

[3] Some remarks on a $q$-analogue of Bernoulli numbers. J. Korean Math. Soc. 39 (2002), no. 2, 221-236.
M2002j:11011

[4] A $q$-analogue of the Dirichlet $L$-function. Algebra Colloq. 9 (2002), no. 4, 469-480.
M2003h:11024

[5] Bernoulli numbers in $p$-adic analysis. Appl. Math. Comput. 146 (2003), no. 1, 289-297.
M2004i:11012

KIM MIN-SOO: see also JANG YOUNGHO, KIM MIN-SOO, SON JIN-WOO

KIM T.
[1] Non-Archimedean $q$-integrals associated with multiple Changhee $q$-Bernoulli polynomials. Russ. J. Math. Phys. 10 (2003), no. 1, 91-98.
M2004h:33034

KIM T.
[2] $p$-adic $q$-integrals associated with the Changhee-Barnes' $q$-Bernoulli polynomials. Integral Transforms Spec. Funct. 15 (2004), no. 5, 415-420.

KIM T., JANG L.C., RYOO C.S., PARK D.-W.,
[1] The real zeros of $q$-Bernoulli polynomials. Far East J. Appl. Math. 16 (2004), no. 2, 233-248.

KIM T.: see also JANG L.C., KIM J.H., KIM T., LEE D.H., PARK D.W., RYOO C.S.

KIM TAEKYUN,
[1] An analogue of Bernoulli numbers and their congruences. Rep. Fac. Sci. Engrg. Saga Univ. Math., 22 (1994), no. 2, 21-26.
Z802.11007; M94m:11024

[2] On explicit formulas of $p$-adic $q$-$L$-functions. Kyushu J. Math., 48 (1994), no.1, 78-86.
Z817.11054; M95c:11140; R1996,8A219

[3] On a $q$-analogue of the $p$-adic log gamma functions and related integrals. J. Number Theory 76 (1999), no. 2, 320-329.
Z941.11048; M 2000c:11195

[4] On $p$-adic $q$-Bernoulli numbers. J. Korean Math. Soc. 37 (2000), no. 1, 21-30.
M2001a:11193; R00.03-13A113

[5] Sums of products of $q$-Bernoulli numbers. Arch. Math. (Basel) 76 (2001), no. 3, 190-195.
M2001k:11251

[6] Remark on $p$-adic $q$-$L$-functions and sums of powers. Proc. Jangjeon Math. Soc. 1 (2000), 161-169.
M2001i:11138

[7] Remark on $p$-adic proofs for $q$-Bernoulli and Eulerian numbers of higher order. Proc. Jangjeon Math. Soc. 2 (2001), 9-15.
R03.11 - 13A.324

[8] Some $q$-Bernoulli numbers of higher order associated with the $p$-adic $q$-integers. Proc. Jangjeon Math. Soc. 2 (2001), 23-28.
R03.11 - 13A.323

[9] A note on $p$-adic $q$-Dedekind sums. Proc. Jangjeon Math. Soc. 2 (2001), 29-34.
R03.11 - 13A.322

[10] A note on $p$-adic $q$-Dedekind sums. C. R. Acad. Bulgare Sci. 54 (2001), no. 10, 37-42.
M2002i:11120

[11] A note on the solutions for exercise problems of $p$-adic $q$-integrals. Proc. Jangjeon Math. Soc. 2 (2001), 45-49.
R03.11 - 13A.321.

[12] Some formulae for the $q$-Bernoulli and Euler polynomials of higher order. J. Math. Anal. Appl. 273 (2002), no. 1, 236-242.
Z1008.11005

[13] On $p$-adic $q$-$L$-functions and sums of powers. Discrete Math. 252 (2002), no. 1-3, 179-187.
Z1007.11073; M2003g:11137

Kim, Taekyun,
[14] $q$-Volkenborn integration. Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.
M2004f:11138

[15] Remark on the multiple Bernoulli numbers. Proc. Jangjeon Math. Soc. 6 (2003), no. 2, 185-192.
M2005a:11023

[16] A note on $q$-Bernoulli numbers and polynomials. J. Nonlinear Math. Phys. 13 (2006), no. 3, 315--322.

[17] $q$-generalized Euler numbers and polynomials. Russ. J. Math. Phys. 13 (2006), no. 3, 293-298.

KIM TAEKYUN, ADIGA C.,
[1] Sums of products of generalized Bernoulli numbers. Int. Math. J. 5 (2004), no. 1, 1-7.
M2004m:11020

KIM TAEKYUN, JANG LEE-CHAE, PAK HONG KYUNG,
[1] A note on $q$-Euler and Genocchi numbers. Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 8, 139-141.
M2002h:11018

KIM TAEKYUN, JANG LEE CHAE, RIM SEOG-HOON, PAK HONG-KYUNG,
[1] On the twisted $q$-zeta functions and $q$-Bernoulli polynomials. Far East J. Appl. Math. 13 (2003), no. 1, 13-21.

