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RELATIVE ERRORS FOR BOOTSTRAP APPROXIMATIONS OF
THE SERIAL CORRELATION COEFFICIENT

BY CHRIS FIELD1 AND JOHN ROBINSON2

Dalhousie University and University of Sydney

We consider the first serial correlation coefficient under an AR(1) model
where errors are not assumed to be Gaussian. In this case it is necessary to
consider bootstrap approximations for tests based on the statistic since the
distribution of errors is unknown. We obtain saddle-point approximations for
tail probabilities of the statistic and its bootstrap version and use these to show
that the bootstrap tail probabilities approximate the true values with given
relative errors, thus extending the classical results of Daniels [Biometrika 43
(1956) 169–185] for the Gaussian case. The methods require conditioning
on the set of odd numbered observations and suggest a conditional bootstrap
which we show has similar relative error properties.

1. Introduction. A central limit theorem for the first-order serial correlation
for an autoregression with general errors was obtained by Anderson (1959), and
Edgeworth expansions were obtained by Bose (1988) who used this to prove the
validity of the bootstrap approximation. There have been several papers which con-
sider saddle-point approximations for autoregressive processes [Daniels (1956),
Phillips (1978), Lieberman (1994b)] under the assumption of normal errors and
more generally for a ratio of quadratic forms of normal variables [Lieberman
(1994a)]. Our results, in contrast, give relative errors, valid for nonnormal errors
and are used to show that the bootstrap has better than first-order relative accuracy
in a moderately large region.

Let ε0, ε1 · · · εn be independent and identically distributed random variables
with distribution function F and density f , assume that Eε0 = 0, define Xi =
ρXi−1 + εi, i = 2, . . . , n and take X1 to be distributed as ε0/

√
1 − ρ2, which, al-

though not of the correct form of the stationary distribution when we do not assume
normal errors, has a variance in common with that case. We consider approximat-
ing the distribution of the first serial correlation coefficient,

R =
∑n

i=2 XiXi−1

X2
1/2 + ∑n−1

i=2 X2
i + X2

n/2
,(1)
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following Section 6 of Daniels (1956) who obtained a saddle-point approximation
for this when f was the density of a normal variable. Note that without loss of
generality we can assume Eε2

0 = 1. We wish to consider testing the hypothesis
ρ ≤ ρ0 using R.

When F is unknown we will consider a bootstrap approximation to the test,
generating a bootstrap sample, X∗

1, . . . ,X∗
n, under the hypothesis using methods

described later. Then we can obtain R∗ by replacing X1, . . . ,Xn by X∗
1, . . . ,X∗

n in
the definition of R. We use a test based on R∗, so we need to know the accuracy
of the approximations P ∗(R∗ > u) to P(R > u), where P ∗ refers to probabilities
under the bootstrap sampling given the original sample.

We are unable to obtain a saddle-point approximation to this tail area directly.
Instead we will consider conditioning over a subset of the random variables and
obtain an approximation to the conditional tail area. In order to get the uncondi-
tional tail area, we take the expected value over the conditioning variables. We will
show that we can approximate the conditional distribution with a saddle-point ap-
proximation where the conditioning is on C, the odd numbered observations. The
approximation is

P(R ≥ u|C) = �̄
(√

mW+(u)
)(

1 + OP (1/m)
)
,(2)

where m is the number of even numbered observations,�̄(z) = P(Z ≥ z) for Z a
standard normal variable, and W+(u) is defined later. We obtain a similar approx-
imation for P ∗(R∗ ≥ u|C∗).

We want the relative error of the unconditional bootstrap tail area under ρ0 as
an approximation of the true tail area. We use the saddle-point approximation as
a device to enable this comparison. Since we cannot get a saddle-point for the
unconditional probability, we need to work from the conditional approximations.
Now P(R ≥ u) = EP(R ≥ u|C) and P ∗(R∗ ≥ u) = E∗P ∗(R∗ ≥ u|C∗), where
E∗ is expectation under the bootstrap resampling given the original sample. Then
the relative error is

P(R ≥ u) − P ∗(R∗ ≥ u)

P (R ≥ u)
.(3)

The above conditioning suggests a different conditional bootstrap, in which we
condition on the odd numbered observations C and obtain conditional bootstrap
samples for the even observations. This permits a direct comparison of the condi-
tional distributions of the ratios R and a bootstrap counterpart given the same odd
numbered observations, C. We describe this conditional bootstrap and compare
tests based on it to tests based on the unconditional bootstrap. We introduce this
conditional bootstrap and obtain a saddle-point approximation for it.

The next section provides the details of the conditioning and is followed by a
section giving results for the Gaussian case for both conditional and unconditional
cases, then by sections giving the derivation of the main result. A final section
provides some numerical results illustrating the accuracy of the approximations
and comparing the power of the conditional and unconditional bootstraps.
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2. Conditioning. Assume that n = 2m + 1. Let

S =
n∑

i=2

XiXi−1 − u

(
X2

1/2 +
n−1∑
i=2

X2
i + X2

n/2

)
,

then P(R > u) = P(S > 0). Let Ai = X2i−1 + X2i+1, Bi = (X2
2i−1 + X2

2i+1)/2
for i = 1, . . . ,m, and C = (X1,X3, . . . ,Xn), and write

S =
m∑

i=1

(
AiX2i − u

(
X2

2i + Bi

))
(4)

= −u

m∑
i=1

(X2i − Ai/2u)2 + m
Ā2 − 4u2B̄

4u
,

where mĀ2 = ∑m
i=1 A2

i and mB̄ = ∑m
i=1 Bi . So for u > 0, P(S > 0|C) = 0 if

Ā2 − 4u2B̄ < 0.
It is clear that when ρ0 = 0, conditional on C, the terms in the sums in S are

independent random variables. If ρ0 �= 0 the first step is to show that the X2i’s are
independent conditional on C. This follows since we can factor the joint density
of D = (X2,X4, . . . ,Xn−1) conditional on C = (X1,X3, . . . ,Xn).

