
Simplicial Tree Computations
Extended Abstract

Massimo Caboara∗ Sara Faridi† Peter Selinger‡

January 21, 2005

Abstract
We present an algorithm that checks in polynomial time whether a simplicial complex is a tree. We

also present an efficient algorithm for checking whether a complex is grafted. These properties have strong
algebraic implications for their corresponding facet ideals.

1 Introduction

The main goal of this paper is to demonstrate that it is possible to check, in polynomial time, if a monomial
ideal is the facet ideal of a simplicial tree.

Facet ideals were introduced in [4] (generalizing [9] and [8]) as a method to study square-free monomial
ideals. The idea is to associate a simplicial complex to a square-free monomial ideal, where each facet (max-
imal face) of the complex is the collection of variables thatappear in a monomial in the minimal generating
set of the ideal (see Definition 2.4). The ideal will then be called the “facet ideal” of this simplicial complex.
Special simplicial complexes are called “simplicial trees” (Definition 2.9). Facet ideals of trees have many
properties; for example, they have normal and Cohen-Macaulay Rees rings [4]. Finding such classes of ide-
als is in general a very difficult problem. Simplicial trees also have very strong Cohen-Macaulay properties:
their facet ideals are always sequentially Cohen-Macaulay[6], and one can determine under precisely what
combinatorial conditions on the simplicial tree the facet ideal is Cohen-Macaulay [5]. In [7] it is shown that
the theory is not restricted to square-free monomial ideals; via polarization, one can extend many properties
of facet ideals to all monomial ideals. All these properties, and many others, make simplicial trees extremely
useful from an algebraic point of view.

But how does one determine if a given square-free monomial ideal is the facet ideal of a simplicial tree?
In Section 3, we show that this can be decided in polynomial time.

This extended abstract is organized as follows: in Section 2we introduce the notion of a complex, a
tree, and a cycle. Section 3 contains the main theoretical result that enables us to produce a polynomial time
algorithm to decide whether a given complex is a tree. The algorithm itself is introduced in Section 3.1,
and the complexity and optimizations are discussed in Sections 3.2 and 3.3. Section 4 focuses on the alge-
braic properties of facet ideals: in Section 4.1 we discuss amethod of adding generators to a square-free
monomial ideal (or facets to the corresponding complex) so that the resulting facet ideal is Cohen-Macaulay.
This method is called “grafting” a simplicial complex. For simplicial trees, being grafted and being Cohen-
Macaulay are equivalent conditions [5]. We then introduce an algorithm that checks whether or not a given
simplicial complex is grafted in Section 4.2, and discuss its complexity in Section 4.3.

Implementations. The algorithms described in this paper have first been coded in CoCoAL, the program
language of the CoCoA system [2]. These prototypical implementations can be downloaded from the web-
site www.dm.unipi.it/∼caboara/Research/SimplicialTrees/Trees.coc. Much moreefficient (but not so user
friendly) C++ implementations are being developed using the cocoalib framework [3]. The C++ code will be
available in the full paper according to the specifications of AJCA [1].

∗Department of Mathematics, University of Pisa, caboara@dm.unipi.it.
†Department of Mathematics, University of Ottawa, faridi@uottawa.ca. Research supported by NSERC.
‡Department of Mathematics, University of Ottawa, selinger@mathstat.uottawa.ca. Research supported by NSERC.

1

2 Simplicial complexes and trees

2.1 Definitions and notation

We define the basic notions related to facet ideals. More details and examples can be found in [4] and [5].

Definition 2.1 (Simplicial complex, facet).A simplicial complex∆ over a set of verticesV = {v1, . . . , vn}
is a collection of subsets ofV , with the property that{vi} ∈ ∆ for all i, and ifF ∈ ∆ then all subsets ofF
are also in∆ (including the empty set). An element of∆ is called afaceof ∆, and the maximal faces are
calledfacetsof ∆.

Since we are usually only interested in the facets, rather than all faces, of a simplicial complex, it will be
convenient to work with the following definition:

Definition 2.2 (Facet complex).A facet complexis a finite set∆ of finite sets, such that for allF, G ∈ ∆,
F 6⊆ G. EachF ∈ ∆ is called afacetof ∆, and eachv ∈ F is called avertexof F and of∆.