KIM TAEKYUN, RIM SEOG-HOON,
[1] A note on $p$-adic Carlitz's $q$-Bernoulli numbers. Bull. Austral. Math. Soc. 62 (2000), no. 2, 227-234.
Z0959.11012; M2001g:11021

[2] Generalized Carlitz's $q$-Bernoulli numbers in the $p$-adic number field. Adv. Stud. Contemp. Math. (Pusan) 2 (2000), 9-19.
M2001j:11118

[3] Explicit formulas for the $q$-Bernoulli numbers of higher order. Proc. Jangjeon Math. Soc. 1 (2000), 97-107.

[4] Some $q$-Bernoulli numbers of higher order associated with the $p$-adic $q$-integrals. Indian J. Pure Appl. Math. 32 (2001), no. 10, 1565-1570.
M2002m:11101

[5] On Changhee-Barnes' $q$-Euler numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), no. 2, 81-86.
Z1065.11010; M2005f:11028

[5] A note on two variable Dirichlet's $L$-function. Adv. Stud. Contemp. Math. (Kyungshang) 10 (2005), no. 1, 1-6.
M2005g:11 025

Kim, Taekyun; Ryoo, Cheon Seoung,
[1] Kummer congruences for the Euler numbers of higher order. JP J. Algebra Number Theory Appl. 4 (2004), no. 2, 301-310.
Z1064.11078; M2005g:11239

Kim, T.; Ryoo, C. S.; Jang, L. C.; Rim, S. H.,
[1] Exploring the $q$-Riemann zeta function and $q$-Bernoulli polynomials. Discrete Dyn. Nat. Soc. 2005, no. 2, 171--181.
M2006k:11032

KIM TAEKYUN: see also JANG LEE-CHAE, KIM TAEKYUN, LEE DEOK-HO, PARK DAL-WON.

KIM TAEKYUN: see also JANG LEECHAE, KIM TAEKYUN, PARK DAL-WON.

KIM TAEKYUN: see also JANG LEECHAE, KIM TAEKYUN, RIM SEOG-HOON.

KIM TAEKYUN: see also JANG LEE-CHAE, KIM TAEKYUN, RIM SEOGHOON, SON JIN-WOO

KIM TAEKYUN: see also KIM HAN SOO, KIM TAEKYUN

KIM TAEKYUN: see also KIM MIN-SOO, KIM TAEKYUN

KIM TAEKYUN: see also RYOO CHEON SEOUNG, KIM TAEKYUN

KIM YUNG-HWAN, PARK DAL-WON, JANG LEE-CHAE,
[1] A note on $q$-analogue of Volkenborn integral. Adv. Stud. Contemp. Math. (Kyungshang) 4 (2002), no. 2, 159-163.
M2003a:11016

KIMBALL B.F.,
[1] The application of Bernoulli polynomials of negative order to differencing, Amer. J. Math., 55 (1933), 399-416.
J59.0367.02; Z7.21101

[2] The application of Bernoulli polynomials of negative order to differencing. II, Amer. J. Math., 56 (1934), 147-152.
J60.1041.03; Z8.26005

[3] A generalization of the Bernoulli polynomial of order one, Bull. Amer. Math. Soc., 41 (1935), 894-900.
J61.0377.03; Z13.16701

[4] The generalized Bernoulli polynomial and its relation to the Riemann zeta function (Abstract). Bull. Amer. Math. Soc., 39 (1933), 510-511.
J59.0375.03

KIMURA N.,
[1] Kummersche Kongruenzen für die verallgemeinerten Bernoullischen Zahlen, J. Number Theory, 11 (1979), no. 2, 171-187.
Z406.10011; M81d:10008; R1980,1A112

[2] Über die Nullstellen der von Potenzsummen der natürlichen Zahlen definierten Polynome, Proc. Japan Acad. Ser. A, 58 (1982), no. 7, 326-328.
Z515.10012; M84k:10043; R1983,4A129

[3] On the degree of an irreducible factor of the Bernoulli polynomials, Acta Arith., 50 (1988), no. 3, 243-249.
Z655.10008; M89j:11019; R1989,3A251

KIMURA N., SIEBERT H.,
[1] Über die rationalen Nullstellen der von Potenzsummen der natürlichen Zahlen definierten Polynome. Proc. Japan. Acad. Ser. A, 56 (1980), no.7, 354-356.
Z462.10007; M82e:10013; R1981,3A96

KING, AUGUSTA ADA,
[1] Notes by the translator. (On L. F. Menabrea, "Sketch of the Analytical Engine Invented by Charles Babbage Esq."). In Richard Taylor (Ed.), Scientific Memoirs, Vol. III, Richard and John E. Taylor, London, 1843.

