1 Origin of the stratiform temperature response to strong convective events: the interaction between convective and dry circulations

- 2 3 4 5 6
 - Toni Mitovski and Ian Folkins

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada

7 8 Correspondence to T. Mitovski (mitovski@dal.ca)

9 Abstract

- 10 We use 13 years (1998 2010) of rainfall estimates from the Tropical Rainfall Measuring
- 11 Mission (TRMM) 3B42 dataset to identify high rain events located close to radiosonde or surface
- 12 weather stations. This is done in four regions: the Western Tropical Pacific, Tropical Brazil,
- 13 Southeast China, and Southeast United States. We then construct composite anomaly patterns of
- 14 a large number of dynamical variables about these high rain events. These variables include
- 15 temperature, relative humidity, surface pressure, Convective Available Potential Energy (CAPE),
- 16 geopotential height, mass divergence, static stability, relative vorticity, and potential vorticity.
- 17 One motivation of this analysis is to identify regional differences in the effect of strong
- 18 convective events on the background atmosphere. The second motivation is to determine the
- 19 physical origin of the stratiform temperature response to deep convection, consisting of warming
- 20 in the upper troposphere and cooling in the lower troposphere. We show that the dynamical
- 21 adjustment to the stratiform heating profile is slower than the dynamical adjustment to the full
- 22 depth convective heating profile. This difference in response times accounts for the local
- 23 dominance of the stratiform temperature response, promotes the growth of mid-level maxima in
- stability and potential vorticity, and helps generate positive anomalies in lower tropospheric
- 25 relative humidity during high rain events. We also show that the enhanced mid-level potential
- 26 vorticity is transported to the surface after peak rainfall by the induced dry stratiform circulation.

27 **1. Introduction**

28 Strong convective events impose characteristic temperature anomaly patterns on the 29 background atmosphere. These anomaly patterns have two surprising features. First, they are quite 30 small. Convective events often sustain rainfall rates in excess of 50 mm/day for an 8-hour period. If 31 evenly distributed between 850 hPa and 100 hPa, the condensational heating from this rainfall rate 32 would produce a column heating rate of 14.7 K/day. The observed column heating rate during high 33 rain events over the tropical oceans is less than 0.25 K/day, and is usually negative prior to peak rainfall. Second, while stratiform clouds generate roughly 40 % of tropical rainfall, convective 34 35 clouds generate roughly 60 % [Schumacher and Houze, 2003]. The full depth convective heating 36 profile might therefore be expected to dominate the local temperature response. Instead, the local 37 temperature response is dominated by the stratiform heating profile, consisting of heating in the 38 upper troposphere and cooling in the lower troposphere [Sherwood and Wahrlich, 1999; Mapes et 39 al., 2006; Mapes et al., 2009; Mitovski et al., 2010; Zuluaga and Houze, 2013].

40 The weakness of the observed temperature response to convective events in the tropics can be 41 attributed to an induced dynamical circulation. The dynamical adjustment to moist convective 42 heating involves upward motion and adiabatic cooling in the background atmosphere, and generates 43 a larger scale dry circulation in which the full depth convective heating and drying are transported 44 to larger spatial scales. This characteristic of the tropical atmosphere has been exploited in a widely 45 used dynamical theory known as the Weak Temperature Gradient approximation [Sobel et al., 46 2001], in which the induced dynamical cooling exactly cancels the local convective heating. This 47 theory can not account for the observed local stratiform temperature response, however, because of 48 the imposed exact cancellation between the convective and dynamical heating terms.

49 We use routine radiosonde observations to construct composite anomaly patterns of a large 50 number of meteorological variables about high rain events. These variables include temperature, 51 relative humidity, column water vapor, Convective Available Potential Energy (CAPE), 52 geopotential height, mass divergence, relative vorticity, stability, and potential vorticity. The TRMM 3B42 dataset is used to identify 2x2 grid cells in which the rain rate exceeds a particular 53 54 threshold. The observed anomaly patterns are then used to construct a conceptual model of the 55 interaction between convective and dry circulations during the evolution of high rain events. The 56 conceptual model would be most appropriate on the space and time scales of the rain events we 57 select, which is several hundred km and 1-2 days. We argue that the dynamical response to 58 stratiform heating is slower than the dynamical response to full depth convective heating, and that 59 this difference in time lags accounts for the dominance of the local stratiform temperature response. 60 The TRMM 3B42 gridded rainfall product is available from 1998 to the present. We look for 61 radiosonde or surface measurements that are co-located, and within 48 hours, of the TRMM high 62 rain events. To obtain better statistics, this procedure is repeated at many radiosonde stations, using a large number of rain events from 1998 to 2010. This approach has been followed using routine 63 64 radiosonde profiles [Sherwood and Wahrlich, 1999; Mitovski et al., 2010], measurements from field 65 campaigns [Sobel et al., 2004; Mapes et al., 2006; DeMott et al., 2007; Mapes et al., 2009], satellite 66 data [Masunaga, 2012], and re-analysis data [Benedict and Randall, 2007; Rapp et al., 2011]. Some 67 of the anomaly patterns shown in this paper, especially with respect to temperature and relative humidity, therefore reproduce known relationships. However, this procedure has not been used to 68 69 calculate the anomaly patterns of other meteorological variables such as geopotential height and 70 potential vorticity. Where possible, the anomaly patterns are calculated using groups of radiosonde 71 stations in four regions: the Western Tropical Pacific, Tropical Brazil, the Southeast United States, 72 and Southeast China. This approach enables us to identify similarities and differences in the 73 interaction between deep convection and the background atmosphere between the four regions.

74

75 **2. Datasets**

76 2.1 Rainfall Data

The TRMM 3B42 gridded rainfall dataset is constructed from several satellite borne sensors. These include a precipitation radar, multichannel microwave radiometer, and visible and infrared sensors [Kummerow et al. 1998, Liu et al. 2012]. The data is available at 3-h temporal (centered at 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, and 21:00 UTC), and 0.25 x 0.25 degree horizontal resolution. We used TRMM 3B42 rainfall to identify high rain events between Jan 1998 and Dec 2010.

83

84 **2.2 Radiosonde Data**

85 The Integrated Global Radiosonde Archive (IGRA) dataset is stored at the National Climatic 86 Data Center (NCDC) [Durre at al., 2006]. We used data from 53 radiosonde locations from the 87 1998 – 2010 time period. The locations of these stations are shown as open squares in Figure 1, and 88 are located in four regions: 6 from the Western Tropical Pacific, 11 from Tropical Brazil, 19 from 89 the Southeast United States, and 17 from Southeast China. The soundings provide temperature and 90 relative humidity profiles at variable vertical resolution. Within the Southeast United States region, 91 there were on average 42 temperature and relative humidity measurements below 100 hPa. The 92 comparable numbers for the radiosonde stations in the Western Tropical Pacific, Tropical Brazil, 93 and Southeast China regions, are 39, 26, and 14, respectively. The soundings also provide

horizontal wind measurements at the surface and at the standard pressure levels of 1000, 925, 850,
700, 500, 400, 300, 250, 200, 150, and 100 hPa. Although some of the IGRA soundings are
available every 6 hours, the majority of the soundings are available twice per day at the 00:00 and
12:00 UTC standard synoptic times.

The divergence and vorticity anomaly calculations require simultaneous horizontal wind measurements from triangular radiosonde arrays. For these variables, we used 2 arrays from the Western Tropical Pacific, 5 arrays from Tropical Brazil, 14 arrays from the Southeast United States, and 17 arrays from Southeast China. The average area of the Western Tropical Pacific arrays was 296,000 km² (roughly equal to the area of a 5x5-degree grid box at the equator), 57,000 km² for the Southeast United States arrays (roughly equal to a 2.5x2.5-degree grid box at 30 N), 207,000 km² for the Tropical Brazil arrays, and 31,000 km² for the Southeast China arrays.

105

106 **2.3 Hourly Surface Data**

107 Over land, convective precipitation usually peaks in the late afternoon [Nesbitt and Zipser, 108 2003]. The rain events used to construct the anomaly patterns over land also occur more frequently 109 in the late afternoon. Within a given region, the radiosonde profiles will usually occur at two fixed 110 local solar times. The incomplete diurnal sampling of the radiosondes, in combination with the existence of diurnal cycles in both the rain event frequency and the meteorological variables, will 111 112 introduce biases into the calculation of our anomaly patterns. It is therefore important that, where 113 possible, the radiosonde anomaly patterns be validated against surface measurements with better 114 temporal resolution.

The Integrated Surface Hourly (ISH) dataset consists of surface weather observations from about 20,000 worldwide-distributed stations [*Lott et al.*, 2001]. The data is archived at the NCDC, and contains hourly and synoptic (3-hourly) surface weather observations of several variables, including temperature, relative humidity, and pressure. We used ISH data between 1998 and 2010, from surface stations, which were co-located with the 53 IGRA radiosonde stations shown in Figure 1.