Remark 2.3. The set of facets of a simplicial complex forms a facet complex. Conversely, the set of subsets
of the facets of a facet complex is a simplicial complex. The two definitions are therefore interchangeable.

We define facet ideals as follows, giving a one-to-one correspondence between facet complexes and
square-free monomial ideals.

Definition 2.4 (Facet ideal of a complex, facet complex of an ideal).

• Let ∆ be a facet complex whose vertices are contained in{v1, . . . , vn}. Let k be a field, and let
R = k[x1, . . . , xn] be the polynomial ring with indeterminatesx1, . . . , xn. The facet ideal of∆ is
defined to be the ideal ofR generated by all the square-free monomialsxi1 . . . xis

, where{vi1 , . . . , vis
}

is a facet of∆. We denote the facet ideal of∆ byF(∆).

• Let I = (M1, . . . , Mq) be an ideal in the polynomial ringk[x1, . . . , xn], wherek is a field and
M1, . . . , Mq are square-free monomials inx1, . . . , xn that form a minimal set of generators forI. The
facet complex ofI is defined to beδF (I) = {F1, . . . , Fq}, where for eachi, Fi = {vj | xj |Mi, 1 ≤
j ≤ n}.

From now on, we often usex1, . . . , xn to denote both the vertices of∆ and the variables appearing in
F(∆). We also sometimes ease the notation by denoting facets by their corresponding monomials.

We now generalize some notions from graph theory to complexes. Note that a graph can be regarded as a
special kind of facet complex, namely one in which each facethas cardinality 2.

2.2 Simplicial trees

Simplicial trees are a generalization of graph-theoretic trees, in light of the fact that a graph can be regarded
as a special kind of complex, where the facets are the edges ofthe graph.

Definition 2.5 (Path, connected complex).Let ∆ be a facet complex. A sequence of facetsF1, . . . , Fn is
called apathif for all i = 1, . . . , n − 1, Fi ∩ Fi+1 6= ∅. We say that two facetsF andG areconnectedin ∆
if there exists a pathF1, . . . , Fn with F1 = F andFn = G. Finally, we say that∆ is connectedif every pair
of facets is connected.

Notation 2.6. If F , G andH are facets of∆, H ≤F G means thatH ∩ F ⊆ G ∩ F , i.e. H is a subset ofG
“inside” F . The relation≤F defines a preorder (reflexive and transitive relation) on thefacet set of∆.

Definition 2.7 (Leaf, joint). Let F be a facet of a facet complex∆. ThenF is called aleaf of ∆ if either
F is the only facet of∆, or else there exists someG ∈ ∆ \ {F} such that for allH ∈ ∆ \ {F}, we have
H ≤F G. If F ∩ G 6= ∅, the facetG above is called ajoint of the leafF .

2

Example 2.8. In the complex∆ = {xyz, yzu, uv}, xyz anduv are leaves, butyzu is not a leaf. Similarly,
in ∆′ = {xyu, xyz, xzv}, the only leaves arexyu andxzv.

∆ =

y

x
z

u

v
∆′ =

x

y z

u v

Definition 2.9 (Forest, tree). A facet complex∆ is a forest if every nonempty subset of∆ has a leaf. A
connected forest is called atree.

Example 2.10. The complexes in Example 2.8 are trees. The complex∆ = {xyu, xyz, xzv, yzw} pictured
below has three leavesxyu, xvz andyzw; however, it is not a tree, because if one removes the facetxyz, the
remaining complex has no leaf.

x
u

z w

y

v

2.3 Cycles

Definition 2.11 (Cycle). A nonempty facet complex is acycleif it has no leaf. A cycle isminimalif none of
its proper subsets are cycles.

Remark 2.12. Clearly a complex is a tree if and only if it does not have a subset which is a cycle.

The main tool used in the paper to prove Theorem 3.7 is the structure of cycles.

Definition 2.13 (Strong neighbor). Let ∆ be a complex andF, G ∈ ∆ facets. We say thatF andG are
strong neighbors, writtenF ∼ G, if for all H ∈ ∆, F ∩ G ⊆ H impliesH = F or H = G.