3. The Gaussian case. We will first give a brief account of the saddle-point
approximations for the Gaussian case where both an unconditional and conditional
approach are possible with explicit forms for the approximations.

Consider the unconditional normal case. If ε1, . . . , εn are independent standard

normal, X1 = ε1/

√
1 − ρ2 and Xi = ρXi−1 + εi for i = 2, . . . , n, and

S =
n∑

i=2

XiXi−1 − u

(
X2

1/2 +
n−1∑
i=2

X2
i + X2

n/2

)
= xT (A − uB)x,

with A and B symmetric. We find the saddle-point approximation to P(S ≥ 0)

following the method of Lieberman (1994b). The cumulative generating function
of S is

κ(t) = log
(
(2π)n/2|�|1/2)−1

∫
etxT (A−uB)x−xT �−1x/2 dx

= log
∣∣I − 2tU(A − uB)UT

∣∣−1/2

= −1

2

n∑
i=1

log(1 − 2tλi),

where σij = ρ|i−j |, � = UT U , U is upper triangular and λ1 ≤ · · · ≤ λn are the
eigenvalues of U(A−uB)UT . So the Barndorff–Nielsen approximation [see Sec-
tion 1.2 of Field and Robinson (2013)] is

P(S ≥ 0) = �̄
(√

mw†)(
1 + O(1/n)

)
,

AOS imspdf v.2013/03/01 Prn:2013/04/18; 8:30 F:aos1111.tex; (Ausra) p. 3
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where w† = w − logψ(w)/nw for w = (−2κ(t̂))1/2, where t̂ is the solution to
κ ′(t) = 0 and ψ(w) = w/t̂(κ ′′(t̂))1/2. Note that κ(t), t̂ , w and so w† all are func-
tions of u, but this dependence is suppressed to simplify notation.

To consider the power of the test H0 :ρ = ρ0 versus the alternative H1 :ρ =
ρ1 > ρ0, we can find the critical values from the saddle-point approximation under
H0 for a fixed level and then the power directly under H1.

Now consider the conditional test. If the observations are as above and
A1, . . . ,Am and B1, . . . ,Bm are defined as in Section 2, then we need to find
P(S ≥ 0|C). Recall that

S =
m∑

i=1

(
X2iAi − u

(
X2

2i + Bi

))
,

and in this case, given Ai and Bi , X2i are conditionally independent with con-
ditional distribution normal with mean ρAi/(1 + ρ2) and variance 1/(1 + ρ2).
The test of H0 will be performed by considering the conditional distribution of S

given C obtained when X2i are assumed to be conditionally independent normal
variables with mean ρ0Ai/(1 + ρ2

0) and variance 1/(1 + ρ2
0). So the critical value

at a fixed level can be calculated from this distribution. Then the power can be
calculated using the conditional distribution of S given C using X2i conditionally
independent normal variables with mean ρ1Ai/(1 + ρ2

1) and variance 1/(1 + ρ2
1).

These conditional distributions can be approximated by a saddle-point method as
in the unconditional case, by using the conditional cumulative generating function
of S, given by

κ(t) = 1

m

m∑
i=1

log

√
1 + ρ2

2π

∫
e−tu(z−Ai/2u)2−(1+ρ2)(z−ρAi/(1+ρ2))2/2 dz

+ t
Ā2 − 4u2B̄

4u
(5)

= −1

2
log

(
1 + 2tu

1 + ρ2

)
− tuB̄ + Ā2(ρ + t)2

2(1 + ρ2 + 2tu)
− Ā2ρ2

2(1 + ρ2)
.

From (5), κ(0) = 0, and differentiating (5) shows that for u > 0, κ ′(0) < 0 and
that κ ′(t) < 0 for all t > 0 if Ā2 − 4u2B̄ < 0 and that κ ′(t) → (Ā2 − 4u2B̄)/4u

as t → ∞. So κ ′(t) = 0 has a solution, if and only if Ā2 − 4u2B̄ > 0. Then the
Barndorff–Nielsen approximation for the conditional distribution can be obtained
as before.

4. The general case. We can get a general bootstrap sample by considering
the residuals εi = Xi − ρ0Xi−1, i = 2, . . . , n and drawing bootstrap replicates
by sampling ε∗

1, . . . , ε∗
n from Fn(x) = ∑n

i=2 I ((εi − ε̄)/σn ≤ x)/(n − 1), where
ε̄ = ∑n

i=2 εi/(n − 1) and σ 2
n = ∑n

i=2(εi − ε̄)2/(n − 1), then generating bootstrap

AOS imspdf v.2013/03/01 Prn:2013/04/18; 8:30 F:aos1111.tex; (Ausra) p. 4
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versions of the sample as X∗
1 = ε∗

1/
√

1 − ρ2
0 , X∗

i = ρ0X
∗
i−1 + ε∗

i for i = 2, . . . , n.
From this bootstrap sample we can calculate R∗ unconditionally.

We consider saddle-point approximations to the conditional distribution of S

given C then get the approximation to the unconditional distribution by consider-
ing the expectation of these. For the bootstrap no density exists, so we consider a
smoothed bootstrap by adding independent normal variables with zero mean and
small standard deviation τ to each bootstrap value ε∗

1, . . . , ε∗
n obtaining ε

†
1, . . . , ε

†
n.

Then we can proceed in the same way to approximate the bootstrap distribution
as the expectation of the approximation to the conditional distribution. Finally we
show that for a suitable choice of τ the smoothed bootstrap approximates the un-
conditional bootstrap with appropriate relative error.

We also consider a conditional bootstrap where we condition on C, the same
conditioning variables used for the true distribution. Here we are able to obtain
relative errors for the approximation to the conditional distribution of S given C.