KINKELIN H.,
[1] Ueber eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechnung. J. Reine Angew. Math., 57 (1860), 122-138.

KIRIYAMA H.: see ORIGUCHI T., KIRIYAMA H., MATSUOKA Y.

KIRSCHENHOFER P., PRODINGER H.,
[1] On some applications of formulae of Ramanujan in the analysis of algorithms. Mathematika, 38 (1991), no. 1, 14-33.
Z707.68024; M92h:68025

KIRSCHENHOFER P.:see also BILU Yu. F., BRINDZA B., KIRSCHENHOFER P., PINTÈR Á., TICHY R. F.

KIRSTEN K.,
[1] Inhomogeneous multidimensional Epstein zeta functions. J. Math. Phys., 32 (1991), no. 11, 3008-3014.
Z753.11032; M93a:11028

KISELEV A.A.,
[1] An expression for the number of classes of ideals of real quadratic fields by means of Bernoulli numbers. (Russian) Doklady Akad. Nauk. SSSR(N.S.), 61 (1948), 777-779.
Z35.02201; M10-236h

[2] Vyrazhenie chisla klassov kvadratichnykh polej cherez chisla Bernulli [An expression for the number of classes of ideals of quadratic fields by means of Bernoulli numbers]. Nauchn. sessiya Leningradsk. Gos. Universiteta, Tezisy dokladov po sektsii Mat. Nauk, (1948), 37-39.

[3] O nekotorykh sravneniyakh chisla klassov idealov veshchestvennykh polej [On some congruences for the numbers of classes of ideals of real quadratic fields]. Uch. zap., Leningradsk. Gos. Universiteta, ser. mat. nauk, (1949), no. 16, 20-31.

[4] On the commumication "On the determination of the sum of quadratic residues of a prime $p= 4m+3$ by means of Bernoulli numbers" (Russian) In: Voronoi, G.F., Sobranie sochinenii v trekh tomakh. (Russian) [Collected works in three volumes.] Vol. III, Kiev, 1953, 203-204.
Z
49.02804; M16-2d; R1954,3228K

KISELEV A.A., SLAVUTSKII I.SH.,
[1] On the number of classes of ideals of a quadratic field and its rings. (Russian) Dokl. Akad. Nauk. SSSR, 126 (1959), 1191-1194.
Z92.27401; M23#A141; R1960,4872

[2] Some congruences for the number of representations as sums of an odd number of squares. (Russian) Dokl. Akad. Nauk. SSSR, 143 (1962), 272-274.
Z121.28404; M26#3687; R1962,10A73

[3] The transformation of Dirichlet's formulas and the arithmetical computation of the class number of quadratic fields. (Russian) 1964 Proc. Fourth All-Union Math. Congr. (Leningrad, 1961), Vol.II, pp. 105-112, Izdat. "Nauka", Leningrad.
Z201.37803; M36#3748; R1964,11A108

[4] Rol' teorii chisel i mnogochlenov Bernulli v teorii chisel [The role of the theory of Bernoulli numbers and polynomials in number theory]. Tezisy dokl. konf. Leningradsk. otdeleniya Sovetsk. nats. ob'edineniya istorikov estestvoznaniya i tekhniki, Leningrad, (1966), 9.

[5] Chislo klassov idealov kvadratichnogo polya i chisla Bernulli [The number of classes of ideals of a quadratic field and Bernoulli numbers]. Tezisy sektsyii No. 3 Mezhdunarodn. kongressa matematikov, Moskva, (1966), 15-16.

KISHORE N.,
[1] The Rayleigh function, Proc. Amer. Math. Soc., 14 (1963), 527-533.
Z117.29904; M27#1633; R1964,5B48

[2] A representation of the Bernoulli number $B_n$, Pacific J. Math., 14 (1964), 1297-1304.
Z132.29903; M30#1082; R1966,2B61

[3] Congruence properties of the Rayleigh functions and polynomials, Duke Math. J., 35 (1968), 557-562.
Z182.06604; M37#3995; R1969,6B90

KLAMKIN M.S.,
[1] On a generalization of the geometric series. Amer. Math. Monthly 64 (1957), no. 2, 91-93.
Z080.04303; M18,478b; R1957,7979

KLEBOTH H.,
[1] Untersuchung über Klassenzahl und Reziprozitätsgesetz im Körper der 6l-ten Einheitswurzeln und die Diophantische Gleichung $x^{2l}+3ly^{2l}=z^{2l}$ für eine Primzahl $l$ grösser als 3, Dissertation, Univ. Zürich, 1955, 37 pp.
M20#4537; R1962,11A123D

KLEINER I.,
[1] From Fermat to Wiles: Fermat's last theorem becomes a theorem. Elem. Math. 55 (2000), no. 1, 19-37.