The relation∼ is symmetric, i.e.F ∼ G if and only if G ∼ F , and reflexive, i.e.F ∼ F .
It turns out that a cycle can be described as a sequence of strongly connected facets. The following lemma

follows directly from Definition 2.13.

Lemma 2.14. Let∆ be a complex, and letF1, . . . , Fn be facets such that for alli = 1, . . . , n−1, Fi ∼ Fi+1

andFn ∼ F1 in ∆. Then{F1, . . . , Fn} is a cycle.

Lemma 2.15. Suppose∆ is a minimal cycle, and letn = |∆|. Thenn ≥ 3, and the facets of∆ can be
enumerated in such a way that∆ = {F1, . . . , Fn}, and for all i, Fi ∼ Fi+1, as well asFn ∼ F1. Moreover,
in all other cases,Fi 6∼ Fj (so that each facet is a strong neighbor of precisely two other facets).

The proof of this last lemma is based on the observation that every non-trivial tree has at least two leaves
[4]. Further, ifF is not a leaf of∆, but is a leaf of∆ \ {G} for some facetG, thenF andG must be strongly
connected in∆.

3 Characterization of trees

As mentioned earlier, facet ideals of simplicial trees havestrong algebraic properties. For example, they have
normal and Cohen-Macaulay Rees rings. One would therefore like to be able to decide whether a given facet
complex is a tree or not. We refer to this problem as thedecision problem for simplicial trees.

Note that the naı̈ve algorithm (namely, checking whether every non-empty subset has a leaf) is extremely
inefficient: for a complex ofn facets, there are2n − 1 subsets to check. Also note that the definition of a
tree is not inductive in any obvious way: for instance, attaching a single leaf to a tree need not yield a tree, as
Example 2.10 shows. This seems to rule out an easy recursive algorithm.

We now demonstrate that the decision problem for simplicialtrees can in fact be solved in polynomial
time.

3

Definition 3.1. A precomplexis a finite multiset (a set in which repeated elements are allowed)Π of finite
sets. Just like for facet complexes, an elementF ∈ Π is called a facet and an elementv ∈ F is called a
vertex.

Remark 3.2. Trivially, any facet complex is also a precomplex. On the other hand,Π = {xyz, xyz, xz} is
an example of a precomplex which is not a facet complex. It fails to be a facet complex because (a) the facet
xyz occurs more than once, and (b) the facetxz is a subset of the facetxyz.

Definition 3.3 (Reduction). Let ∆ = {F1, . . . , Fn} be a facet complex, and letV be a set of vertices. We
define thereductionof ∆ alongV to be the precomplex

∆ \\ V := {F1 \ V, . . . , Fn \ V }.

Note that in general,∆ \\ V is not a facet complex.

Definition 3.4 (Residue).Let ∆ be a complex, and letF, G1, G2 be three distinct facets. Let

↑F Gi := {H ∈ ∆ | Gi ≤F H andH 6= Gi }.

Let S = ↑F G1 ∪↑F G2 and define the〈F, G1, G2〉-residueof ∆ to be the following precomplex:

∆G1,G2

F = (∆ \ S) \\ F.

Remark 3.5. Note that in the expression(∆ \S) \\F , the setS is a set of facets, whileF is a set of vertices.
Also note thatF ∈ S. Further, ifG1 6≤F G2 andG2 6≤F G1, thenG1, G2 6∈ S.

Definition 3.6 (Triple condition). Let ∆ be a complex. A triple of facets〈F, G1, G2〉 is said to satisfy the
triple conditionif G1 6≤F G2 andG2 6≤F G1, and ifG1 \ F andG2 \ F are connected in∆G1,G2

F .

Our central claim is the following:

Theorem 3.7 (Main Theorem). Let∆ be a complex. Then∆ is a tree if and only if no triple of facets in∆
satisfies the triple condition.

Sketch of the proof.“⇒”: Suppose there is a triple of facets〈F, G1, G2〉 satisfying the triple condition. Let
{H1, . . . , Hn} be a minimal path connectingG1 \ F andG2 \ F in ∆G1,G2

F . ChooseKi ∈ ∆ such that
Hi = Ki \F for all i, and such thatK1 = G1 andKn = G2. One can show that{F, K1, . . . , Kn} is a cycle
in ∆.