4.1. Approximations under conditioning. From the factorization of the joint
density of D = (X2,X4, . . . ,Xn−1) conditional on C = (X1,X3, . . . ,Xn), we get
the conditional density of X2i given X2i−1 and X2i+1 is

g(z|X2i−1,X2i+1)

= f (z|X2i−1)f (X2i+1|z)/f (X2i+1|X2i−1)

= fε(z − ρ0X2i−1)fε(X2i+1 − ρ0z)∫
fε(z − ρ0X2i−1)fε(X2i+1 − ρ0z) dz

,

where fε is the density of the errors ε2, . . . , εn. Define S as in (4). Then we can
get approximations to the distribution of S given C using this density.

The conditional cumulant generating function for S given C is

mK(t, u) =
m∑

i=1

log
∫

e{t (Aiz−u(z2+Bi))}g(z|X2i−1,X2i+1) dz

=
m∑

i=1

log
∫

e−tu(z−Ai/2u)2
g(z|X2i−1,X2i+1) dz(6)

+ m
t(Ā2 − 4u2B̄)

4u
.

Note that this will exist whenever tu > 0. We use the notation Kij (t, u) =
∂i+jK(t, u)/∂t i∂uj . Then differentiating (6) with respect to t gives

K10(t, u) = − 1

m

m∑
i=1

Ki(t, u) + (Ā2 − 4u2B̄)

4u
(7)
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and

K20(t, u) = 1

m

m∑
i=1

∫
u2(z − Ai/2u)4e−tu(z−Ai/2u)2

g(z|X2i−1,X2i+1) dz∫
e−tu(z−Ai/2u)2

g(z|X2i−1,X2i+1) dz
(8)

− 1

m

m∑
i=1

Ki(t, u)2,

where

Ki(t, u) =
∫

u(z − Ai/2u)2e−tu(z−Ai/2u)2
g(z|X2i−1,X2i+1) dz∫

e−tu(z−Ai/2u)2
g(z|X2i−1,X2i+1) dz

.(9)

Note from (6) that K(0, u) = 0 and from (7) that if Ā2 − 4u2B̄ < 0, then
K10(t, u) is always negative, so there is no solution to the saddle-point equa-
tion K10(t, u) = 0. For Ā2 − 4u2B̄ > 0 we first find a value of u such that
K10(0, u) = 0. Now

K10(0, u) = 1

m

m∑
i=1

∫ (
zAi − uz2)

g(z|X2i−1,X2i+1) dz − uB̄.

Let u0 be such that K10(0, u0) = 0, then

u0 =
∑m

i=1
∫

zg(x|X2i−1,X2i+1) dzAi∑m
i=1

∫
z2g(z|X2i−1,X2i+1) dz + mB̄

.(10)

So for u > u0,

K10(0, u) = (u0 − u)

(
1

m

m∑
i=1

∫
z2g(z|X2i−1,X2i+1) dz + B̄

)
< 0

and K20(t, u) > 0. So for u > u0, K10(t, u) is increasing in t , is negative for t = 0
and as t → ∞,

K10(t, u) → Ā2 − 4u2B̄

4u
,

since the first term in (7) tends to 0 as t → ∞. Thus the saddle-point equation
K10(t, u) = 0, has a finite solution, t (u) for u > u0, if and only if Ā2 − 4u2B̄ > 0.
Further, K(t(u), u) exists and is finite if Ā2 − 4u2B̄ > 0. If Ā2 − 4u2B̄ < 0,
K(t, u) → −∞ as t → ∞.

If Ā2 − 4u2B̄ > 0, the Barndorff–Nielsen form of the saddle-point approxima-
tion is

P(S ≥ 0|C = c) = �̄
(√

mW+)(
1 + OP

(
m−1))

,(11)

where

W+ = W − log
(
(W)

)
/(mW),(12)

AOS imspdf v.2013/03/01 Prn:2013/04/18; 8:30 F:aos1111.tex; (Ausra) p. 6
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with

W =
√

−2K
(
t (u), u

)
and (W) = W/

(
t (u)

√
K20

(
t (u), u

))
.(13)

The proof of this result is given in Section 1 of the supplementary material of Field
and Robinson (2013).

The bootstrap distribution of ε∗
1, . . . , ε∗

n does not have a density, but we can
approximate the distribution by a smoothed version which is continuous. Let

fn(z) = 1

n − 1

n∑
k=2

e−(z−ηk)
2/2τ 2

√
2πτ 2

,(14)

where ηk = (εk − ε̄)/σn. If we draw a sample ε
†
1, . . . , ε

†
n from this distribution and

obtain X
†
1 = ε

†
1/(1−ρ2

0) and X
†
i = ρ0X

†
i−1 +ε

†
i , then choosing τ small enough, we

can approximate the bootstrap distribution of R∗ by the bootstrap version of R†.
With this new smoothed bootstrap we can proceed to get the saddle-point approx-
imation to its distribution by using the expectation of the conditional bootstrap as
we do for the saddle-point approximation of the distribution of R.

The conditional density of X
†
2i given X

†
2i−1 and X

†
2i+1 is

g†(
z|X†

2i−1,X
†
2i+1

) = fn(z − ρ0X
†
2i−1)fn(X

†
2i+1 − ρ0z)∫

fn(z − ρ0X
†
2i−1)fn(X

†
2i+1 − ρ0z) dz

,(15)

where

g†(
z|X†

2i−1,X
†
2i+1

) = 1

(n − 1)2

∑
k

∑
l

g
†
ikl(z)(16)

for

g
†
ikl(z) = (n − 1)2e−(z−ρ0X

†
2i−1−ηk)

2/2τ 2−(X
†
2i+1−ρ0z−ηl)

2/2τ 2

∑
k

∑
l

∫
e−(z−ρ0X

†
2i−1−ηk)

2/2τ 2−(X
†
2i+1−ρ0z−ηl)

2/2τ 2
dz

.(17)