121

122 **2.4 Global Positioning System Data**

We also used Global Positioning System (GPS) radio occultation temperature measurements from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) sixsatellite constellation [*Anthes et al.*, 2008], downloaded from the COSMIC Data Analysis and Archive Center (CDAAC). There are approximately 2,000 high-vertical resolution (~100 m in the troposphere) COSMIC temperature profiles over the earth per day. Over a particular region, the 128 COSMIC profiles are distributed roughly uniformly in local solar time. They can therefore also be 129 used to help determine whether the calculated radiosonde temperature anomaly patterns over land 130 exhibit a diurnal bias. We used COSMIC temperature profiles within the Southeast United States 131 (between 30 N and 40 N and between 85 W and 100 W) and Southeast China (between 25 N and 35 132 N and between 103 E and 118 E) regions shown in Figures 1c and 1d. For both regions, we 133 restricted attention to the convective summer season (June July and August) from 2006 to 2010. 134

135 **3. Rain Event Definition**

136 In the construction of the radiosonde and surface station anomaly patterns, high rain events 137 were considered to occur at locations where the mean TRMM 3B42 rainfall over a 2 by 2 degree area centered at each station exceeded 1.5 mm/h over a TRMM 3 hour time interval. For the 138 139 calculation of the mass divergence and relative vorticity anomaly patterns, we used triangular 140 radiosonde arrays, and rain events were defined using the average TRMM 3B42 rain rate within 141 each array. For the Southeast United States and Southeast China regions, we restricted attention to 142 June, July, and August. For the tropical Brazil and the Western Tropical Pacific regions, we used 143 rain events from the entire year.

Figure 2a shows composite TRMM 3B42 2x2-degree rain event profiles from each of the four regions. The rain event profiles were constructed from events co-located with radiosonde or surface stations, rather than from rain events within the variably sized radiosonde arrays. The rain event profiles are quite similar, partly reflecting the use of a common rain event threshold. High rain events develop slightly more rapidly over the three land regions than the Tropical Western Pacific. Rainfall starts to increase roughly 9 hours prior to peak rainfall, and drops to near background levels roughly 9 hours after peak rainfall.

151 GPS COSMIC temperature profiles were also used to construct temperature anomaly patterns 152 about high rain events. Within a particular region, the GPS profiles tend to be randomly distributed. 153 In order to identify high rain events co-located with GPS temperature profiles, we first calculated 154 the mean TRMM 3B42 rain rate in 2x2 grid boxes, separated from each other by 1 degree. For example, the Southeast United States region shown in Figure 1c enclosed an area between 30-40 N 155 156 and 85-100 W. Within this region, we calculated the mean rain rate in $10 \times 15 = 150$ overlapping 157 2x2 grid boxes, and searched for GPS temperature profiles within each box. The Southeast China 158 region shown in Figure 1d enclosed an area between 25-35 N and 103-118 E, and was also 159 partitioned into 150 overlapping boxes.

Figure 2b shows the variation in average rain rate as a function of radial distance from the high rain events. The rain events of the various regions have a similar spatial scale, with the rain rate typically decaying to a near background value within about 400 km of peak rainfall.

163

164 **4. Diurnal Variability**

Figure 3a shows the average diurnal variation of the TRMM 3B42 rain rate within each of the four regions. Within the three land regions the rainfall rate peaks in the late afternoon or early evening. The Tropical Western Pacific rainfall rate exhibits a small peak in the early morning. Figure 3b shows the diurnal variation in the frequency of occurrence of the rain events used to construct the radiosonde temperature anomaly patterns. The diurnal variation in the rain event frequency is similar to the diurnal variation in the rain rate itself.

171 Figure 4 shows the number of IGRA radiosonde profiles within each region that occurred 172 within 48 hours of a rain event, and could be used in the construction of the temperature anomaly 173 patterns. Within the Southeast United States, there were approximately 21,000 profiles at 06 and 18 174 h local solar time available from the 1998 – 2010 time period. We used 25,000 profiles from 175 Tropical Brazil (08 and 20 h local solar time), 55,000 profiles from Southeast China (also at 08 and 176 20 h local solar time), and roughly 80,000 soundings from the Tropical Western Pacific, distributed 177 at local solar times of 00, 09, 10, 11, 12, 21, 22, and 23 h. The broader range of local solar times 178 from the Tropical Western Pacific reflects the broader longitudinal distribution of the radiosonde 179 stations in this region.

180

181 **5. Results**

182 **5.1 Temperature anomaly patterns from Radiosondes**

Once a rain event at a radiosonde station had been identified, we searched for radiosonde launches that had occurred within 48 hours of the rain event. These soundings were then assigned to 3-h bins, based on the difference between the radiosonde launch and rain event times. At each location, radiosonde measurements were used to define climatological temperature profiles for each launch time, month, and year, and were used to convert the temperature profiles to temperature anomaly profiles. We then averaged the temperature anomaly profiles within each 3-h time bin.

The composite temperature anomaly patterns generated using the above procedure within each region are shown in Figure 5a, 5b, 5c, and 5e. For all regions, high rain events give rise to an upper-level warming centered at 300 hPa that is coincident with peak rainfall. With the exception of Southeast China, the regions also show a 700 hPa lower tropospheric cooling coincident with peak rainfall. Each region shows a strong boundary layer cooling (below 900 hPa) after peak rainfall. 194 This cooling is significantly larger and more persistent over the three land regions than over the 195 Tropical Western Pacific. Deep convection over the three land regions is preceded by a warm 196 anomaly in the lower troposphere. Over Tropical Brazil and Southeast China, this warming extends 197 upward from the surface to 800 hPa, but extends to 600 hPa over the Southeast United States.

The details of the temperature anomaly patterns shown in Figure 5 will be sensitive, to some degree, to the assumptions used to define the rain events. For example, the use of a larger rain event threshold would be expected to generate larger temperature anomalies. It has been shown, however, that the shapes of the temperature anomaly patterns are not sensitive to the value of the rain event threshold or the assumed event area [*Mitovski et al.*, 2010].

203

204 5.2 Temperature anomaly patterns from GPS

205 The GPS COSMIC temperature profiles were used to also construct temperature anomaly 206 patterns of the Southeast United States and Southeast China regions. During the summer convective 207 season (JJA) between 2006 and 2010, there were 2,111 profiles from the United States, and 1,538 208 profiles from China, which were co-located within 48 hours of a TRMM rain event. The COSMIC 209 temperature anomaly patterns from these two regions are shown in Figure 5d and 5f. Although the 210 COSMIC and radiosonde temperature anomaly patterns are in good overall agreement, the 211 COSMIC boundary layer cooling is much smaller than the boundary layer cooling obtained from 212 the radiosonde data. There are several reasons why the COSMIC temperature anomaly patterns may 213 be less accurate near the surface. COSMIC provides vertical profiles of atmospheric refractivity, 214 which can be used to calculate the vertical profile of atmospheric density [Anthes et al., 2008]. 215 Variations in water vapor can be expected to more strongly affect the atmospheric density at higher 216 temperatures closer to the surface. In the absence of an independent method of constraining the 217 water vapor profile, the relative accuracy of the COSMIC temperature retrievals can be expected to 218 be smaller at lower altitudes. The refractivity gradient at the top of the boundary layer frequently 219 exceeds the critical refraction, which can result in a systematic negative refractivity bias in the radio 220 occultations within the boundary layer [Xie et al., 2012]. Finally, the number of COSMIC 221 temperature retrievals decreases toward the surface, especially for altitudes below 2 km [Anthes et 222 al., 2008].

223

5.3 Anomalies in Pressure, Temperature, and Relative Humidity at the Surface

Figure 6 shows the response of surface temperature, surface relative humidity, and surface pressure to high rain events in each of the four regions, calculated from both the radiosonde and surface weather station data. In general, the radiosonde anomaly profiles (solid lines) are in good agreement with the profiles generated by higher temporal resolution surface measurements (dottedlines).

The top row of Figure 6 shows the response of surface temperature to high rain events. The two mid-latitude regions show larger surface cooling than the two tropical regions. This is consistent with Figure 5, which also shows greater persistence and depth in the boundary layer cooling over land. One explanation for this difference is that convection over land tends to develop under conditions of lower relative humidity than convection over the tropical oceans. Downdrafts over land would therefore be expected to exhibit stronger negative buoyancies, have a higher probability of penetrating the boundary layer, and possibly, generate more persistent cooling.

The middle row of Figure 6 shows the response of surface relative humidity to high rain events. Within all four regions, convective rainfall generates a sharp increase in surface relative humidity that is coincident, or slightly lags, peak rainfall. The size of the relative humidity increase scales with the size of the temperature decrease. The relative humidity increase of the two midlatitude regions is larger than the increase of the two tropical regions.

The bottom row of Figure 6 shows the surface pressure response to high rain events. The surface pressure anomalies show stronger regional differences than the temperature and relative humidity anomalies. In the Tropical Pacific, there is a 0.5 hPa minimum in surface pressure 10 hours prior to peak rainfall, followed by a small local maximum that slightly lags peak rainfall. Over Tropical Brazil, there is a more rapid increase in surface pressure during high rain events. In the two mid-latitude regions, high rain events are associated with larger 1-2 hPa reductions in surface pressure over a 2-3 day timescale.