“⇐”: Suppose that∆ is not a tree. Then∆ has some minimal cycle, which can be written as{F1, . . . , Fn}
satisfying the condition of Lemma 2.15. Then it can be shown that the triple〈F1, F2, Fn〉 satisfies the triple
condition.

Corollary 3.8. If F is part of a minimal cycle, then there exist someG1, G2 ∈ ∆ such that〈F, G1, G2〉
satisfies the triple condition.

3.1 A polynomial-time tree decision algorithm

By Theorem 3.7, to check if a complex∆ = {G1, . . . , Gl} is a tree, we only need to check the triple condition
for all triples of elements of∆. The checks themselves are straightforward. Since the triple condition for
〈F, G, G′〉 is clearly unchanged if one switchesG andG′, we can limit triple checking to the elements of the
set{〈F, Gi, Gj〉 ∈ ∆3 | Gi 6= F 6= Gj , i < j}. The procedures for the basic steps follow immediately from
the earlier definitions.

Algorithm 3.9 (Tree decision algorithm).
Input: a complex∆ = {G1, . . . , Gl} with n vertices.
Output:True if ∆ is a tree,Falseotherwise.

1. For each triple〈F, G, G′〉 ∈ {〈F, Gi, Gj〉 ∈ ∆3 | Gi 6= F 6= Gj , i < j}

4

(a) If G ≤F G′ or G′ ≤F G, continue with the next triple.

(b) LetΠ = ∆G,G′

F .

(c) If G \ F andG′ \ F are connected inΠ, returnFalse.

2. ReturnTrue.

The algorithm uses very little memory;∆ andΠ requirenl bits each, and the memory required to per-
form the connectedness check and to store the various counters is negligible. Thus, the total memory usage
is roughly twice the amount necessary for∆; memory locality is hence quite good, and computation can
generally take place in the cache. We will hence only deal with time complexity.

3.2 Complexity

In the worst case we have to check3 ·
(

l
3

)

= l(l − 1)(l − 2)/2 triples. For each triple, the cost of step (a)
is O(n), the cost of step (b) isO(nl) and the cost of step (c) isO(nl). The total time complexity of the
algorithm is thereforeO(nl4).

Example 3.10. Consider the complex∆ = {xy, xz, yz, yu, zt}. We have to check3 ·
(

5

3

)

= 30 triples. We
start with the triple〈xy, xz, yz〉.

• xz 6≤xy yz sincexy ∩ xz = x 6⊆ y = xy ∩ yz. Similarly yz 6≤xy xz.

• xz \xy = z andyz \xy = z are connected (they are equal) in the precomplex∆xz,yz
xy = {z, z, u, zt}.

We have hence discovered that∆ is not a tree. A more unlucky choice of facets could have brought about
the checking of27 useless triples before the discovery that∆ is not a tree, the other two useful triples being
〈yz, xy, xz〉 and〈xz, xy, yz〉.

Example 3.11. Some statistics for a bigger random example. Consider the complex∆ = {lka, qik, tykj,
wuv, rjb, eioab, gdc, zv, rtj, qrvm, gzm, tgzb, rgvm, qlav, qeocn, ikfaz, bn, ekjs, pfvn, wtodv}. We
discover that it is not a tree after checking4 facets; we performed the connectedness check only once. If one
checks all3 ·

(

20

3

)

= 3420 triples, one finds that445 of them require a connectedness check, and418 of them
reveal that∆ is not a tree.

Example 3.12. The complex{xixi+1xi+2 | i = 1, . . . , 400} is trivially a tree. Checking this by a direct
application of Algorithm 3.9 requires dealing with3 ·

(

400

3

)

= 31, 760, 400 triples, and takes about24.6
seconds on an Athlon 2600+ machine for our C++ implementation. All the timings in the remainder of this
paper refer to this machine.

3.3 Optimization

The runtime of Algorithm 3.9 can be improved by introducing some optimizations. First, note that ifF is a
facet such that no triple〈F, G, G′〉 satisfies the triple condition, then by Corollary 3.8,F cannot be part of
any minimal cycle of∆. Therefore,F can be removed from∆, reducing the number of subsequent triple
checks. We refer to this optimization as theremoval of useless facets.

