Extratropical Cyclones and
Anticyclones

Chapter 10

- case study

- the jet stream and upper-level divergence

- low-level cyclogenesis

- synergy between upper-level trof and surface low
- the life cycle of a frontal disturbance

- air parcel trajectories
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Airport city codes
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The atmosphere in cross-section
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January mean zonal winds
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The jet stream and surface weather

The jet stream is consistent with a large horizontal temperature
gradient (the atmosphere is baroclinic).

The jet stream has waves, called Rossby waves
These waves may first form in the lee of mountains (lee cyclogenesis)
These waves propagate, and are unsteady

The shorter waves are important for weather at the surface,

because
- UL divergence occurs ahead of the Rossby trof
- UL convergence occurs behind the Rossby trof

UL divergence causes uplift, and cyclogenesis near the surface.
These waves, in turn, are affected by the low-level cyclogenesis.

The evolution of midlatitude frontal disturbances is understood by
the synergy between UL wave evolution, and LL cyclone evolution
(baroclinic instability).



Remember the causes of uplift, and cloud & precipitation:

. Buoyant ascent [bubble ascent] Divergence

. Forced ascent [layer ascent] A
a)  Orographic Speed divergence .
b) Frontal ’ - We
c)  Low-level convergence (friction) e W

d) Upper-level divergence (jet stream)
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300 mb height, 9 Nov 1975, 7' pm

Fig.



surface low
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Two mechanisms for upper-level divergence

1. changes in wind speed due to Rossby waves
2. jet streak: small region in the jet stream with strong winds



1. Rossby waves: remember from Chapter 6 ....
The jet stream wind is subgeostrophic in trofs, and supergeostrophic in ridges
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from chapter 9:
gradient wind balance
(PGF, Coriolis force, and centrifugal force)

slower-than-geostrophic wind faster-than-geostrophic wind
(subgeostrophic) (supergeostrophic)



Rossby waves
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2. Upper-level divergence also occurs around jet streaks
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jet streak circulation




mid-latitude frontal disturbances:

interaction between the low-level and the jet-level flow
SL pressure and precipitation 300 mb height and wind speed
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. upper-level chart

surface chart
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The movement and evolution of
the frontal system is tied to those
of the UL trof.
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Developing frontal lows tilt westward with height
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Norwegian cyclone model

Precursor conditions:
frontogenesis along a
developing front

I. early open wave stage:

A kink on the front will
form as an upper level
disturbance embedded in the
jet stream moves over the
front. Distinct regions of
warm & cold air advection
form.




Norwegian cyclone model

: II. late open wave stage:
” cold and warm fronts
become better organized.
III: mature (occluding)
stage:
| - As the cold front overtakes
) the warm front, an occluded
front forms. Effectively, the
low moves into the cold air,
and warm air is drawn into

the elevated wedge (trof
aloft or “trowal”)



Norwegian cyclone model

IV: dissipating stage: the occlusion increases and eventually cuts off the supply of
warm moist air, causing the low pressure system to gradually dissipate.



Evolution of a frontal disturbance: the Norwegian cyclone model

stationary polar front (trof) 1. early open wave stage

3. mature (occluding) stage 4. dissipating stage
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Relationship between surface cyclone and UL wave trof,
during the lifecycle of a frontal disturbance




How does a low form 1n the first place?

It can form along a polar front, from scratch.
Over land, it often forms in the lee of mountains: lee cyclogenesis

Box



Conservation of angular momentum
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Satellite Views of Wave Cyclones

From Hobbs
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conveyor belts: air parcel trajectories

T
1. “dry-tongue jet”: ropopauSe
descending cold air behind
cold front

10.3



conveyor belts

2: warm conveyor belt:
ascending warm, most air

ahead of cold front, over the 800 mb
warm front. ‘

3. cold conveyor belt: . ‘ 200 b
ascending cold, moist air '

drawn into the occluding
storm.

800 mb
Ry, J-Ascending cold
conveyor belt
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From Palmen and Newton, p. 310



Pop quiz

When an upper-level low is right above the surface

low,

- A: the system is occluded & dissipating
- B: the system is in open-wave stage

- C: the system is in the initial stage

- D: the system must be a tropical cyclone



Summary: how a mid-latitude frontal disturbance works

The jet stream is consistent with a large horizontal temperature gradient
(the atmosphere is baroclinic).

The jet stream has waves, called Rossby waves

These waves may first form in the lee of mountains (lee cyclogenesis)
These waves propagate, and are unsteady

The shorter waves are important for weather at the surface, because
- UL divergence occurs ahead of the Rossby trof
- UL convergence occurs behind the Rossby trof

UL divergence causes uplift, and cyclogenesis near the surface.

These waves, in turn, are affected by the low-level cyclogenesis.

-  Warm advection ahead of the surface low builds the UL ridge

- Cold advection behind the surface low deepens the UL trof.
The evolution of midlatitude frontal disturbances is understood by the
synergy between UL wave evolution, and LL cyclone evolution (baroclinic
instability).
Finally, the raison d'étre of these frontal disturbances is to transfer heat
poleward ...