KLINE M.,
[1] Euler and infinite series, Math. Mag., 56 (1983), no. 5, 301-315.
Z526.01015; M86a:01020; R1984,7A11

KLINOWSKI J.: see CVIJOVIC D., KLINOWSKI J.

KLUYVER J.C.,
[1] Der Staudt-Clausen'sche Satz., Math. Ann., 53 (1900), 591-592.
J31.0198.02

[2] Ontwikkelingscoëfficiënten, die eenige overeenkomst met de getallen van Bernoulli vertoonen, Nieuw Arch. Wisk. (2), 5 (1901), 249-254.
J32.0282.02

[3] An analytical expression for the greatest common divisor of two integers, Proc. Royal Acad. Amsterdam, 5 (1903), 658-662.

[4] Über die Summen der gleich hohen inversen Potenzen der ganzen Zahlen, Handl. Neder. Nat. en Geneesk. Congr., 10 (1905), 181-184 . (original title: Over de sommen van gelijknamige machten der omgekeerden van de geheele getallen).
J36.0341.01

[5] Verallgemeinerung einer bekannten Formel, Nieuw Arch. Wisk. (2), 4 (1899/1900), 284-291.
J31.0437.02

[6] Over eenige getallenreeksen van Euler. Versl. Meed. Kon. Ak. Weten., Amsterdam 24 (1916), 1816-1822.
J46.0360.01

KNAR J.,
[1] Entwicklung der vorzüglichsten Eigenschaften einiger mit den goniometrischen zunächst verwandten Functionen, Arch. Math. und Phys., 27 (1856), 365-470.

KNOLL, F.,
[1] Die zyklischen Funktionen und die damit zusammenhängenden linearen Operationen. Verallgemeinerte Bernoullische Polynome. Deutsche Math. 1 (1936), 156-162.
J62.0408.02; Z0014.06201

KNOPFMACHER A., ROBBINS N.,
[1] Some arithmetic properties of Eulerian numbers. J. Combin. Math. Combin. Comput. 36 (2001), 31-42.
M2001k:11028

KNOPP K.,
[1] Theorie und Anwendung der unendlichen Reihen, 4-te Auflage, Springer-Verlag, Berlin-Heidelberg, 1947, xii + 583 pp.
Z31.11801; M10-446a

KNUTH D.E.,
[1] Johann Faulhaber and sums of powers. Math. Comp., 61 (1993), no. 203, 277-294.
Z797.11026; M94a:11030

KNUTH D.E., BUCKHOLTZ T.J.,
[1] Computation of tangent, Euler and Bernoulli numbers, Math. Comp., 21 (1967), 663-688.
Z178.04401; M36#4787; R1968,6B856

KNUTH D.E.: see also GRAHAM R.L., KNUTH D.E., PATASHNIK O.

KOBELEV V.V.,
[1] A proof of Fermat's theorem for all prime exponents less than 5500. (Russian) Dokl. Akad. Nauk. SSSR, 190 (1970), 767-768.
Z205.06501; M41#3363; R1970,7A149

KOBLITZ N.,
[1] p-adic numbers, p-adic analysis and zeta-functions, Springer-Verlag, New York, 1977. (Russk. perevod 83i:12013).
Z364.12015; M57#5964; R1978,8A366K

[2] Interpretation of the p-adic log gamma functions and Euler constant using the Bernoulli measure, Trans. Amer. Math. Soc., 242 (1978), 261-269.
Z358.12010; M58#10836; R1979,2A255

[3] A new proof of certain formulas for p-adic L-functions, Duke Math. J., 46 (1979), 455-468.
Z409.12028; M80f:12011; R1980,2A355

[4] p-adic analysis: a short course on recent works, London Math Soc. Lecture Note Series, No. 46, 1980.
Z439.12011; M82c:12014; R1981,5A374

[5] On Carlitz's q-Bernoulli numbers, J. Number Theory, 14 (1982), no. 3, 332-339.
Z501.12020; M83k:12017; R1982,12A354

[6] q-extension of the p-adic gamma function, II, Trans. Amer. Math. Soc., 273 (1982), no. 1, 111-129.
Z508.12016; M84a:12024; R1983,4A364

[7] Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics No. 97. Springer-Verlag, New York- Berlin, 1984. viii + 248pp.
Z553.10019; M86c:11040; R1985,5A394K

[8] p-adic congruences and modular forms of half integer weight, Math. Ann., 274 (1986), no. 2, 199-220.
Z571.10030; M88a:11043; R1986,11A576

[9] Congruences for periods of modular forms, Duke Math. J., 54 (1987), no. 2, 361-373.
Z628.10032; M88k:11030; R1988,5A434

[10] Jacobi sums, irreducible zeta-polynomials and cryptography. Canad. Math. Bull., 34 (1991), no. 2, 229-235.
Z686.12011; M92e:11067

KOCH H.,
[1] Algebraic number theory. (Russian) Itogi Nauki i Tekhniki, Number Theory, 2 (1990), 5-308.
Z722.11001; M92a:11118b

[2] Introduction to classical mathematics. I. From the quadratic reciprocity law to the uniformization theorem. Mathematics and its Applications, 70. Kluwer Akademic Publ., Dordrecht, 1991. xviii+453pp.
Z733.00001; M92k:00010

KOECHER M.: see EBBINGHAUS H.-D. et al.