Example 3.13. We check the tree{xixi+1xi+2 | i = 1, . . . , 400} of Example 3.12 with a version of Algo-
rithm 3.9 with removal of useless facets. This requires dealing with 10, 586, 800 triples and takes about5.6
seconds.

An important special case of a “useless facet” is a reducibleleaf, as captured in the following definition:

Definition 3.14 (Reducible leaf).A facetF of a facet complex∆ is called areducible leafif for all G, G′ ∈
∆, eitherG ≤F G′ or G′ ≤F G.

Remark 3.15. F is a reducible leaf of∆ if and only if F is a leaf of every∆′ ⊆ ∆ with F ∈ ∆′.

5

The remark immediately implies that a reducible leaf cannotbe part of a cycle. Thus, it can be removed
from∆, and the algorithm can then be recursively applied to∆′ = ∆\{F}. In our experience, most simplicial
trees possess a reducible leaf; in fact, it is an open question whether this is always the case. Checking whether
a given facetF is a reducible leaf requires ordering all facets with respect to ≤F , which takesO(nl log l)
steps. A reducible leaf can thus be found in timeO(nl2 log l). This suggests that removing all reducible
leaves at the beginning of Algorithm 3.9 is a worthwhile optimization.

Sparse Complexes

If every facet in a complex∆ with l facets intersects a substantial (∼ l) number of facets the number of cycles
is probably high and our algorithm is usually able to detect one of them easily. If this does not happen we
can exploit the complex “sparseness” in our algorithm.

Definition 3.16 (Sparse Complexes).Let ∆ be a facet complex withl facets over a set ofn verticesV . If
every facet intersects at mostd other facets andd << l then∆ is asparse complexandd is theconnectivity
boundof ∆.

Let us suppose that the sparse complex∆ is overn vertices, hasl facets, and its connectivity bound isd.
To check if∆ is a tree it is sufficient to check the connected triples only.For each facetF (l facets): first
construct the set of all facetsG connected toF (called theconnection set, at costO(nl)), then for allG, G′

in the set (d2 pairs) perform the triple check on〈F, G, G′〉 (costO(nl) per triple). The total cost isO(nl2d2).
The space required to construct the connection sets isO(d), hence negligible. For sparse examples, this
optimization is clearly worthwhile:

Example 3.17. We check the tree{xixi+1xi+2 | i = 1, . . . , 400} of Example 3.12 with the algorithm
detailed above. We deal with398 triples and spend0.2 seconds.

Example 3.18. The complex{xixi+1 · · ·xi+200 | i = 1, . . . , 3200} is a tree. Tree checking with the
algorithm detailed above requires dealing with61, 013, 400 triples, and takes about190 seconds. Without
any optimization, the number of triples to check is16, 368, 643, 200 and the time spent by the algorithm is
> 2 days.

4 Algebraic properties of facet ideals

We now study facet ideals from a more algebraic point of view.In particular, we are interested in ways to
determine whether a given complex is Cohen-Macaulay. We first need to introduce some new terminology.

Definition 4.1 (Vertex covering number, unmixed complex, independence number).Let ∆ be a facet
complex.

• A vertex coverfor ∆ is a setA of vertices of∆, such thatA ∩ F 6= ∅ for every facetF . The smallest
cardinality of a vertex cover of∆ is called thevertex covering numberof ∆ and is denoted byα(∆).
A vertex coverA is minimal if no proper subset ofA is a vertex cover. A facet complex∆ is unmixed
if all of its minimal vertex covers have the same cardinality.

• A setB of facets of∆ is called anindependent setif F ∩G = ∅ for all F, G ∈ B. The maximum pos-
sible cardinality of an independent set of facets, denoted by β(∆), is called theindependence number
of ∆.

Example 4.2.Consider the two complexes in Example 2.8. We haveα(∆) = β(∆) = 2. Also,∆ is unmixed
as its minimal vertex covers{x, u}, {y, u}, {y, v}, {z, u} and{z, v} all have cardinality equal to two. We
further haveα(∆′) = β(∆′) = 1, but∆′ is not unmixed, because{x} and{y, z} are minimal vertex covers
of different cardinalities.