249 Although the radiosonde and surface station anomaly patterns are in good overall agreement, 250 the radiosonde surface pressure anomalies within the Southeast Unites States, and to a lesser extent 251 within Southeast China and Tropical Brazil, are significantly different from the surface station 252 pressure anomalies. These deviations have a 12-hour periodicity. The black curve of the top panel 253 of Figure 7 shows the average diurnal cycle in surface pressure from the Southeast United States 254 surface stations. The red curve shows the diurnal cycle in surface pressure using measurements 255 when the rain rate of the local grid cell exceeded 1 mm/h. The difference between the two curves 256 shows that rainfall during the evening and early morning is associated with lower surface pressure. 257 The bottom panel of Figure 7 shows that the surface pressure response to high rain events depends 258 on the time at which the rain event occurs. Each response curve is constructed from high rain events 259 having a common TRMM time, converted here to the approximate local solar time. Rain events 260 which occur at 21, 00, and 03 local solar time give rise to much larger decreases in surface pressure, 261 relative to the mean surface pressure at that local time, than do rain events in the late afternoon.

262 The existence of a diurnal cycle in the surface pressure response to high rain events leads to 263 errors when the twice daily radiosonde profiles are used to construct the surface pressure anomaly 264 patterns. The twice daily radiosonde launches occur at local solar times of 6 and 18 h. The middle 265 panel of Figure 7 shows the surface pressure response constructed from the individual sondes, as 266 well as the combined response shown previously in Figure 6. For the two individual response 267 curves, there is a 24 h oscillation generated by changes in the local solar time of the rain events. For 268 example, the curve generated using the 6 LT radiosonde launches and the curve generated using the 269 18 LT radiosonde launches both show maxima associated with rain events occurring at 15 LT, and 270 minima associated with rain events occurring at 00 LT. The pattern of this response is consistent 271 with Figure 7c, which shows a weaker surface pressure response to rain events occurring in the late 272 afternoon, and a stronger response to rain events at night. The overall surface pressure response in 273 Figure 7b, indicated by the dashed line, is equal to the average of the two individual radiosonde 274 curves, weighted by the relative frequency of the rain events used to construct the two curves. 275 Inspection of the middle panel shows that the 12 hour oscillation in the combined radiosonde 276 response is an artifact generated from the 24 hour oscillations of the two individual curves.

277

278 5.4 Radial Distribution of the Convective Temperature Response

279 The temperature anomaly patterns shown in Figure 5 show the time evolution of the local 280 temperature response to deep convection, but give no indication of the spatial scale over which 281 these temperature anomalies extend. In this section, the radiosonde measurements are used to 282 calculate the temperature response to the TRMM high rain events as a function of the radial 283 distance from the events. We first identified all 2x2 rain events within a particular region, and then 284 searched for radiosonde measurements within 1000 km of the rain event which had occurred within 285 3 h of the rain event time. The radiosonde temperature profiles were then stored in 50 km bins, 286 based on the distance between the rain event and the radiosonde location. Each temperature profile 287 was converted to an instantaneous anomaly profile by subtracting the climatological launch-288 time/monthly/yearly temperature profile at that location. The temperature anomaly profiles within 289 each 50-km bin at each pressure level were then averaged, and the results shown in Figure 8.

The dominant feature of the radial temperature response is an upper level (300 hPa) warming that extends roughly 800 km outward from the rain event. All four regions also exhibit a strong near surface (below 900 hPa) cooling that extends roughly 300 km outward from the rain event. The Tropical Pacific Ocean and Southeast United States regions exhibit a strong lower tropospheric cooling between 800 hPa and 500 hPa. This lower tropospheric cooling is less pronounced over Tropical Brazil, and absent over Southeast China. Figure 8 shows that the regional differences in the local convective temperature response shown in Figure 5 are not restricted to the immediate

environment of deep convective events, but extend to much larger spatial scales.

298

299 **5.5 Relative Humidity**

300 The IGRA radiosonde dataset supplies vertical profiles of water vapor pressure, which can be 301 converted to relative humidity. At temperatures below 0 C, we normalized the vapor pressure by the 302 saturation vapor pressure over ice [*Emanuel*, 1994]. In general, radiosonde measurements of vapor 303 pressure are less accurate at colder temperatures [Kley et al., 2000]. The relative humidity was 304 therefore not calculated for pressure levels above 200 hPa. Figure 9 shows the relative humidity 305 response to high rain events, calculated using a procedure similar to that used for the temperature 306 anomaly patterns. Within each region, peak rainfall is associated with values of relative humidity 307 that exceed 80% at most altitudes. The gradual moistening of the lower troposphere prior to high 308 rain events has been attributed to the influence of congestus clouds [Takayabu et al., 1996; Mapes 309 et al., 2006], but this interpretation has been recently challenged [Hohenegger and Stevens, 2013]. 310 Rain events within the Southeast United States occur within a background atmosphere that is 311 significantly drier than the other three regions, particularly in the upper troposphere.

The radial relative humidity response to high rain events was calculated using the same procedure used to calculate the radial temperature response. Figure 10 shows that high rain events generate strong positive anomalies in upper tropospheric humidity that extend roughly 400 km outward from the high rain events. The relative humidity patterns of the Southeast United States and Tropical Western Pacific regions are very similar, except that the enhancement in the Pacific region extends to longer distances. The upper tropospheric relative humidity enhancement of the Tropical Brazil region is much smaller than the other regions.

319

320 **5.6 Total Column Water Vapor**

321 The relative humidity and temperature measurements of the radiosonde profiles can be used 322 to calculate the total column water vapor, defined here as the mass of water vapor per unit area 323 between the surface and 200 hPa (also known as the precipitable water). The upper panel of Figure 324 11 shows the column water vapor response to high rain events within each region, while the lower 325 panel of Figure 11 shows the column water anomaly. Rain events in the Southeast United States 326 occur at much lower values of column water than the other three regions. However, the change in 327 column water during high rain events in the Southeast United States is very similar to the change in 328 Southeast China and the Tropical Pacific (7 -10 kg/m2). Rain events in Tropical Brazil are 329 associated with smaller increases in column water (less than 4 kg/m2).

331 5.7 Convective Available Potential Energy

The existence of air parcels near the surface with positive Convective Available Potential Energy (CAPE) is a precondition for moist convection. There are a variety of methods for calculating CAPE. We start with air parcels near the surface whose pressure, temperature, and relative humidity are equal to the values given by a radiosonde profile at a particular pressure level. We then lift the air parcel, subject to the assumptions of constant moist static energy and total water (i.e. no condensate removal), no mixing, and no ice formation. The CAPE of the profile from a particular starting level is then calculated using the following expression.

339
$$CAPE = \int_{Z_{LFC}}^{Z_{LNB}} g\left(\frac{T_{dp} - T_{ve}}{T_{ve}}\right) dz, \quad (1)$$

340 T_{dp} refers to the density temperature of the air parcel. The density temperature is an effective 341 temperature for calculating density in which the condensate mass is included. T_{ve} is the virtual 342 temperature of the environment, Z_{LFC} is the level of free convection, and Z_{LNB} is the level of 343 neutral buoyancy for that parcel.

344 The radiosonde profiles of the Western Tropical Pacific and Southeast United States regions 345 had sufficient vertical resolution to resolve the vertical structure of boundary layer CAPE. Figure 12 346 shows the variation in CAPE, and the CAPE anomaly, about high rain events from the two regions. 347 Deep convection is associated with strong negative anomalies in CAPE, which maximize at roughly 348 800 J/kg near the surface several hours after peak rainfall. This CAPE reduction is presumably 349 associated with some combination of preferential entrainment of higher moist static energy air 350 parcels from the boundary layer by convective updrafts, and by the injection of lower moist static 351 energy air into the boundary layer from the mid-troposphere [Zipser, 1977]. Over the tropical 352 oceans, the CAPE reduction extends over a vertical depth of roughly one km and persists for about 353 20 hours.

354 Figure 12 also shows that, while the CAPE anomalies preceding rain events from the Western 355 Tropical Pacific region were weak, the CAPE anomalies preceding rain events within the Southeast 356 United States were strongly positive. Due to the diurnal cycle in CAPE over land [Dai et al., 1999] 357 and the higher frequency of rain events during the late afternoon, some of the CAPE enhancement 358 shown in Figure 12b preceding peak rainfall can be attributed to the diurnal cycle. The diurnal cycle 359 also contributes to a 24 hour oscillation in CAPE prior to peak rainfall. Figure 12d shows the CAPE 360 anomaly, in which the diurnal effect has been reduced by subtracting from each CAPE 361 measurement the mean value of CAPE for each particular radiosonde launch time, station, and month. The largest CAPE anomaly of roughly 600 J/kg occurs at 950 hPa, 6 hours prior to peak 362

rainfall. After peak rainfall, there is a negative CAPE anomaly of roughly 400 J/kg that is largestnear the surface.

Within the Southeast United States CAPE and CAPE anomaly patterns shown in Figure 12, there is a 12 hour oscillation that mainly occurs prior to peak rainfall. This oscillation is an artifact generated by the same mechanism which produces the surface pressure oscillation shown in Figure 7. The top panel of Figure 6 shows that the surface temperature errors in the Southeast United States introduced by this sampling bias are small. However, these errors have a larger relative impact on CAPE.

371

372 **5.8 Geopotential Height**

Geopotential height profiles were calculated from the surface pressure, temperature, and relative humidity measurements of the individual radiosonde profiles. The geopotential height at the surface of each location was set equal to the local surface station altitude. We used stations whose altitude was less than 200 m. We then iteratively calculate the geopotential height upward from the surface using the hypsometric equation. This equation defines the geopotential height at a pressure level n in terms of the geopotential height at a lower pressure level n-1, the virtual temperature at levels n-1 and n, and the pressure thickness dp.