KOEPF W.,
[1] On two conjectures of M.S. Robertson. Complex Variables, Theory and Appl., 16 (1991), no. 2/3, 127-130.
Z745.30004; M92f:30004

KÖHLER G.,
[1] Observations on Hecke eigenforms on the Hecke groups $G(\sqrt{2})$ and $G(\sqrt{3})$, Abh. Math. Sem. Univ. Hamburg, 55 (1985), 75-89.
Z565.10022, 575.10018; M87e:11067; R1986,8A536

KOHNEN W.,
[1] On the proportion of quadratic character twists of $L$-functions attached to cusp forms not vanishing at the central point, J. Reine Angew. Math. 508 (1999), 179-187.
Z0968.11023; M2000e:11070

KOHNEN W., ZAGIER D.,
[1] Modular forms with rational periods. Modular forms (Durham, 1983), 197-249, Horwood, Chichester, 1984.
Z618.10019; M87h:11043; R1987,5A440

KOLK J.A.C.: see BEUKERS F., KOLK J.A.C., CALABI E.

KOLSCHER M.,
[1] Die Potenzsummen der natürlichen Zahlen, Math. Naturwiss. Unterricht, 6 (1954), 307-310.
M15-684f

KOLSTER M.,
[1] On the Birch-Tate conjecture for maximal real subfields of cyclotomic fields, Lecture Notes Math., 1046 (1984), 229-234.
Z528.12009; M86b:11079; R1984,9A305

[2] Remarks on étale $K$-theory and Leopoldt's conjecture. Séminaire de théorie des nombres, Paris, 1991-92, 37-62, Progr. Math., 116, Birkhäuser, Boston, MA, 1993.
M95i:19006

KOLYVAGIN V.A.,
[1] Euler systems. In: The Grothendieck Festschrift Vol. II, Progr. Math., 87, Birkhäuser Boston, Boston, MA, 1990, 435-483.
Z742.14017; M92g:11109

[2] Fermat equations over cyclotomic fields, Proc. Steklov Inst. Math., 208 (1995), 146-165; translation from Tr. Mat. Inst. Steklova, 208 (1995), 163-185.
Z881.11037; R1996,4A272

KORTEWEG D.J.,
[1] Over benaderings-formelen voor de som von reeksen welke uit een groot aantal termen bestaan, Nieuw Arch. Wiskunde, 2 (1876), 161-176.
J08.0134.01

KOSEKI H.: see HASHIMOTO K., KOSEKI H.

KOSHLYAKOV N.S.,
[1] Ob odnom obobshchenii polinomov Bernulli [An extension of Bernoulli's polynomials]. Mat. Sbornik 42 (1935), no. 4, 425-434.
J61.0378.02; Z13.16702

[2] Remarks on the paper of I.J. Schwatt "The sum of like powers of a series of numbers forming an arithmetical progression and the Bernoulli numbers." (Russian), Mat. Sb., 40 (1933), 528.
J59.0895.01; Z59.0895.01

KOTIAH T.C.T.,
[1] Sums of powers of integers - a review. Internat. J. Math. Ed. Sci. Tech., 24 (1993), no. 6, 863-874.
Z806.11015; M94g:11016

KOUNCHEV O.: see DRYANOV D., KOUNCHEV O.

KOUTSKY K.,
[1] K Lerchovym pracim o Fermatove kvotientu [On Lerch's work on the Fermat quotient], Prace Moravske Prirodovedecke Spolecnosti, 18 (1947), 1-7.