Now [(
z − ρ0X

†
2i−1 − ηk

)2 + (
X

†
2i+1 − ρ0z − ηl

)2]
= (

1 + ρ2
0
)(

z′ − ηk − ρ0ηl

1 + ρ2
0

)2

+ (X
†
2i+1 − ρ2

0X
†
2i−1 − ρ0ηk − ηl)

2

(1 + ρ2
0)

,

where z′ = z − ρ0(X
†
2i−1 + X

†
2i+1)/(1 + ρ2

0). So, integrating with respect to z in

the denominator of g
†
ikl(z) we have

g
†
ikl(z) = e−(1+ρ2

0 )(z′−(ηk−ρ0ηl)/(1+ρ2
0 ))2/2τ 2−(X

†
2i+1−ρ2

0X
†
2i−1−ρ0ηk−ηl)

2/2τ 2(1+ρ2
0 )

√
2πτ 2 ∑

k

∑
l e

−(X
†
2i+1−ρ2

0X
†
2i−1−ρ0ηk−ηl)

2/2τ 2(1+ρ2
0 )

.

AOS imspdf v.2013/03/01 Prn:2013/04/18; 8:30 F:aos1111.tex; (Ausra) p. 7
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Define S† as in (4) using X† in place of X, with analogous definitions for A
†
i , B

†
i ,

R† and C†. Then the conditional cumulant generating function of S† given C† is

mK†(t, u) =
m∑

i=1

log
∫

e−tu(z−A
†
i /2u)2

g†(
z|X†

2i−1,X
†
2i+1

)
dz

(18)

+ m
t(Ā†2 − 4u2B̄†)

4u
,

which is of the same form as the formula for K(t, u) with g†(z|X†
2i−1,X

†
2i+1)

replacing g(z|X2i−1,X2i+1). So we can obtain analogous results to those of (7)–
(10) and to the argument following these, to show that, when Ā†2 − 4u2B̄† > 0, if
t†(u) is the solution of K

†
10(t, u) = 0, then the saddle-point approximation is

P †(
S† ≥ 0|C†) = �̄

(√
mW †+)(

1 + OP

(
m−1))

,

where

W †+ = W ∗ − log
(
†(W)

)
/
(
mW †)

,

with

W † =
√

−2K†
(
t†(u), u

)
and †(W) = W †/

(
t∗(u)

√
K

†
20

(
t†(u), u

))
.

We can summarize these results in the following theorem:

THEOREM 1. For u ≥ 0, P(S > 0|C) = 0 if Ā2 − 4u2B̄ < 0 and P(S† >

0|C†) = 0 if Ā†2 − 4u2B̄† < 0. If Ā2 − 4u2B̄ > 0 and Ā†2 − 4u2B̄† > 0, for
u > u0 from (10) and u > u

†
0 defined analogously, t (u) and t†(u), solutions of

K10(t, u) = 0 and K
†
10(t, u) = 0, exist and are both finite and positive, and if EX8

1
is bounded,

P(R > u|C) = �̄
(√

mW+)[
1 + OP (1/m)

]
and

P †(
R† > u|C†) = �̄

(√
mW †+)[

1 + OP (1/m)
]
,

where W(u), W+ and (W †) are defined as in (12) and (13) and

W †+ = W † − log
(
†)

/
(
mW †)

,

with

W † =
√

−2K†
(
t†(u), u

)
and †(

W †) = W †/
(
t†(u)

√
K

†
20

(
t (u), u

))
.

REMARK. If R′ has the denominator in R replaced by
∑n

i=1 X2
i , then P(R′ >

u|C) = P(S > u(X2
1 + X2

n)/2|C). So we can proceed with the saddle-point ap-
proximation obtaining results with the relative error unchanged, since throughout
the errors will be affected by a term of OP (u/m). A similar argument gives results
for n even.
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4.2. The relative error of the bootstrap. Assume throughout this section that
the conditions of Theorem 1 hold. Let A = {C : Ā2 − 4u2B̄ > 0}. Now E(Ā2 −
4u2B̄) = (2(1 − 2u2) + 2ρ2

0)/(1 − ρ2
0) and var(Ā2 − 4u2B̄) = O(1/m), so for

1 − 2u2 + ρ2
0 > δ > 0, it follows from the Chebychev inequality that P(Ac) =

P(Ā2 − 4u2B̄ < 0) = O(1/m). So, since P(S > 0|C)I (Ac) = 0,

P(S > 0) = E
[
P(S > 0|C)I (A)

] + E
[
P(S > 0|C)I

(
Ac)]

(19)
= E

[
�̄

(√
mW+)

I (A)
(
1 + OP (1/m)

)]
.

Restrict attention to A, so with u0 given in (10), K10(0, u0) = 0 and thus t (u0) = 0
and

t (u) = t ′(uo)(u − u0) + 1
2 t ′′(u0)(u − uo)

2 + OP

(
(u − u0)

3)
.

Further, since K10(t (u), u) = 0, t ′(u0) = −K11/K20, where we write Kij =
Kij (0, u0). Then expanding K(t(u), u) about u0 we obtain,

K
(
t (u), u

) = −D1(u − u0)
2 − D2(u − u0)

3 + OP

(
(u − u0)

4)
,

where D1 = K2
11/2K20 and

D2 = 1
2

[
t ′′0 K11 + t ′0K12 + t ′20 K21 + 1

3 t ′30 K30
]
.(20)

So

W = (u − u0)
√

2D1
(
1 + (u − u0)D2/2D1

) + OP

(
(u − u0)

3)
.(21)

Note that u0 is given in (10), so

u0 = E[E(X2|X1,X3)(X1 + X3)]
E[E(X2

2|X1,X3) + X2
1]

+ Ju/
√

m + OP (1/m),(22)

where, here and in the sequel, values of J denote zero mean random variables with
finite variances. Further, since X2 = ρ0X1 + ε2, X3 = ρ2

0X1 + ρ0ε2 + ε3 and X1
is independent of ε2 and ε3, the numerator in (22) is

ρ0EX1(X1 + X3) + E
[
E(ε2|ρ0ε2 + ε3)

(
ρ2

0X1 + ρ0ε2 + ε3
)]

,

and since ε2 = ((ε2 − ρ0ε3) + ρ0(ρ0ε2 + ε3))/(1 + ρ2
0), the numerator is

ρ0

1 − ρ2
0

+ ρ3
0

1 − ρ2
0

+ ρ0 = 2ρ0

1 − ρ2
0

.