In this equation, p refers to pressure in Pascals, R_d to the specific gas constant of dry air (287.04 Jkg⁻¹K⁻¹), Tv to the virtual temperature of an air parcel, and g to standard gravity (9.806 ms⁻²), and dlnp is defined as

384
$$d\ln p = \frac{p_{n-1} - p_n}{0.5(p_{n-1} + p_n)} .$$
(3)

To obtain the geopotential height anomaly, we subtracted from each geopotential height the mean geopotential height for that station, month, and radiosonde launch time. We then grouped the resulting geopotential height anomaly profiles of each region in 3-hour time bins about their respective rain events. Figure 13 shows the geopotential height anomaly patterns associated with the high rain events of each region. The anomaly pattern of the Southeast Unites States exhibits a 12 hour oscillation. This oscillation is stronger in the lower troposphere, and can be attributed to the 12 hour oscillation in lower tropospheric surface pressure discussed earlier.

The geopotential height anomaly patterns of the four regions show some common features.
Each region shows a strong positive geopotential height anomaly in the upper troposphere centered
at 200 hPa. This anomaly is generated mainly by the upper tropospheric 300 hPa warm anomaly

shown in Figure 5. Within each region, the geopotential anomalies change sign from positive tonegative near 400 hPa.

397 In the two tropical regions, the negative mid-level geopotential anomaly is largest at 500 hPa, 398 and roughly symmetric about peak rainfall. The onset of the reductions in lower tropospheric 399 geopotential height begin prior to the lower tropospheric cooling shown in Figure 5a, and can be 400 mainly attributed to reductions in surface pressure. For example, the lower left panel of Figure 6 401 shows that the surface pressure of the Western Tropical Pacific region decreases by roughly 0.6 hPa 402 prior to peak rainfall. This would generate a geopotential height decrease of roughly 5.2 m, which is 403 comparable with the negative anomalies in lower tropospheric geopotential height prior to peak 404 rainfall shown in Figure 13a.

In the two mid-latitude regions, negative surface pressure anomalies several days prior to peak rainfall generate negative geopotential height anomalies in the boundary layer. As peak rain rates develop, the cold anomalies in the boundary layer and mid-levels contribute to the intensification and upward extension of these negative geopotential height anomalies to 400 hPa. These negative mid-level anomalies are much stronger, deeper, and more persistent than those observed in the tropics.

411

412 **5.9 Mass Divergence**

413 At a given pressure level, the net horizontal mass inflow or outflow from a convecting region 414 can be estimated using horizontal wind measurements from radiosonde arrays. We calculated the 415 mass divergence of the triangular arrays shown in Figure 1 using the following expression.

416
$$\nabla \cdot \vec{V} = \sum \frac{\vec{V} \cdot \vec{n} dl}{A}, \quad (4)$$

417 $\vec{V} \cdot \vec{n}$ refers to the wind component normal with respect to a line that connects two points of the 418 array, dl is the distance between the two points, and A refers to the surface area of the array.

419 The number of divergence profiles available to construct the anomaly patterns is usually 420 much less than the number of temperature or relative humidity profiles, partly because a divergence 421 calculation require a complete ring of simultaneous horizontal wind measurements. The native 422 resolution TRMM 3B42 dataset was used to calculate the average rainfall rate within the arrays 423 shown in Figure 1. The rain event frequency is in general smaller for larger arrays. On average, 424 there were 164 divergence profiles available per 3 h time bin from the two arrays in the Western 425 Tropical Pacific, 205 profiles from the 14 arrays in the Southeast United States, 414 profiles from 426 the 17 arrays in the Southeast China, and 102 profiles from the 5 arrays in the Equatorial Brazil.

427 Figure 14 shows the divergence anomaly patterns of each region. The four patterns are quite 428 similar. The dominant feature of each pattern is a strong divergence maximum in the upper troposphere (200 hPa). This divergence maximum occurs near peak rainfall, but in three of the 429 430 regions shows a tendency for stronger persistence after peak rainfall. Each region also shows a 431 strong convergence feature in the boundary layer prior to peak rainfall, extending from the surface 432 to 800 hPa. In the Western Tropical Pacific, this feature occurs 6 hours prior to peak rainfall. For 433 rain events within the three land regions, the time difference between the boundary layer divergence 434 maximum and peak rainfall is roughly equal to 3 hours.

The divergence anomaly pattern of the Western Tropical Pacific region shown in Figure 14 exhibits an antisymmetric mid-level divergence dipole about peak rainfall [*Thompson et al.*, 1979; *Mapes et al.*, 2006; *Mitovski et al.*, 2010]. Within the three land regions, there is a tendency for mid-level divergence to occur prior to peak rainfall and mid-level convergence to occur after peak rainfall. However, these divergence features occur closer to peak rainfall than in the Western Tropical Pacific.

441

442 **5.10 Stability**

The radiosonde temperature profiles were used to calculate the static stability using thefollowing expression.

445
$$\sigma = \left(-\frac{T}{\theta}\right) \left(\frac{\partial \theta}{\partial p}\right). \tag{5}$$

446 Figure 15 shows the impact of high rain events on the atmospheric stability of each region. 447 Rain events tend to destabilize the upper tropopause (200 hPa), stabilize the mid-troposphere (400 448 hPa), destabilize the lower troposphere (700 hPa), and stabilize the boundary layer (below 900 hPa). 449 Cloud resolving model simulations show that convective clouds tend to preferentially detrain at 450 heights where their buoyancy is decreasing [Bretherton and Smolarkiewicz, 1989]. The mid-level 451 stability enhancement would therefore favor the detrainment of cumulus congestus clouds in the 452 500 – 400 hPa layer [Zuidema, 1998; Johnson et al., 1999; Bister and Mapes, 2004; Folkins, 2009]. 453 The mid-level stability enhancement is stronger over the two mid-latitude land regions. Figure 8 454 shows that the spatial scale of these stability enhancements is roughly 1000 km.

455

459

456 **5.11 Relative Vorticity**

457 Relative vorticity was calculated from the horizontal wind measurements of a radiosonde458 array using the following expression.

- - --

$$\zeta = \sum \frac{V_{p} dI}{A}, \qquad (6)$$

460 V_p refers to the wind component parallel to a line connecting two points in the array, dl to the 461 distance between the two points, and A to the surface area of the array.

462 Unfortunately, the vorticity anomaly patterns of the two tropical regions were irregular and 463 did not show strong features. This can probably be attributed to the weakness of the Coriolis 464 parameter at the latitudes characteristic of the radiosonde arrays of these two regions, which would 465 weaken the relative impact of the divergence term on the local vorticity budget. Figure 16 shows the 466 vorticity anomaly patterns of the two mid-latitude regions. Within the Southeast China and 467 Southeast United States regions, positive relative vorticity anomalies develop in the boundary layer 468 1 day prior to peak rainfall. These features are presumably associated with the coincident 469 development of boundary layer convergence. At peak rainfall, the positive vorticity anomalies 470 intensify and grow vertically to 400 hPa. The timing in the growth and vertical extent of these 471 vorticity anomalies is consistent with the mid-level convergence features shown in Figure 14. Both 472 regions also show a strong negative (anticyclonic) vorticity anomaly in the upper troposphere, as 473 would be expected to develop in response to the strong upper tropospheric outflow features shown 474 in Figure 14.

475

476 **5.12 Potential Vorticity**

477 Potential vorticity (PV) was calculated from the temperature and horizontal wind profiles of478 the radiosonde arrays using then following expression.

$$PV = \left(\zeta + f\right) \left(-g \frac{\partial \theta}{\partial p}\right), \tag{7}$$

The PV and PV anomaly patterns about high rain events within the Southeast United States and China regions are shown in Figure 17. The tropopause is indicated by the strong vertical PV gradient near 200 hPa. In both regions, high rain events generate strong negative PV anomalies along the tropopause. The development of this anomaly is consistent with the upward transport of low PV air from the boundary layer within convective updrafts, and with the reduction in convective heating (decreased stability) in going from the troposphere to the stratosphere.

Figure 17 also shows that high rain events of the two regions are associated with positive PV anomalies that extend from the surface to 400 hPa. The stratiform type temperature response shown in Figures 5 and 8 would be expected to generate positive stability and PV anomalies in the midtroposphere. It has been previously shown that squall lines with trailing stratiform clouds generate positive PV anomalies in the mid-troposphere [*Hertenstein and Schubert*, 1991]. Figure 17 also shows that high rain events in the Southeast United States are associated with strong positive PV anomalies near the surface. These increase are consistent with the increase in boundary layerstability that occurs during high rain rates.