KOZUKA K.,
[1] On abelian extensions over cyclotomic $Z_{p_1}\times \cdots \times Z_{p_t}$-extension, Mem. Fac. Sci., Kyushu Univ., Ser A, 38 (1984), no. 2, 141-149.
Z528.12009; M85i:11095; R1985,6A294

[2] On a p-adic interpolating power series of the generalized Euler numbers, J. Math. Soc. Japan, 42 (1990), no. 1, 113-125.
Z706.11068; M90j:11020; R1990,8A87

[3] On the values of the p-adic valuation of the generalized Euler numbers, Mem. Fac. Sci. Kyushu Univ. Ser. A, 43 (1989), no. 2, 37-53.
Z705.11007; M91a:11062a; R1990,7A292

[4] On the $\ mu$-invariant of an interpolating power series of the generalized Euler numbers, Mem. Fac. Sci. Kyushu Univ. Ser. A, 43 (1989), no. 2, 43-53.
Z706.11069; M91a:11062b; R1990,7A293

[5] On the $\mu$-invariants of certain $p$-adic $L$-functions attached to the formal multiplicative group. Res. Rep. Miyakonojo Nat. Coll. Technol., 1994, no. 28, 1-10.
R1994,8A372

[6] On linear combinations of $p$-adic interpolating functions for the Euler numbers. Kyushu J. Math. 54 (2000), no. 2, 403-421.
M2002b:11171

[7] Dedekind type sums attached to Dirichlet characters. Kyushu J. Math. 58 (2004), no. 1, 1-24.

KRAFT J. S.,
[1] Class numbers and Iwasawa invariants of quadratic fields. Proc. Amer. Math. Soc. 124 (1996), no. 1, 31-34.
Z846.11059; M96d:11112; R1996,7A228

KRALL H.L.,
[1] Self-adjoint differential expressions, Amer. Math. Monthly, 67 (1960), no. 9, 876-878.
Z145.32501; M24#A270; R1961,12B123

KRAMER D.,
[1] Spherical polynomials and periods of a certain modular form, Trans. Amer. Math. Soc., 294 (1986), no. 2, 595-605.
Z592.10017; M87e:11061; R1986,12A587

[2] On the values at integers of the Dedekind zeta function of a real quadratic field, Trans. Amer. Math. Soc., 299 (1987), no. 1, 59-79.
Z606.12007; M88a:11123; R1987,7A113

KRASNER M.,
[1] Sur le premier cas du théorème de Fermat, C.R. Acad. Sci., Paris 199 (1934), 256-258.
J60.0129.01; Z10.00702

KRAUSE M.,
[1] Zur Theorie der ultra-Bernoullischen Zahlen und Funktionen, Berichte Verh. Kgl. Gesells. Wiss., Leipzig, 54 (1902), 139-205.
J33.0971.03

[2] Über Bernoulische Zahlen und Funktionen im Gebiete der Funktionen zweier veränderlicher Grössen, Berichte Verh. Kgl. Gesells. Wiss., Leipzig, 55 (1903), 39-62.
J34.0485.02

[3] Zur Theorie der Eulerschen und Bernoullischen Zahlen, Monatsh. Math. Phys., 14 (1903), 305-324.
J34.0483.02

[4] Über die Bernoullische Funktion zweier veränderlicher Grössen, Arch. Math. und Phys. (3), 4 (1903), 293-295.
J34.0485.01

KREWERAS G.,
[1] An additive generation for the Genocchi numbers and two of its enumerative meanings. Bull. Inst. Combin. Appl. 20 (1997), 99-103.
Z879.05001; M98d:05010

[2] Sur les permutations comptées par les nombres de Genocchi de 1-ière et 2-ième espèce. [Permutations enumerated by Genocchi numbers of the first and the second kind] European J. Combin. 18 (1997), no. 1, 49-58.
Z869.05002; M97k:05010

KRICK M.S.,
[1] On the coefficients of $cosh x/cos x$, Math. Mag., 34 (1960), no. 1, 37-40.
Z105.26404; R1961,6B334

KRIEG A.: see EIE M., KRIEG A.

KRISHNAMACHARY C., BHIMASENA RAO M.,
[1] On a table for calculating Eulerian numbers based on a new method. Proc. London Math. Soc. (2), 22 (1923), 73-80.
J49.0167.02

KRONECKER L.,
[1] Sur quelques fonctions symmetriques et sur les nombres de Bernoulli, J. Math. Pure Appl. (2), 1 (1856), 385-391.

[2] Démonstration d'un Théorème de Kummer, J. Math. Pure Appl., (2), 1 (1856), 396-398.

[3] Über die Bernoullischen Zahlen (Bermerkungen zu der Abhandl. des Herrn Worpitzky), J. Reine Angew. Math., 94 (1883), 268-269.
J15.0201.02

[4] Über eine bei Anwendung partieller Integration nützliche Formel, Sitz. Kgl. Preuss. Akad. Wiss., Berlin, (1885), 841-862.
J17.0251.02

KROUKOVSKI B.V.,
[1] Sur les nombres semblables aux nombres Bernouilliens et Eulériens. Les nombres pseudo-cotangentiels (Ukrainian; French summary). J. Inst. Math. Kiev., (1934-35), no. 1, 43-62.
J61.0985.03; Z12.15102

KUBERT D.S.,
[1] The universal ordinary distribution, Bull. Soc. Math. France, 107 (1979), no. 2, 179-202.
Z409.12021; M81b:12004; R1980,2A357