The denominator of (22) is

E
[
E

(
X2

2|X1,X3
) + X2

1
] = E

(
X2

2
) + E

(
X2

1
) = 2

1 − ρ2
0

.

So

u0 = ρ0 + Ju/
√

m + O(1/m).(23)

AOS imspdf v.2013/03/01 Prn:2013/04/18; 8:30 F:aos1111.tex; (Ausra) p. 9



10 C. FIELD AND J. ROBINSON

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

From (7) and (9)

K11 = − 1

m

m∑
i=1

∫
z2g(z|X2i−1,X2i+1) dz − B̄

so

EK11 = −E
(
X2

2 + X2
1
) = − 2

1 − ρ2
0

and

K11 = − 2

1 − ρ2
0

+ J11/
√

m + OP (1/m).(24)

From (8), and using (23), we can write

K20 = 1

m

m∑
i=1

{∫ (
ρ0z

2 − Aiz
)2

g(z|X2i−1,X2i+1) dz

−
[∫ (

ρ0z
2 − Aiz

)
g(z|X2i−1,X2i+1) dz

]2}
(25)

+ J20/
√

m + OP (1/m)

= 1

m

m∑
i=1

γ (X2i−1,X2i+1) + J20/
√

m + OP (1/m),

so

K20 = E20 + J ′
20/

√
m + OP (1/m),(26)

where

E20 = 1

m

m∑
i=1

Eγ (X2i−1,X2i+1).

Now, recalling that D1 = K2
11/2K20, and using (24) and (26), we have

D1 = 2

(1 − ρ2
0)2E20

+ JD/
√

m + OP (1/m),(27)

t (u) = −(u−u0)K11/K20 +OP ((u−u0)
2), (u) = W/t(u)

√
K20 = 1+OP (u−

u0), so log(u)/mW = OP (1/m), and, from (12), (21), (23) and (27),

W+ − EW+
(28)

= (u − ρ0)

(
JW√

m
+ (u − ρ0)

H√
m

)
+ OP

(
(u − ρo)

3 + 1

m

)
,

where H = √
m(D2/2D1 − ED2/2ED1).
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We can consider the smoothed bootstrap introduced in Section 4.1 in the same
way. Let W †, W †+ be defined as in the statement of Theorem 1, and let A† =
{C† : Ā†2 − 4u2B̄† > 0} and E

†
+(·) = E†(·|A†). Then restricting attention to A†,

K
†
10(0, u

†
0) = 0, so t†(u

†
0) = 0 and

t†(u) = t†′(u†
0

)(
u − u

†
0

) + 1
2 t†′′(u†

0

)(
u − u

†
0

)2 + OP

((
u − u

†
0

)3)
,

with

t†′(u†
0

) = −K
†
11/K

†
20,

where K
†
ij = K

†
ij (0, u0). Now we proceed as above with X

†
i , g

†
i (·|X†

2i−1,X
†
2i+1)),

E†(·) and E†(·|·) replacing Xi , g(z|X2i−1,X2i+1), E(·) and E(·|·). So

u
†
0 = ρ0 + J †

u /
√

m + OP

(
ρ0√
m

)
,

K
†
11 = − 2

1 − ρ2
0

+ J
†
11/

√
m + OP (1/

√
m)(29)

and

K
†
20 = 1

m

m∑
i=1

{∫ (
ρ0z

2 − A
†
i z

)2
g†(

z|X†
2i−1,X

†
2i+1

)
dz

−
[∫ (

ρ0z
2 − A

†
i z

)
g†(

z|X†
2i−1,X

†
2i+1

)
dz

]2}
(30)

+ J
†
20/

√
m + OP (1/m)

= 1

m

m∑
i=1

γ †(
X

†
2i−1,X

†
2i+1

) + J
†
20/

√
m + OP (1/m).

In order to compare the first terms of (25) and (30), we need first to replace γ †(·)
in this first term by γ (·) appearing in E20. The following lemma, whose proof is
given in Section 2 of the supplementary material of Field and Robinson (2013)
accomplishes this.

LEMMA 1. For τ = O(1/
√

m),∫
h(z)g†(

z|X†
2i−1,X

†
2i+1

)
dz =

∫
h(z)g

(
z|X†

2i−1,X
†
2i+1

)
dz + Jh√

m
+ OP

(
1

m

)
.

Using Lemma 1,

1

m

m∑
i=1

γ †(
X

†
2i−1,X

†
2i+1

) = 1

m

m∑
i=1

γ
(
X

†
2i−1,X

†
2i+1

) + Jh√
m

+ OP

(
1

m

)
,
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so

E
†
20 = 1

m

m∑
i=1

Eγ †(
X

†
2i−1,X

†
2i+1

) = E20 + J
‡
20/

√
m + OP (1/m).(31)

Now, as before D
†
1 = K

†2
11/2K

†
20, so using (29) and (31), we have

D
†
1 = 2

(1 − ρ2
0)2E20

+ J
†
D/

√
m + OP (1/m),

and an equation equivalent to (28) holds for W †+ − E†W †+.
For some 0 < c < C < ∞, let

E =
{

C :
1

m + 1

m∑
i=0

X8
2i+1 < C,

1

m + 1

m∑
i=0

X2
2i+1 > c

}
.(32)

In Theorem 1, the OP (1/m), can be replaced by θMm, where |θ | < C and

Mm = m

m∑
i=1

EY 4
i

/[
m∑

i=1

EY 2
i

]2

as shown in Section 1 of the supplementary material of Field and Robinson (2013),
and for C ∈ E , Mm is bounded. So

P(R > u|E ) = E
[
P(S > 0|C)|E

] = E
[
�̄

(√
mW+)|E

](
1 + OP (1/m)

)
.