494

495 6. Temperature and Relative Humidity Tendencies

496 Figure 18a shows the temperature tendency pattern about high rain events calculated from the 497 Western Tropical Pacific temperature anomaly pattern shown in Figure 5a. The pattern is clearly 498 dominated by the development of a stratiform temperature response prior to peak rainfall, and the 499 erosion of this response after peak rainfall. Figure 19a shows the column heating rate of the free 500 troposphere during the evolution of high rain events in each region. It was calculated from the 501 observed temperature tendency pattern, with the tendency of each laver between 850 hPa and 100 502 hPa weighted by its pressure fraction. Within each region, the column mean heating rate is less than 503 1 K/day. The column temperature tendency is smallest in the Western Tropical Pacific region, were 504 it is less than 0.5 K/day. If the condensational heating from the peak rain rate within this region of 505 66 mm/day were evenly distributed between 850 hPa and 100 hPa, it would generate a column 506 mean heating rate of 19.4 K/day. The local column heating rate of this region is therefore roughly 507 two orders of magnitude smaller than the condensational heating associated with the local rain rate. 508 Figure 18d shows the evolution of the domain averaged vertical motion during high rain 509 events within the Western Tropical Pacific radiosonde arrays. The pressure velocity was calculated

from the divergence anomaly pattern shown in Figure 14a, the climatological divergence profile of each array, and by imposing the boundary condition $\omega = 0$ at the 100 hPa pressure level. Prior to peak rainfall, there is strong upward motion throughout the troposphere, with somewhat larger ascent in the lower troposphere. After peak rainfall, the vertical motion is mainly confined to the upper troposphere [*Mapes et al.*, 2006].

Figure 18b shows the temperature tendency pattern associated with the vertical motion pattern shown in Figure 18d. It was calculated by multiplying the calculated vertical pressure velocity by the appropriate static stability. The upward motion generates cooling rates that at times exceed 10 K/day. The extremely small column heating rates shown in Figure 19a can therefore be mainly attributed to a near cancellation between the heating rates generated by the convective circulations and the mean vertical motion within the radiosonde arrays.

521

522 7. Convective and Dry Circulations

523 We adopt a conceptual model in which the total dynamical response to convection can be 524 decomposed into convective and dry circulations. Figure 20c shows a convective circulation 525 generated by a precipitating convective cloud with no downdrafts. The buoyancy driven upward 526 motion within the cloud generates subsidence in the cloud environment. On short timescales, these 527 circulations should be contained within regions whose size is comparable with the areas of the radiosonde arrays used here. Overturning convective scale circulations within these regions will 528 529 therefore generate temperature and geopotential height anomalies within the array, but will not 530 directly generate non-zero mass inflows or outflows along the boundaries of the arrays. Figure 20d 531 shows the dry circulation generated by the geopotential height anomalies of the convective scale 532 circulation. At upper levels, positive anomalies in geopotential height generate mean outward 533 pressure gradient accelerations that will drive, with some time lag, a divergent outflow. By mass 534 conservation, this divergent outflow must be balanced by mean upward flow within the domain. 535 The adiabatic cooling associated with this mean upward motion will diminish the geopotential 536 height anomalies produced by the original convective scale circulation. The convective and dry 537 circulations defined here appear to be analogous to Stages 1 and 2 of a previous discussion of 538 convective adjustment [Raymond et al., 2009].

539 Figure 20a shows the convective circulations associated with the three most important 540 categories of precipitating convective clouds: congestus clouds (outflow in the mid-troposphere), 541 deep clouds (outflow in the upper troposphere), and stratiform anvils (cloud base near the melting 542 level with evaporatively driven downdrafts below). Figure 20b shows the three dry circulations that 543 would be produced by the geopotential height anomalies of the three convective circulations. In 544 order to generate domain averaged vertical motions able to damp the temperature anomaly patterns 545 generated by the three convective circulations, the three dry circulations must produce net 546 horizontal inflows and outflows at various altitudes along the boundaries of the domain.

547 Within a region undergoing precipitating convection, there will in general be some 548 combination of the three basic convective circulations, their associated dry circulations, and other 549 externally forced large scale dynamical motions. However, the divergence anomaly patterns 550 indicate that the convective and dry circulations preferentially occur at particular stages of the 551 evolution of high rain events. The divergence anomaly pattern of the Western Tropical Pacific 552 region is shown in Figure 14a. Prior to peak rainfall, there is a divergence at mid-levels coupled 553 with convergence in the boundary layer. This pattern is consistent with the presence of lower 554 tropospheric ascent within the radiosonde array, a circulation labeled as dry congestus in Figure 555 20b. This circulation would contribute, prior to peak rainfall, to the observed negative tendency in 556 lower tropospheric temperature and a positive tendency in lower tropospheric relative humidity.

557 The three circulations of Figure 20 able to contribute to the development of the low level 558 cooling at peak rainfall are the dry congestus circulation, the dry deep circulation, and the 559 convective stratiform circulation. The simultaneous development of the upper level warm anomaly 560 suggests that the convective stratiform circulation plays the largest role in the development of the 561 peak rainfall temperature anomaly pattern. The dominance of the local stratiform temperature 562 response is somewhat surprising, given that only 40 % of tropical rainfall originates from stratiform 563 clouds [*Schumacher and Houze*, 2003].

564 Figure 19b shows the time evolution of the upper tropospheric 200 hPa divergence during 565 high rain events. The peak in upper tropospheric divergence lags peak rainfall by roughly 3 hours. 566 The dry deep circulation is therefore nearly in phase with the rainfall rate, and rapidly exports the 567 full depth convective warming and drying response of the convective deep circulation outside the 568 radiosonde domain. This helps generate the near zero column heating rates within the domain 569 shown in Figure 19a. Figure 19b also shows the time evolution of the mid-tropospheric 400 hPa 570 divergence during high rain rates. The mid-level convergence feature lags peak rainfall by roughly 571 9 hours. This convergence feature is generated by the dry stratiform circulation (convergence at 572 mid-levels and divergence at upper levels and in the boundary layer). The vertical motions 573 associated with this circulation are shown in Figure 20. They generate temperature tendencies that 574 contribute to the low level warming and upper level cooling that are required after peak rainfall to 575 damp the stratiform temperature response. The low level descent from this circulation would also 576 contribute to the strong negative tendency in lower tropospheric relative humidity after peak rainfall 577 shown in Figure 18c. Because of the longer response time of the dry stratiform circulation, the 578 temperature response of the initial convective stratiform circulation is permitted to accumulate 579 within the radiosonde domain during the development phase of high rain events.

580 Figure 18b shows that the lower tropospheric temperature tendency from vertical advection 581 after peak rainfall is small. This tendency would include contributions from the vertical motions of 582 all three dry circulations. Presumably, a positive temperature tendency from the dry stratiform 583 circulation is being offset by negative contributions from the dry deep and congestus circulations. 584 Positive heating rates in the lower troposphere from the convective congestus or deep circulations 585 would therefore also appear to be required to generate the observed net positive lower tropospheric 586 heating rates after peak rainfall. The convective congestus circulation may therefore also play a role 587 in damping the lower tropospheric cooling generated by the convective stratiform circulation.

The fast response of the dry deep circulation is likely to have an effect on the rate of development of strong convective events. The rapid export of the full depth warming signal from deep convection to larger spatial scales would prevent the reduction in convective instability that would otherwise be expected to occur due to increased local subsidence from deep convection, and by neutralizing deep subsidence drying, to the increase in column water during high rain events shown in Figure 11. Because, column water increases decrease the effect of entrainment on convective cloud buoyancy, the growth rates of convective events are likely to be partly controlled
by the rate at which the dry deep circulation is able to export the full depth heating and drying to
larger spatial scales.

Figure 17 shows that a mid-level PV maximum develops in response to high rain events in the Southeast United States and China, as would be expected from the heating profile of the convective stratiform circulation. The tongue of high PV extending downward from 400 hPa after peak rainfall, as shown in Figures 17a and 17b, is consistent with the development of the dry stratiform circulation. Due to the longer time lag of this circulation, mid-level positive stability and PV anomalies are permitted to accumulate within the radiosonde domains, which are subsequently advected by this circulation toward the surface.

604 The downward advection of the mid-level PV maximum after peak rainfall shown in Figure 605 17 may play a role in hurricane genesis. In the "top down" theory of hurricane genesis 606 [Gjorgjievska and Raymond, 2013], a mid-level positive PV anomaly generated by the stratiform 607 heating profile of a mesoscale convective system is advected toward the surface by evaporative 608 cooling, where it then initiates the formation of a warm core anticyclone [Bister and Emanuel, 609 1997]. The timing of the downward transport shown in Figure 17 suggests that the downward 610 advection of the mid-level PV anomaly can be initiated by the dry stratiform circulation. This 611 downward transport would also, in general, reduce the moist static energy and relative humidity of 612 the lower troposphere, unless the usual melting level minimum in moist static energy was 613 sufficiently reduced by other processes.

614 Within climate models, buoyancy driven convective circulations are generated by the 615 convective parameterization and are entirely contained within a model grid column, while the grid 616 scale winds are generated mainly by horizontal pressure gradient and Coriolis accelerations. In 617 climate models, there is therefore an absolute separation between the convective and dry 618 circulations in terms of their spatial scale and physical origin, similar to what has been assumed 619 here. However, an absolute separation between the two circulations is not likely to occur in nature 620 [Mapes, 1997]. The initial stages of the dynamical adjustment to convective heating are mediated 621 by the propagation of gravity waves outward from the sources of convective heating [Bretherton 622 and Smolarkiewicz, 1989]. Our decomposition of this dynamical response into convective and dry 623 circulations may be viewed as a simplification of this dynamical adjustment, but is physically 624 motivated by the observed divergence and geopotential height anomaly patterns. This 625 decomposition is useful to the extent that there exists a time lag between the convective and dry 626 circulations. In the absence of a time lag, the individual vertical velocities of the two circulations 627 would not be directly observable. The magnitude of the time lag between the convective and dry

628 circulations is presumably related to the time required for a convective circulation to increase the 629 geopotential height anomalies to the levels required to drive the larger scale dry circulation. If the 630 convective circulation generates the required geopotential height anomalies very quickly, the time 631 lag would be small, there would exist a near cancellation between the two vertical motions at all 632 stages in the development of high rain events, and the temperature anomalies generated by the 633 heating mode would be correspondingly reduced.