[2] The 2-divisibility of the class number of cyclotomic fields and the Stickelberger ideal, J. Reine Angew. Math., 369 (1986), 192-218.
Z584.12003; M88a:11108

KUBERT D., LANG S.,
[1] Cartan-Bernoulli numbers as values of L-series, Math. Ann., 240 (1979), no. 1, 21-26.
Z377.12010; M81b:10027; R1979,7A404

[2] Modular units inside cyclotomic units, Bull. Soc. Math. France, 107 (1979), fasc. 2, 161-178.
Z409.12007; M81k:12006; R1980,2A356

[3] Modular units, Springer-Verlag, New York-Berlin, 1981, xiii + 358pp. (Grundl. Math. Wiss., No. 244.)
Z492.12002; M84h:12009; R1982,3A406,7A382

KUCERA R.,
[1] Formulae for the relative class number of an imaginary abelian field in the form of a determinant. Nagoya Math. J. 163 (2001), 167-191.
Z1002.11079; M2002j:11129

KUBOTA T., LEOPOLDT H.W.,
[1] Eine p-adische Theorie der Zetawerte, Teil 1: Einführung der p-adischen Dirichletschen L-Funktionen, J. Reine Angew. Math., 214/215 (1964), 328-339.
Z186.09103; M29#1199; R1965,4A90

KUDO A.,
[1] On a class number relation of imaginary abelian fields, J. Math. Soc. Japan, 27 (1975), 150-159.
Z294.12004; M50#12968; R1975,9A292

[2] On generalization of a theorem of Kummer, Mém Fac. Sci. Kyushu Univ., Ser. A, 29 (1975), no. 2, 255-261.
Z314.12011; M53#8010; R1976,3A369

[3] Generalized Bernoulli numbers and the basic $ Z_p$-extensions of imaginary quadratic fields, Mém. Fac. Sci. Kyushu Univ., Ser. A, 32 (1978), no. 2, 191-198.
Z425.12007; M80e:12012; R1979,2A260

[4] On $p$-adic Dedekind sums, II. Mem. Fac. Sci. Kyushu Univ., Ser. A, 45 (1991), no.2, 245-284.
Z751.11031; M93g:11120; R1992,7A355

[5] Reciprocity formulas for $p$-adic Dedekind sums, Bull. Fac. Liberal Arts Nagasaki Univ., 34 (1994), no. 2, 97-101.
Z813.11065; M95c:11142

[6] On $p$-adic Dedekind sums, Nagoya Math. J. 144 (1996), 155-170.
Z872.11051; M97m:11143; R1997,11A270

[7] A congruence of generalized Bernoulli number for the character of the first kind. Adv. Stud. Contemp. Math. (Pusan) 2 (2000), 1-8.
M2001j:11115

KUDRYAVTSEV V.A.,
[1] Summirovanie stepenej natural'nogo ryada i chisla Bernulli [Summation of powers of natural series and Bernoulli numbers]. Moskva, 1936.

KUHN P.,
[1] Zu den Mittelwerten zahlentheoretischer Funktionen. Norske Vid. Selsk. Forhdl., Trondheim, 14 (1941), no. 42, 157-160.
J67.0131.03; M8-503d

Kulkarni, Manisha; Sury, B.,
[1] A class of Diophantine equations involving Bernoulli polynomials. Indag. Math. (N.S.) 16 (2005), no. 1, 51-65.
M2005m:11047

[2] Diophantine equations with Bernoulli polynomials. Acta Arith. 116 (2005), no. 1, 25-34.
M2005i:11 038

KUMMER E.E.,
[1] Beweis des Fermat'schen Satzes der Unmöglichkeit von $x^{\lambda}+y^{\lambda}=z^{\lambda}$ für eine unendliche Anzahl Primzahlen $\lambda$, Monatsb. Akad. Wiss. Berlin, (1847), 132-141, 305-319.

[2] Zwei besondere Untersuchungen über die Classen-Anzahl und über die Einheiten der aus $\lambda$-ten Wurzeln der Einheit gebildeten complexen Zahlen, J. Reine Angew. Math., 40 (1850), no. 2, 117-129. / Coll. Papers, v.1., Berlin e.a.: Springer-Verlag, 1975. viii + 957pp.
Z327.01019; M57#5650a; R1976,1A127K

[3] Allgemeiner Beweis des Fermat'schen Satzes, dass die Gleichung $x^{\lambda}+y^{\lambda}=z^{\lambda}$ durch ganze Zahlen unlösbar ist, für alle diejenigen Potenz-Exponenten $\lambda$, welche ungerade Primzahlen sind und in den Zählern der ersten $({\lambda}-3)/2$ Bernoulli'schen Zahlen als Factoren nicht vorkommen, J. Reine Angew. Math., 40 (1850), 131-138.