Using this and the equivalent term for P †(R† > u|E ), we have

|P(R > u|E ) − P †(R† > u|E )|
P(R > u|E )

= |E†[�̄(
√

mW †+)|E ] − E[�̄(
√

mW+)|E ]|
E[�̄(

√
mW+)|E ](33)

≤ I1 + I2 + I3

�̄(
√

mE(W+|E ))
,

where we have used Jensen’s inequality in the denominator and

I1 = ∣∣�̄(√
mE†(

W †+|E
)) − �̄

(√
mE

(
W+|E

))∣∣,(34)

I2 = ∣∣E†[
�̄

(√
mW †+)|E

] − �̄
(√

mE†(
W †+|E

))∣∣(35)

and

I3 = ∣∣E[
�̄

(√
mW+)|E

] − �̄
(√

mE
(
W+|E

))∣∣.(36)

Noting that, for ϕ(x) = −�̄′(x), ϕ′(x) = −xϕ(x) and x < ϕ(x)/�̄(x) < 1 + x,
we have

�̄
(√

mE
(
W+|E

))
> ϕ

(√
mE

(
W+|E

))
/
(
1 + √

mE
(
W+|E

))
.
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Then

I3

�̄(
√

mE(W+|E ))
≤ m

2

E[(W+ − E(W+|E ))2ϕ(
√

mW ‡)|E ]
ϕ(

√
mE(W+|E ))/(1 + √

mE(W+|E ))
,

where W ‡ lies between W+ and E(W+|E ). Now, for C ∈ E , noting (21) and (23),

ϕ(
√

mW ‡)

ϕ(
√

mE(W+|E ))
= OP

(
e
√

m(u−ρ0)
2) = OP (1)

for u = O(m−1/4), and using (21) and (28), we have

I3

�̄(
√

mE(W+|E ))
= OP

(
m(u − ρ0)

4 + 1/m
)
.

An equivalent result holds for I2. Also, using the same results gives

I1

�̄(
√

mE(W+|E ))
=

√
m|E†(W †+|E ) − E(W+|E )|ϕ(

√
mW ∗)

ϕ(
√

mE(W+|E ))/(1 + √
mE(W+|E ))

= OP

(√
m(u − ρ0)

3 + 1/m
)
,

where W ∗ lies between E(W+|E ) and E†(W †+|E ).
Finally, we need to consider the relative errors of the bootstrap and the smoothed

bootstrap.

LEMMA 2. For τ = O(1/
√

m) and u − ρ0 = O(n−1/4),

P †(
R† ≥ u|E

)
/P ∗(

R∗ ≥ u|E
) = 1 + OP

(
m(u − ρ0)

4 + 1/m
)
.

The proof of Lemma 2 is given in Section 2 of the supplementary material of
Field and Robinson (2013). Thus we have the following theorem:

THEOREM 2. For E defined in (32), u ≥ ρ0, u − ρ0 = O(m−1/4) and 1 −
2u2 + ρ2

0 > δ > 0,

P(R > u|E ) − P ∗(R∗ > u|E )

P (R > u|E )
= OP

(
m(u − ρ0)

4 + 1/m
)
.

Further, if Eε8
1 exists, then P(E ) = 1 − o(1), if Eε16

1 exists, then P(E ) = 1 −
O(1/m) and if ε1 is bounded, then P(E ) = 1, in which case the conditional prob-
abilities can be replaced by their expectations over E .

4.3. The conditional bootstrap. Consider obtaining a smoothed conditional
bootstrap given C. Let

fn(z) = 1

n − 1

n∑
k=2

e−(z−εk)
2/2τ 2

√
2πτ 2

,
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where εi = Xi − ρ0Xi−1, for i = 2, . . . , n. Note that this differs from fn of (14)
in that the unstandardized errors are used. Then the conditional density of X#

2i ,
the smoothed bootstrap values of the even subscripted variable, given X2i−1 and
X2i+1 is

g#(z|X2i−1,X2i+1) = fn(z − ρ0X2i−1)fn(X2i+1 − ρ0z)∫
fn(z − ρ0X2i−1)fn(X2i+1 − ρ0z) dz

,

where

g#(z|X2i−1,X2i+1) = 1

(n − 1)2

∑
k

∑
l

g#
ikl(z),

and, as in Section 4.1, this can be reduced to

g#
ikl(z) = (

2πτ 2/
(
1 + ρ2

0
))−1/2

e−(1+ρ2
0 )(z′−(εk−ρ0εl)/(1+ρ2

0 ))2/2τ 2
w#

ikl,

where

w#
ikl = e−(X2i+1−ρ2

0X2i−1−ρ0εk−εl)
2/2τ 2(1+ρ2

0 )∑
k

∑
l e

−(X2i+1−ρ2
0X2i−1−ρ0εk−εl)

2/2τ 2(1+ρ2
0 )

and z′ = z − ρ0(X2i−1 + X2i+1)/(1 + ρ2
0).

For each i we sample from this distribution by first choosing εk, εl with prob-
abilities w#

ikl , then obtaining a random normal variable Z′
i with mean (εk −

ρ0εl)/(1 + ρ2
0) and variance τ 2/(1 + ρ2

0), then taking X#
2i = Z′

i + ρ0(X2i−1 +
X2i+1)/(1 + ρ2

0).
Then the conditional cumulant generating function of S# given C is

mK#(t, u) =
m∑

i=1

log
∫

e{t (Aiz−u(z2+Bi))}g#(z|X2i−1,X2i+1) dz

=
m∑

i=1

log
∫

e−tu(z−Ai/2u)2
g#(z|X2i−1,X2i+1) dz + m

t(Ā2 − 4u2B̄)

4u
.