634 Convective heating generates gravity waves of various vertical wavelengths. The gravity 635 waves generated by the deep convective heating mode preferentially generate waves having vertical 636 wavelengths roughly twice the depth of the troposphere. The stratiform heating mode generates 637 waves with a vertical wavelength roughly equal to the depth of the troposphere [Mapes and Houze, 638 1995]. Gravity waves with larger vertical wavelengths have faster propagation speeds. During a 639 high rain event, the gravity waves generated by a convective heating profile within a radiosonde 640 array will spread out from their convective sources, generate vertical motions within the domain, 641 and horizontal winds along the boundaries. The time for this dynamical response to occur would be 642 roughly equal to the size of the radiosonde array divided by the speed of the gravity wave. The 643 gravity waves excited by the full depth convective heating mode have a speed of roughly 52 m/s, 644 while those excited by the stratiform heating mode have a speed of 23 m/s [*Mapes and Houze*, 645 1995]. As mentioned earlier, the two arrays in the Western Tropical Pacific have an average area of 296,000 km², corresponding to a size of 545 km. The time lags associated with the full depth and 646 647 stratiform heating modes should therefore be roughly 2.9 and 6.6 hours, respectively. This is 648 roughly consistent with the observed time lags of 3 and 9 hours shown in Figure 19b.

649

650 **8. Summary**

651 We have used the TRMM 3B42 gridded rainfall dataset to identify 2x2 rain events in four 652 regions: the Western Tropical Pacific, Tropical Brazil, Southeast China, and Southeast United 653 States. Within each region, we selected rain events in close proximity to radiosonde or surface 654 weather stations. These measurements were then used to construct composite anomaly patterns of a 655 large number of meteorological variables about high rain events. One motivation of this analysis 656 was to determine regional similarities and differences in the dynamical impact of strong convective 657 events on the background atmosphere. The second motivation was to help determine the pathways 658 by which the atmosphere attempts to return to a balanced state following moist convection, and to 659 help understand how these pathways affect the evolution of convective systems.

660 Our analysis shows that there are many similarities in the effect of strong convective events 661 on the background atmosphere between the four different regions. With the partial exception of 662 Southeast China, which appears to lack the 700 hPa cooling maximum, deep convection imposes a 663 stratiform type temperature response on the background atmosphere. In all four regions, the upper 664 tropospheric warming extends roughly 1000 km outward from deep convective events, indicating 665 that deep convective events have a long range impact on the convective instability of their 666 environment. The lower tropospheric cooling has a somewhat shorter horizontal extent, as would be 667 expected from the slower propagation speed of the gravity waves excited by the stratiform heating 668 mode. The upper tropospheric warming and lower tropospheric cooling generate increased stability 669 at mid-levels. The mid-level stability increase can be expected to enhance convective detrainment 670 in the mid-troposphere, and promote the development of the cumulus congestus mode. Strong 671 cooling boundary layer develops after peak rainfall. The boundary layer cooling was somewhat 672 deeper over the three land regions than the tropical ocean.

In two regions, we were able to calculate the time evolution of the vertical structure of CAPE in the boundary layer during high rain events. Within the Southeast United States region, the CAPE enhancement prior to peak rainfall was roughly 200 J/kg, while within the Western Tropical Pacific region, the CAPE enhancement was almost negligible (~ 40 J/kg). In both regions, the boundary layer cooling after peak rainfall contributes to the development of strong negative CAPE anomalies throughout the boundary layer.

679 There were some differences in the impact of strong convective events on the background 680 atmosphere. The mid and lower tropospheric negative geopotential height anomalies that developed 681 during and after high rain events in the two mid-latitude regions were much stronger, more 682 vertically coherent, and more persistent, than in the two tropical regions. In general, the time scale 683 for the development and decay of high rain events was faster in the mid-latitudes than the tropics. In 684 particular, the mid-level stratiform convergence of the two mid-latitude regions developed much 685 more quickly after peak rainfall than in the two tropical regions. It is not clear whether these 686 differences arise from differences in the rates of convective development over land versus the 687 ocean, from the larger value of the Coriolis parameter in mid-latitudes, or from the smaller size of 688 the mid-latitude radiosonde arrays.

In mid-latitudes, rain events are associated with larger negative anomalies in surface pressure than those in the tropics, and lack the surface pressure increase that occurs after peak rainfall in the tropics. Within the Southeast United States region, rain events which occur in the evening are associated with larger reductions in surface pressure than those that occur during the day. It is not clear whether this pressure reduction is forced by the convection itself, or whether the lower surface pressure is associated with a more favorable synoptic environment for convective events at night. If the surface pressure reduction is indeed forced by convection, it may contribute to the observeddiurnal cycle in surface pressure in this region.

697 Convective circulations impose perturbations in temperature, relative humidity, and surface 698 pressure on the background atmosphere. The resulting anomalies in geopotential height generate, 699 after some time lag, secondary large scale vertical motions which damp the temperature anomalies 700 generated by the initial primary convective circulations. The overall effect of moist convection on 701 the background atmosphere is therefore best understood in terms of an interplay between the 702 primary circulations generated by the three main convective cloud types (congestus, deep, and 703 stratiform) and their induced dry circulations. For example, we have shown that the development of 704 large scale downward motion in the lower troposphere and upward motion in the upper troposphere 705 after peak rainfall contribute to the erosion of the dominant local stratiform temperature response to 706 convective events. Although this conceptual model of the interaction between the primary 707 convective and secondary dry circulations was motivated by the anomaly patterns obtained from the 708 Western Tropical Pacific region, the similarity of the anomaly patterns between the various regions 709 suggests that it can be applied elsewhere.

710 The secondary dry circulations are likely to have a strong influence on the evolution of 711 convective precipitation. In particular, the response of the dry deep circulation to the convective 712 deep circulation is much faster than the response of the dry stratiform circulation to the convective 713 stratiform circulation. As a result, the full depth warming and drying from deep convection are 714 rapidly exported to larger spatial scales, and the stratiform temperature response dominates in the 715 near field. The rapid export of the full depth heating and drying by the dry circulation helps prevent 716 the reductions in CAPE that would otherwise occur during the intensification phase of deep 717 convective events. It therefore functions as a positive feedback on the development of deep 718 convection. Because of the longer time lag of the dry stratiform circulation, the onset of lower 719 tropospheric subsidence in response to the convective stratiform circulation is delayed. This 720 promotes the development of positive anomalies in column water and lower tropospheric relative 721 humidity during high rain events.

We were able to calculate the vorticity and potential vorticity anomaly patterns in the Southeast China the Southeast United States regions. In both of these regions, high rain events are associated with negative anomalies in upper tropospheric relative and potential vorticity. These negative anomalies extend into the lower stratosphere. Below 400 hPa, convective events are associated with positive anomalies in both relative and potential vorticity. The vorticity change is consistent with the development of mid-level convergence during strong convective events. The mid-level positive PV anomaly is consistent with the local dominance of the stratiform heating mode. After peak rainfall, the mid-level positive PV anomaly is transported downward toward thesurface by the dry stratiform circulation.

731 One objective in calculating anomaly patterns about high rain events is to provide 732 observational targets for the development of improved convective parameterizations in climate 733 models. For example, we have shown earlier that several climate models and reanalysis products 734 have difficulty in simulating the observed temperature anomaly patterns about high rain events 735 [Mitovski et al., 2010]. One of the difficulties in simulating the observed temperature response to 736 convection is that the total temperature tendency is a small residual of the much larger temperature 737 tendencies from the convective and dry circulations. Therefore, in addition to requiring that a 738 convective parameterization generate the correct relative mix of congestus, deep, and stratiform 739 circulations (or heating profiles) during the evolution of high rain events, it is also necessary that 740 the dry induced circulations generated by the climate model exhibit the appropriate time lags. This 741 requires, in part, that the climate model accurately simulates the observed geopotential height 742 anomaly patterns which develop during high rain events, and that they have sufficient spatial and 743 temporal resolution to resolve the induced dry dynamical circulations of the various heating modes. 744 Difficulties in simulating the observed divergence response to high rain events, and in particular the 745 mid-level divergence dipole, suggest that the dry dynamical response to convective heating is not 746 realistically simulated in most climate models [Mitovski et al., 2010].