The following observations are basic but useful.

Proposition 4.3 (Cohen-Macaulay complexes [4, 5]).Let∆ be a facet complex with vertices inx1, . . . , xn,
and consider its facet idealI = F(∆) in the polynomial ringR = k[x1, . . . , xn]. Then the following hold:

6

(a) height I = α(∆) anddim R/I = n − α(∆).

(b) An idealp = (xi1 , . . . , xis
) of R is a minimal prime ofI if and only if {xi1 , . . . , xis

} is a minimal
vertex cover for∆.

(c) If k[x1, . . . , xn]/F(∆) is Cohen-Macaulay, then∆ is unmixed.

4.1 Grafting

One of the most basic ways to build a Cohen-Macaulay complex is via grafting.

Definition 4.4 (Grafting [5]). A facet complex∆ is a grafting of the facet complex∆′ = {G1, . . . , Gs}
with the facetsF1, . . . , Fr (or we say that∆ is grafted) if

∆ = {F1, . . . , Fr} ∪ {G1, . . . , Gs}

with the following properties:

(i) G1 ∪ . . . ∪ Gs ⊆ F1 ∪ . . . ∪ Fr;

(ii) F1, . . . , Fr are all the leaves of∆;

(iii) {G1, . . . , Gs} ∩ {F1, . . . , Fr} = ∅;

(iv) For i 6= j, Fi ∩ Fj = ∅;

(v) If Gi is a joint of∆, then∆ \ {Gi} is also grafted.

Note that the definition is recursive, since graftedness of∆ is defined in terms of graftedness of∆\{Gi}.
Also note that a facet complex that consists of only one facetor several pairwise disjoint facets is grafted, as
it can be considered as a grafting of the empty facet complex.It is easy to check that conditions (i) to (v)
above are satisfied in this case. It is also clear that the union of two or more grafted facet complexes is itself
grafted.

Example 4.5. There may be more than one way to graft a given complex. For example, some possible ways
of grafting{G1, G2} are shown in Figure 1.

The interest in grafted complexes, from an algebraic point of view, lies in the following facts.

Theorem 4.6 (Grafted complexes are Cohen-Macaulay).Let∆ be a grafted facet complex. ThenF(∆) is
Cohen-Macaulay.

Even more holds when∆ is a tree.

Theorem 4.7 ([5] Corollaries 7.8, 8.3).If ∆ is a simplicial tree, then the following are equivalent:

(i) ∆ is unmixed;

(ii) ∆ is grafted;

(iii) F(∆) is Cohen-Macaulay.

4.2 Graftedness algorithm

A direct application of Definition 4.4 is not very convenientfor checking whether a given facet complex∆
is grafted, since at each step of the recursion, one potentially needs to check condition (v) for several of the
Gi, and this leads to a worst-case exponential algorithm. In order to arrive at a more efficient algorithm, we
characterize graftedness as follows:

Lemma 4.8. A facet complex∆ is grafted if and only if (1) for each vertexv, there exists a unique leafF
such thatv ∈ F , and (2) all leaves of∆ are reducible.

7

∆ :
G1

G2

graft
- ∆′ :

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �

F1

G1
G2

F2

?

graft

∆′′ :

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � � �

�
�

�
�
�

�
�
�

F1

G1
G2

F2

F3

@
@

@
@

@R

graft

∆′′′ : G1

F1
F2

F3

G2

F4

Figure 1: Three different ways of grafting a complex∆.

Proof. First, assume that∆ is grafted. Condition (1) follows from (i), (ii) and (iv). The fact that all leaves
are reducible is shown by induction on the number of facets of∆. The converse is also shown by induction.
Suppose∆ satisfies (1) and (2), and let{F1, . . . , Fr} and{G1, . . . , Gs} be the sets of leaves and non-leaves,
respectively. Conditions (i)–(iv) hold trivially. Further, if Gi is a joint, thenF1, . . . , Fr are still reducible
leaves of∆ \ {Gi} by Remark 3.15; also, there are no additional leaves in∆ \ {Gi}. Therefore,∆ \ {Gi}
satisfies (1) and (2) and is therefore grafted by induction hypothesis, proving (v).