Proceeding as in Section 4.1 we have

K#
10(0, u) = 1

m

m∑
i=1

∫ (
zAi − uz2)

g#(z|X2i−1,X2i+1) dz − uB̄.

Let u#
0 be such that K#

10(0, u#
0) = 0, then

u#
0 =

∑m
i=1

∫
zg#(z|X2i−1,X2i+1) dzAi∑m

i=1
∫

z2g#(z|X2i−1,X2i+1) dz + mB̄
.(37)

So for u > u#
0,

K#
10(0, u) = (

u#
0 − u

)( 1

m

m∑
i=1

∫
z2g(z|X2i−1,X2i+1) dz + B̄

)
< 0
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and K#
20(t, u) > 0. So for u > u#

0, K#
10(t, u) is increasing in t , is negative for t = 0

and as t → ∞,

K#
10(t, u) → Ā2 − 4u2B̄

4u
.

Thus the saddle-point equation K#
10(t, u) = 0 has a finite solution t#(u) for u > u#

0,
if and only if Ā2 − 4u2B̄ > 0. Further, K#(t#(u), u) exists and is finite if Ā2 −
4u2B̄ > 0. If Ā2 − 4u2B̄ < 0, K#(t, u) → −∞ as t → ∞.

Let W #, W #+ be defined in the same way as in the statement of Theorem 1, then

P #(
R# > u

) = �̄
(√

mW #+)(
1 + OP (1/m)

)
.(38)

Now K#
10(0, u#

0) = 0, so t#(u#
0) = 0 and

t#(u) = t#′(u#
0
)(

u − u#
0
) + 1

2 t#′′(u#
0
)(

u − u#
0
)2 + OP

((
u − u#

0
)3)

,

with

t#′(u#
0
) = −K#

11/K
#
20,

where K#
ij = K#

ij (0, u0). Then

K#
11 = 1

m

m∑
i=1

∫
z2g#(z|X2i−1,X2i+1) dz − B̄

and

K#
20 = 1

m

m∑
i=1

{∫ (
u#

0z
2 − Aiz

)2
g#(z|X2i−1,X2i+1) dz

−
[∫ (

u#
0z

2 − Aiz
)
g#(z|X2i−1,X2i+1) dz

]2}
.

Now, as before, D#
1 = K#2

11/2K#
20. To compare D#

1 and D1 we need the following
lemma whose proof is given in Section 2 of the supplementary material Field and
Robinson (2013).

LEMMA 3.∫
h(z)g#(z|X1,X3) dz =

∫
h(z)g(z|X1,X3) dz + OP

(
1

m

)
.

So, applying the lemma to u#
0, K#

11 and K#
20,

D#
1 = D1 + OP (1/m).

Now using (12) and an analogous term for W # and noting that D2 − D#
2 =

OP (1/
√

m), we have√
m

(
W+ − W #+)(

1 + √
mW+) = O

(√
m(u − ρ0)

3 + 1/m
)
.

Summarizing these results we have the following theorem:
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THEOREM 3. For u ≥ 0, P(S > 0|C) = 0 and P(S# > 0|C) = 0 if Ā2 −
4u2B̄ < 0 and if Ā2 − 4u2B̄ > 0 t (u) and t#(u), solutions of K10(t, u) = 0 and
K#

10(t, u) = 0, exist and are both finite and positive, and if EX8
1 is bounded, (38)

holds and

P(R > u|C) = P #(
R# > u|C)[

1 + OP

(√
m(u − ρ0)

3 + 1/m
)]

.

5. Numerical results. Monte Carlo simulations, bootstraps and tail area ap-
proximations both unconditionally and conditionally are used to illustrate accuracy
of results and to compare the power of the unconditional and the conditional boot-
strap.

First we describe the computational methods. The true distribution of ρ̂ is ap-
proximated by Monte Carlo simulations of 1,000,000. For the bootstrap, we con-
sider testing H0 :ρ = ρ0. The unconditional bootstrap is straightforward in that
we compute n − 1 residuals, εi = xi − ρ0xi−1, center them and sample these with
replacement. Then x∗

i = ρ0x
∗
i−1 + ε∗

i with x∗
1 = ε∗

1/(1 − ρ2), and we compute
R∗ and obtain an estimate of P ∗(R∗ > u) from repetitions. For the conditional
bootstrap of Section 5.2, we draw samples ε

†
i ’s from fn in (14) with τ equal to

1/m. We first generate X
†
i ’s from the ε

†
i ’s. Then X

†
2i are replaced by generating

an observation from the normal mixture given in (15)–(17), R† is computed and
repetitions give an estimate of P †(R† > u|C∗). Now repeating this entire process
from sampling ε

†
i ’s and averaging the conditional probabilities gives an estimate

of P †(R† > u). For the conditional bootstrap of Section 5.3, we replace X2i by
X#

2i drawn from (15), calculate R# and repeat this process to get an estimate of
P #(R# > u|C).

The results for the approximations of Section 3 for the Gaussian case are given
in the upper part of Table 1 for the unconditional results (U) and the lower part for
the conditional case (C). As can be seen, the agreements between the simulation
results and the saddle-point, computed as in Section 3 for normal data, are excellent
with very accurate results, even for n = 9. The accuracy for values of ρ < 0.5 is
even better.

In Table 2, we use a single sample from a t10 distribution to compare the uncon-
ditional bootstrap and the smoothed bootstrap averaged over C†’s for ρ0 = 0.5, to
demonstrate the results of Lemma 2, and we obtain an estimate of E

†
+�̄(

√
mW †+),

the expected value of the saddle-point approximation given in Theorem 4, by aver-
aging over 100 values of C†, comparing this to the Monte Carlo estimates. These
results, which would vary from sample to sample from the t10 distribution, illus-
trate excellent relative accuracy, and we note that better results are obtained for
0 ≤ ρ0 < 0.5.