747 Acknowledgements

- 748 We thank the following institutions for making their data public: NASA GSFC (TRMM 3B42),
- NCDC (IGRA and ISH) and NCAR UCAR (COSMIC). This research was supported by a Research
- 750 Grant from the Natural Sciences and Engineering Council of Canada

751 **References**

- 752
- Anthes, R. A., and Coauthors (2008), The COSMIC/FORMOSAT-3 Mission: Early Results. *Bull. Amer. Meteor. Soc.*, **89**, 313–333, doi:10.1175/BAMS-89-3-313.
- Benedict, J., and D. A. Randall (2007), Observed characteristics of the MJO relative to maximum
 rainfall. J. Atmos. Sci., 64, 2332-2354, doi:10.1175/JAS3968.1.
- Bister, M., and B. E. Mapes (2004), Effect of Vertical Dipole Temperature Anomalies on
 Convection in a Cloud Model. *J. Atmos. Sci.*, 61, 2092–2100, doi:10.1175/15200469(2004)061<2092:EOVDTA>2.0.CO;2.
- Bister, M., and K. A. Emanuel (1997), The genesis of Hurricane Guillermo: TEXMEX analyses and
 a modeling study. *Mon. Wea. Rev.*, 125, 2662-2682, doi:10.1175/1520-
- 762 0493(1997)125<2662:TGOHGT>2.0.CO;2.
- Bretherton, C. S., P. K. Smolarkiewicz (1989), Gravity Waves, Compensating Subsidence and
 Detrainment around Cumulus Clouds. J. Atmos. Sci., 46, 740–759, doi:10.1175/15200469(1989)046<0740:GWCSAD>2.0.CO;2.
- Dai, A., F. Giorgi, and K. E. Trenberth (1999), Observed and model-simulated diurnal cycles of
 precipitation over the contiguous United States. J. Geophys. Res., 104, 6377-6402,
 doi:10.1029/98JD02720.
- DeMott, C., D. A. Randall, and M. Khairoutdinov (2007), Convective precipitation variability as a
 tool for general circulation model analysis. *J. Climate*, 20, 91-112, doi:10.1175/JCLI3991.1.
- Durre, I., R. S. Vose, and D. B. Wuertz (2006), Overview of the integrated global radiosonde
 archive. J. Climate, 19, 53-68, doi:10.1175/JCLI3594.1.
- Emanuel, K.A. (1994), Atmospheric Convection, Oxford University Press, New York, 580 pp.
- Folkins, I. (2009), A one-dimensional cloud model with trimodal convective outflow, J. Climate,
 22, 6437 6455, doi:10.1175/2009JCLI3134.1.
- Gjorgjievska, S. and D. J. Raymond (2013), Interaction between dynamics and thermodynamics
 during tropical cyclogenesis. Submitted to *Atmos. Chem. Phys.*
- Hertenstein, R. F. A., and W. H. Schubert (1991), Potential Vorticity Anomalies Associated with
 Squall Lines. *Mon. Wea. Rev.*, **119**, 1663–1672, doi:10.1175/1520-
- 780 0493(1991)119<1663:PVAAWS>2.0.CO;2.
- Hohenegger, C., and B. Stevens (2013), Preconditioning Deep Convection with Cumulus
 Congestus. J. Atmos. Sci., 70, 448–464, doi:10.1175/JAS-D-12-089.1.
- Johnson, R.H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert (1999),
 Trimodal characteristics of tropical convection. *J. Climate*, 12, 2397-2418, doi:10.1175/15200442(1999)012<2397:TCOTC>2.0.CO;2.
- Kley, D., J. M. Russell III, and C. Phillips (Eds.) (2000), SPARC Assessment of upper tropospheric
 and stratospheric water vapor, WMO/TD-143, World Clim. Res. Programme, Geneva.
- Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson (1998), The Tropical Rainfall
 Measuring Mission (TRMM) Sensor Package. J. Atmos. Oceanic Technol., 15, 809-817,
 doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.
- Liu, Z., D. Ostrenga, W. Teng, and S. Kempler (2012), Tropical Rainfall Measuring Mission
 (TRMM) Precipitation Data and Services for Research and Applications. *Bull. Amer. Meteor. Soc.*, 93, 1317-1325, doi:10.1175/BAMS-D-11-00152.1.
- Lott, N., R. Baldwin, and P. Jones (2001), The FCC integrated surface hourly database: A new
 resource of global climate date. NOAA National Climatic Data Center Tech. Rep. 2001-01, 42
 pp.
- Mapes, B.E. (1997), Equilibrium vs. activation controls on large-scale variations of tropical deep
 convection. *The physics and parameterization of moist convection*, Kluwer Academic
- Publishers, Dordrecht, pp 321-358.

- 800 Mapes, B. E., and R.A. Houze, Jr. (1995), Diabatic divergence profiles in Western Pacific 801 mesoscale convective systems. J. Atmos. Sci., 52, 1807-1828, doi:10.1175/1520-802 0469(1995)052<1807:DDPIWP>2.0.CO:2.
- 803 Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema (2006), The mesoscale convection life cycle: 804 Building block or prototype for large-scale tropical waves? Dvn. Atmos. Oceans, 42, 3-29, 805 doi:10.1016/j.dynatmoce.2006.03.003.
- 806 Mapes, B. E., et al. (2009), Virtual field campaigns on deep tropical convection in climate models. 807 J. Climate, 22, 244–257, doi:10.1175/2008JCLI2203.1.
- 808 Masunaga, H. (2012), A Satellite Study of the Atmospheric Forcing and Response to Moist 809 Convection over Tropical and Subtropical Oceans. J. Atmos. Sci., 69, 150-167, 810 doi:10.1175/JAS-D-11-016.1.
- 811
- Mitovski, T., I. Folkins, K. von Salzen, and M. Sigmond (2010), Temperature, relative humidity, 812 and divergence response to high rainfall events in the tropics: Observations and models. J. 813 *Climate*, **23**, 3613-3625, doi:10.1175/2010JCLI3436.1.
- 814 Nesbitt, S. W., and E. J. Zipser (2003), The Diurnal Cycle of Rainfall and Convective Intensity 815 according to Three Years of TRMM Measurements. J. Climate, 16, 1456-1475, 816 doi:10.1175/1520-0442-16.10.1456.
- 817 Rapp, A. D., C. Kummerow, and L. D. Fowler (2011), Interactions between warm rain clouds and 818 atmospheric preconditioning for deep convection in the tropics. J. Geophys. Res., 16, D23210 819 doi:10.1029/2011JD016143.
- Raymond, D. J., S. Sessions, A. Sobel, and Ž. Fuchs (2009), The mechanics of gross moist stability, 820 821 J. Adv. Model. Earth Syst., 1, Article 9, 20 pp., doi:10.3894/JAMES.2009.1.9.
- 822 Schumacher, C., and R. A. Houze (2003), Stratiform Rain in the Tropics as Seen by the TRMM 823 Precipitation Radar. J. Climate, 16, 1739–1756, doi:10.1175/1520-824 0442(2003)016<1739:SRITTA>2.0.CO;2.
- 825 Sherwood, S. C., and R. Wahrlich (1999), Observed evolution of tropical deep convective events 826 and their environment. Mon. Wea. Rev., 127, 1777-1795, doi:10.1175/1520-827 0493(1999)127<1777:OEOTDC>2.0.CO;2.
- 828 Sobel, A. H., J. Nilsson, and L. M. Polvani (2001), The Weak Temperature Gradient 829 Approximation and Balanced Tropical Moisture Waves. J. Atmos. Sci., 58, 3650-3665, 830 doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.
- 831 Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis (2004), Large-scale meteorology and 832 deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132, 422-444, doi:10.1175/1520-833 0493(2004)132<0422:LMADCD>2.0.CO;2.
- 834 Takayabu, Y. N., K.-M. Lau, and C.-H. Sui (1996), Observation of a quasi 2-day wave during 835 TOGA COARE. Mon. Wea. Rev., 124, 1892-1913, doi:10.1175/1520-
- 836 0493(1996)124<1892:OOAODW>2.0.CO;2.
- 837 Thompson, R. M., Jr., S. W. Pavne, E. E. Recker, and R. J. Reed (1979). Structure and properties of 838 synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. 839 *Atmos. Sci.*, **36**, 53-72, doi:10.1175/1520-0469(1979)036<0053:SAPOSS>2.0.CO;2.
- 840 Xie, F., Wu, D. L., Ao, C. O., Mannucci, A. J., and Kursinski, E. R. (2012), Advances and 841 limitations of atmospheric boundary layer observations with GPS occultation over southeast
- 842 Pacific Ocean. Atmos. Chem. Phys., 12, 903-918, doi:10.5194/acp-12-903-2012.
- 843 Zipser, E. J. (1977), Mesoscale and convective-scale downdrafts as distinct components of a squall-844 line structure. Mon. Wea. Rev., 105, 1568 - 1589, doi:10.1175/1520-
- 845 0493(1977)105<1568:MACDAD>2.0.CO:2.
- 846 Zuidema, P. (1998), The 600 – 800 mb minimum in tropical cloudiness observed during TOGA
- 847 COARE. J. Atmos. Sci., 55, 2220 - 2228, doi:10.1175/1520-
- 848 0469(1998)055<2220:TMMITC>2.0.CO;2.

- 849 Zuluaga, M. D., and R. A. Houze, Jr. (2013) Evolution of the population of precipitating convective
- 850 systems over the Equatorial Indian Ocean in Active Phases of the Madden-Julian Oscillation. J.
- 851 *Atmos Sci.*, in press, doi:10.1175/JAS-D-12-0311.1.