The algorithm for checking if a complex is grafted follows immediately from Lemma 4.8.

Algorithm 4.9 (Graftedness algorithm).
Input: A facet complex∆ with l facets andn vertices.
Output:True if ∆ is grafted,Falseotherwise.

1. Build the listsF = 〈F1, . . . , Fk〉 (leaves of∆) andG = 〈G1, . . . , Gm〉 (facets of∆ which are not
leaves).

2. If
⋃

G∈G
G 6⊆

⋃

F∈F
F , returnFalse.

3. If ∃ F, F ′ ∈ F such thatF ∩ F ′ 6= ∅, returnFalse.

4. If ∃ F ∈ F that is not a reducible leaf, returnFalse.

5. returnTrue.

4.3 Complexity

The leaf checking cost isO(nl), hence the cost of step 1 isO(nl2). The cost of steps 2 and 3 isO(nl). For
step 4, there arek facetsF to check. Checking whetherF is reducible takesO(nl log l) steps as mentioned
in Section 3.3. Therefore the total cost for step 4 isO(nl2 log l), and this is the cost of the algorithm.

Example 4.10. We have the complex∆ = {xyz, yzu, ztu, uv, tw}. We haveF = {xyz, uv, tw} and
G = {yzu, ztu}.

⋃

G∈G
G ⊆

⋃

F∈F
F = {x, y, z, t, u, v, w} andxyz ∩ uv = xyz ∩ tw = uv ∩ tw = ∅.

Additionally, we check that eachF ∈ F is a reducible leaf by showing that the set{F ∩ G | G ∈ G} is a
totally ordered set under inclusion. For example, ifF = xyz, then this set is equal to{yz, z} which is totally
ordered. This holds for allF ∈ F , and hence the complex is grafted.

8

Further work

As Theorem 3.7 and Algorithm 3.9 suggest, to check whether ornot a given complex is a tree, it is not
necessary to check if every subset is a cycle. On the other hand, it might be useful to have more information
on the cycles of a complex.

The main ingredient in the proof of Theorem 4.7 is a generalization of König’s theorem from graph theory.

Theorem 4.11 ([5] Theorem 5.3).If ∆ is a simplicial tree (forest) andα(∆) = r, then∆ hasr independent
facets, and thereforeα(∆) = β(∆) = r.

If ∆ is a bipartite graph (not necessarily a tree), then the statement of Theorem 4.11 still holds. Moreover,
facet ideals of bipartite graphs have and Cohen-Macaulay Rees rings [8]. These facts lead us to consider the
question: “Is there a higher-dimensional generalization of a bipartite graph?”

The most promising approach so far has been to consider a facet complex “multipartite” if it has no
minimal cycles of odd length. Computational evidence has shown that Theorem 4.11 probably holds for such
complexes. Using Lemmas 2.14 and 2.15 and Corollary 3.8, we have developed an algorithm that detects
minimal cycles in a given complex. Details of this work will be given in the full paper.

References

[1] Active Journal for Computer Algebra. See the file
www.dm.unipi.it/∼caboara/Research/SimplicialTrees/ajca.pdf

[2] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, Available at
http://cocoa.dima.unige.it

[3] CoCoALib. See the webpagehttp://cocoa.dima.unige.it/cocoalib/

[4] S. Faridi,The facet ideal of a simplicial complex, Manuscripta Mathematica 109 (2002), 159-174.

[5] S. Faridi,Cohen-Macaulay properties of square-free monomial ideals, Journal of Combinatorial The-
ory, Series A, to appear..

[6] S. Faridi,Simplicial trees are sequentially Cohen-Macaulay, J. Pure and Applied Algebra, Volume
190, Issues 1-3, Pages 121-136 (June 2004).

[7] S. Faridi, Monomial ideals via square-free monomial ideals, Lecture Notes in Pure and Applied
Mathematics, to appear.

[8] Simis A., Vasconcelos W., Villarreal R.,On the ideal theory of graphs, J. Algebra 167 (1994), no. 2,
389–416.

[9] Villarreal R.,Cohen-Macaulay graphs, Manuscripta Math. 66 (1990), no. 3, 277–293.

9