[4] Mémoire sur la théorie des nombres complexes composés de racines de l'unité et de nombres entiers, J. Math. Pure Appl., 16 (1851), 377-498.

[5] Über eine allgemeine Eigenschaft der rationalen Entwicklungscoefficienten einer bestimmten Gattung analytischer Functionen, J. Reine Angew. Math., 41 (1851), 368-372.

[6] Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math., 44 (1852), no. 2, 93-146.

[7] Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math., 56 (1859), 270-279.

[8] Einige Sätze über die aus den Wurzeln der Gleichung $\alpha^{\lambda} = 1$ gebildeten complexen Zahlen, für den Fall, dass die Klassenzahl durch $\lambda$ theilbar ist, nebst Anwendung derselben auf einen weiteren Beweis des letzten Fermats'chen Lehrsatzes, Abhandl. Akad. Wiss. Berlin, Math., (1857), (1858), 41-74. (See also Auszug, Monatsb. Akad. Wiss. Berlin, (1857), 275-282.)

[9] Über diejenigen Primzahlen $\lambda$, für welche die Klassenzahl der aus $\lambda$-ten Einheitswurzeln gebildeten complexen Zahlen durch $\lambda$ theilbar ist, Monatsb. Akad. Wiss. Berlin, (1874), 239-248.
J06.0117.01

[10]see also HENSEL
Die Briefe an Leopoldt Kronecker, Abhandl. zur Geschichte der Math. Wiss., Leipzig, (1910), Heft 29.
J41.0015.03

KUNDERT E.G.,
[1] Basis in a certain completion of the s-d-ring over the rational numbers. I, II. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 64 (1978), no. 5, 423-428; no. 6, 543-547.
Z428.13013; M81j:13026a,b; R1980,7A204; [2] The Bernoullian of a matrix (A generalization of the Bernoulli numbers), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 72 (1982), (1983), no. 6, 315-317.
Z523.10005; M85g:05021; R1984,6A87

[3] A von Staudt-Clausen theorem for certain Bernoullian-like numbers and regular primes of the first and second kind. Fibonacci Quart., 28 (1990), no. 1, 16-21.
Z694.10013; M91e:11022; R1991,2A107

KUO HUAN-TING,
[1] A recurrence formula for $\zeta(2n)$, Bull. Amer. Math. Soc., 55 (1949). 573--574.
Z032.34501; M10,683d

Kupershmidt, Boris A.,
[1] Reflection symmetries of $q$-Bernoulli polynomials. J. Nonlinear Math. Phys. 12 (2005), suppl. 1, 412-422.
M2005k:11040

KURIHARA A.,
[1] On the values at non-positive integers of Siegel's zeta functions of $ Q$-anisotropic quadratic forms with signature $(1, n-1)$. J. Fac. Sci. Univ. of Tokyo Sect. IA Math., 28 (1981), no.3, 567-584.
Z495.10019; M84a:10021

KURIHARA F.,
[1] On the p-adic expansion of units of cyclotomic fields, J. Number Theory, 32 (1989), no. 2, 226-253.
Z689.12005; M90k:11138; R1990,2A337

KURIHARA M.,
[1] Some remarks on conjectures about cyclotomic fields and $K$-groups of $ Z$. Compositio Math., 81 (1992), no. 2, 223-236.
Z747.11055; M93a:11091

KUROKAWA N.: see KATO K., KUROKAWA N., SAITO T.

KUROKAWA N.: see also KANEKO M., KUROKAWA N., WAKAYAMA M.

KURT V.,
[1] Remarks on higher-dimensional Dedekind sums, Math. Japon. 45 (1997), no. 2, 297-301.
Z882.11024; M98c:11037

KURT V.: see also CENKCI M., CAN MIMIN, KURT V.

KÜTTNER W.,
[1] Zur Theorie der Bernoullischen Zahlen, Zeits. für Math. u. Phys., 24 (1879), 250-252.
J11.0188.01

KUZMIN L.V.,
[1] Algebraic number fields. (Russian) Algebra. Topology. Geometry, Vol. 22, (Itogi. Nauki i Tekhniki, Akad. Nauk. SSSR), Moscow, 1984, 117-204.
Z563.12002; M86f:11076; R1985,1A446

KUZNETSOV A. G., PAK I. M., POSTNIKOV A. E.,
[1] Increasing trees and alternating permutations. (Russian) Uspekhi Mat. Nauk 49 (1994), no. 6(300), 79-110. Translated in: Russian Math. Surveys 49 (1994), no. 6, 79-114.
Z
842.05025; M96e:05048

KUZUMAKI T.: see KANEMITSU S., KUZUMAKI T.

KWON SOUN-HI: see CHANG KU-YOUNG, KWON SOUN-HI


Back to Index       Back to J       On to L