In Table 3, to illustrate the main results of Theorems 2 and 5, we compare the
simulated distribution, when sampling from the t10-distribution and the exponen-
tial distribution shifted to have mean 0, with the bootstrap averages over 40 sam-
ples. The average bootstrap is quite accurate, while the standard deviation shows
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TABLE 1
Comparison of saddle-point and simulated tail areas for normal distribution from Section 3 with the

unconditional case (U) and the conditional case (C) at both n = 39 and n = 9

Tail prob. exceeds

n ρ ρ + 0.05 ρ + 0.10 ρ + 0.15 ρ + 0.20 ρ + 0.25

n = 39 0.5
UC saddle-point 0.3210 0.1923 0.0946 0.0353 0,0088

simulations 0.3223 0.1922 0.0946 0.0352 0.0094

n = 9 0.5
UC saddle-point 0.3629 0.2937 0.2261 0.1624 0.1066

simulations 0.3695 0.2994 0.2310 0.1660 0.1081

n = 39 0.5
C saddle-point 0.3133 0.1888 0.0983 0.0412 0.0118

simulation 0.3136 0.1884 0.0983 0.0410 0.0118

n = 9 0.5
C saddle-point 0.4077 0.3413 0.2713 0.1972 0.1267

simulation 0.4094 0.3432 0.2722 0.1999 0.1280

that the relative error of the bootstrap becomes larger in the tails, as expected since
this is shown to be of order m(u − ρ0)

4 in Theorems 2 and 5. For 0 ≤ ρ0 < 0.5,
there is even better accuracy.

Table 4 illustrates the accuracy of the results of Theorems 3 and 6 using random
samples for ρ0 equal to 0 and 0.5 for centered exponential errors. The saddle-point
approximation has the relative accuracy property. In this case, there is considerable
variation in tail areas as different random samples are taken, but similar accuracy
is achieved with other samples. Similar results are obtained for the t10 distribution
and for 0 ≤ ρ0 < 0.5.

TABLE 2
Unconditional bootstrap (BS: 100,000 replicates) and expected conditional bootstrap averages over

C† (ECBS: using 500 sets of the conditional bootstrap with 10,000 replicates) and average of
conditional saddle-point approximation (ECSP: over 500 replicates), from the same original sample

from t10

Tail prob. exceeds

n ρ ρ + 0.05 ρ + 0.10 ρ + 0.15 ρ + 0.20 ρ + 0.25

n = 39 0.5
BS 0.3206 0.1921 0.0943 0.0350 0.0086

ECBS 0.3160 0.1833 0.0860 0.0309 0.0075
ECSP 0.3131 0.1823 0.0861 0.0308 0.0075

AOS imspdf v.2013/03/01 Prn:2013/04/18; 8:30 F:aos1111.tex; (Ausra) p. 17



18 C. FIELD AND J. ROBINSON

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

TABLE 3
Simulated tail probabilities (SIM: 1,000,000 samples), estimates of expected bootstrap tail

probabilities and standard deviations of bootstrap tail probabilities based on means and standard
deviations of 40 samples (EBS and SDBS: 100,000 bootstrap replications) from t10 and centered

exponential distributions

Tail prob. exceeds

n ρ ρ + 0.05 ρ + 0.10 ρ + 0.15 ρ + 0.20 ρ + 0.25

n = 39 0.5
t10 SIM 0.3171 0.1885 0.0916 0.0340 0.0083

EBS 0.3215 0.1932 0.0957 0.0361 0.0094
SDBS 0.0016 0.0017 0.0019 0.0015 0.0009

exp SIM 0.3174 0.1937 0.1020 0.0442 0.0154
EBS 0.3223 0.1991 0.1059 0.0473 0.0173

SDBS 0.0044 0.0088 0.0123 0.0121 0.0089

TABLE 4
Comparison of tail areas for conditional bootstrap (CBS) and conditional saddle-point tail area
(CSP) for one sample from a centered exponential with ρ0 = 0.0, as in Section 4.3, and another

with ρ0 = 0.5, as in Section 5.3

Tail prob. exceeds

n = 39 ρ ρ + 0.05 ρ + 0.10 ρ + 0.15 ρ + 0.20 ρ + 0.25

CSP 0.0 0.4300 0.3103 0.2074 0.1268 0.0697
CBS 0.0 0.4378 0.3147 0.2080 0.1274 0.0688

CSP 0.5 0.2499 0.0863 0.0145 0.0004 0.0000
CBS 0.5 0.2456 0.0843 0.0132 0.0002 0.0000

Finally, we compare the power of the two tests based on the unconditional boot-
strap and the conditional bootstrap in Table 5 for the Gaussian case of Section 3
and for the general case from Sections 5.2 and 5.3. We note that the tests have

TABLE 5
Power under unconditional (U) and conditional (C) tests for the Gaussian case in the left half of the

table and the general case from t10 in the right half

U C U C U C U C
ρ0 0 0 0.4 0.4 0 0 0.4 0.4

ρ1 = ρ0 + 0.1 0.15 0.15 0.18 0.12 0.15 0.13 0.18 0.11
ρ1 = ρ0 + 0.3 0.58 0.59 0.73 0.42 0.58 0.53 0.73 0.38
ρ1 = ρ0 + 0.5 0.92 0.90 0.98 0.89 0.93 0.90 0.98 0.78
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equal power up to computational accuracy when ρ0 = 0, as might be expected
since there is no loss of information due to conditioning in this case, but there is
some loss of power in the case of ρ0 = 0.2 and a considerable loss for ρ0 = 0.4.

SUPPLEMENTARY MATERIAL

Supplement to “Relative errors for bootstrap approximations of the serial
correlation coefficient” (DOI: 10.1214/13-AOS1111SUPP; .pdf). We provide de- aos1111_supp.pdf
tails and proofs needed for a number of results in the paper.
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