Figure 1. Open squares refer to the co-located IGRA radiosonde station and ISH surface weather stations used to construct the anomaly patterns. The triangles show the radiosonde arrays used to calculate the mass divergence, relative vorticity, and potential vorticity anomaly patterns. The large rectangles show the regions within which rain events were chosen to calculate the radial variation of temperature and relative humidity about high rain events.

859

Figure 2. (upper) The variation in mean rainfall during the growth and decay of the TRMM 3B42

861 2x2 high rain events within each region. (lower) The radial variation in mean rainfall about the high862 rain events.

863

Figure 3. (upper) The variation in TRMM 3B42 2x2-degree rainfall with local solar time, averaged over the radiosonde locations of each region shown in Figure 1. (lower) The diurnal variation in the number of high rain events within each 3 hour time bin, calculated from all rain events used in the construction of the temperature anomaly patterns.

868

Figure 4. The number of available soundings, at each local solar time, within 48 hours of the

rainfall events used in the construction of the temperature anomaly patterns. Different colors refer

to different regions.

872

Figure 5. (a), (b), (c), and (d) show temperature anomaly patterns about the TRMM high rain

events, calculated using IGRA radiosonde profiles from each region. (d) and (f) show temperature

anomaly patterns calculated using the COSMIC GPS temperature profiles.

Figure 6. Within each figure, the dotted line refers to an anomaly profile calculated using 1-h ISH surface data, while the solid lines refer to anomaly profiles calculated using 12-h IGRA radiosonde data. (upper row) The variation of the surface temperature anomaly during high rain events. (middle row) The variation of surface relative humidity anomaly during high rain events. (bottom row) The variation in the surface pressure anomaly during high rain events. Each column refers to a different region with from left to right: the Tropical Western Pacific, Tropical Brazil, Southeast USA, and Southeast China regions.

884

885 Figure 7. (a) The black curve of the top panel shows the diurnal variation in the surface pressure 886 anomaly, plotted against local solar time, of the surface stations within the Southeast United States 887 region shown in Figure 1 (June, July, and August). The red curve was obtained from the subset of 888 surface pressure measurements at which the local rain rate of each surface station exceeded 1.0 889 mm/h; (b) The solid black curve shows the surface pressure anomaly about high rain events 890 constructed using radiosonde measurements launched at 6 LT only. The red curve shows the surface 891 pressure anomaly about high rain constructed from radiosonde measurements at 18 LT only. The 892 black dashed line shows the combined surface pressure anomaly of the two radiosonde launch 893 times. (c) Each curve shows the surface pressure response, calculated using ISH surface station data 894 within the Southeast United States region, to TRMM rain events occurring at a particular time. For 895 each curve, the local time of the TRMM rain events is shown in the legend. The circles in the 896 middle panel indicate the local time of the rain events about which the pressure anomaly was 897 calculated. For example, the red circles of the middle panel indicate surface pressure anomalies 898 calculated from radiosondes launched at 18 LT, from rain events at 15 LT. Each red circle of the 899 middle panel corresponds to a red circle in the lower panel, which indicates the effect of rain 900 occurring events at that time on the surface pressure anomaly. In general, maxima in the curves of 901 the middle panel occur at times when the corresponding rain events have a reduced impact on 902 surface pressure, and vice versa.

904 Figure 8. The radial distribution of the temperature anomaly about high rain events in each region. 905 The horizontal axis refers to the radial distance between a radiosonde location and a TRMM high 906 rain event. The patterns were constructed from radiosonde launches within 3 h of a TRMM rain 907 event. 908 909 Figure 9. Each figure shows the effect of local high rain events on the relative humidity of the 910 background atmosphere in each region. The horizontal axis refers to time since peak rainfall. 911 912 Figure 10. The radial distribution of the relative humidity anomaly about high rain events in each 913 region. The horizontal axis refers to the radial distance between a radiosonde location and a TRMM 914 high rain event. The patterns were constructed from radiosonde launches within 3 h of a TRMM 915 rain event. 916 917 Figure 11. (upper) The variation in total column water vapor about high rain events in each region. 918 (lower) The variation in the total column water vapor anomaly. The total column water vapor is a 919 vertical sum of the water vapor between 1000 and 200 hPa, as measured by a radiosonde profile. 920 921 Figure 12. (upper) The response of boundary layer CAPE to high rain events in the Western 922 Tropical Pacific and Southeast United States regions. The horizontal axis refers to time since peak 923 rainfall. (lower) Similar to the upper panels, except showing the CAPE anomaly. 924 925 Figure 13. The effect of high rain events on the anomaly in geopotential height (GPHT) of each 926 region. The horizontal axis refers to time since peak rainfall. 927

928 Figure 14. The effect of high rain events on the mass divergence anomaly of each region. The

929 horizontal axis refers to time since peak rainfall.

930

Figure 15. The effect of high rain events on the atmospheric stability of each region. The horizontalaxis refers to time since peak rainfall.

933

Figure 16. The effect of high rain events on the relative vorticity anomaly, calculated from
radiosonde arrays in the Southeast United States and China. The horizontal axis refers to time since
peak rainfall.

937

Figure 17. (a) and (b) show the vertical evolution of Potential Vorticity (PV) about high rain events, as calculated from radiosonde arrays in the Southeast United States and China regions. The horizontal axis refers to time since peak rainfall. (c) and (d) show the potential vorticity anomaly about high rain events. The potential vorticity is expressed in potential vorticity units (PVU), where $1 \text{ PVU} = 10^{-6} \text{m}^2 \text{s}^{-1} \text{Kkg}^{-1}$.

943

Figure 18. (a) The observed temperature tendency pattern (dT/dt), calculated from the Western
Tropical Pacific temperature anomaly patterns shown in Figure 5(a). (b) The temperature tendency
pattern due to vertical advection, calculated from the vertical pressure velocity and stability
anomaly patterns. (c) The relative humidity tendency pattern (dRH/dt) calculated from the Western
Tropical Pacific relative humidity pattern shown in Figure 9(a). (d) The vertical pressure velocity
calculated from the Western Pacific divergence anomaly pattern shown in Figure 14(a).

Figure 19. (upper) The mass weighted column heating rate about rain events in the Western

952 Tropical Pacific region, calculated from the temperature anomaly patterns shown in Figure 5(a).

953 The horizontal axis refers to time since peak rainfall. (lower) The mass divergence about high rain

954 events along particular pressure surfaces, derived from the mass divergence anomaly patterns955 shown in Figure 14(a).

956

Figure 20. (a) The primary convective circulations associated with congestus, deep, and stratiform clouds. Red arrows refer to heating (descent in the background atmosphere) while blue arrows refer to cooling (ascent in the background atmosphere). (b) The induced dry circulations associated with the convective circulations of each cloud type shown in (a). Inflows and outflows at the boundary of the convecting region (radiosonde array) are indicated by horizontal arrows. (c) The direct convective circulation associated with a precipitating cloud with no downdrafts. (d) The induced dry circulation generated by the convective circulation shown in (c).

Figure 1. Open squares refer to the co-located IGRA radiosonde station and ISH surface weather stations used to construct the anomaly patterns. The triangles show the radiosonde arrays used to calculate the mass divergence, relative vorticity, and potential vorticity anomaly patterns. The large rectangles show the regions within which rain events were chosen to calculate the radial variation of temperature and relative humidity about high rain events.

Figure 2. (upper) The variation in mean rainfall during the growth and decay of the TRMM 3B42
2x2 high rain events within each region. (lower) The radial variation in mean rainfall about the high

975 rain events.

976

Figure 3. (upper) The variation in TRMM 3B42 2x2-degree rainfall with local solar time, averaged
over the radiosonde locations of each region shown in Figure 1. (lower) The diurnal variation in the
number of high rain events within each 3 hour time bin, calculated from all rain events used in the
construction of the temperature anomaly patterns.

Figure 4. The number of available soundings, at each local solar time, within 48 hours of the

rainfall events used in the construction of the temperature anomaly patterns. Different colors refer

986 to different regions.

Figure 5. (a), (b), (c), and (e) show temperature anomaly patterns about the TRMM high rain
events, calculated using IGRA radiosonde profiles from each region. (d) and (f) show temperature
anomaly patterns calculated using the COSMIC GPS temperature profiles.

Figure 6. Within each figure, the dotted line refers to an anomaly profile calculated using 1-h ISH surface data, while the solid lines refer to anomaly profiles calculated using 12-h IGRA radiosonde data. (upper row) The variation of the surface temperature anomaly during high rain events. (middle row) The variation of surface relative humidity anomaly during high rain events. (bottom row) The variation in the surface pressure anomaly during high rain events. Each column refers to a different region with from left to right: the Tropical Western Pacific, Tropical Brazil, Southeast USA, and Southeast China regions.

1003 Figure 7. (a) The black curve of the top panel shows the diurnal variation in the surface pressure 1004 anomaly, plotted against local solar time, of the surface stations within the Southeast United States 1005 region shown in Figure 1 (June, July, and August). The red curve was obtained from the subset of 1006 surface pressure measurements at which the local rain rate of each surface station exceeded 1.0 1007 mm/h; (b) The solid black curve shows the surface pressure anomaly about high rain events 1008 constructed using radiosonde measurements launched at 6 LT only. The red curve shows the surface 1009 pressure anomaly about high rain constructed from radiosonde measurements at 18 LT only. The 1010 black dashed line shows the combined surface pressure anomaly of the two radiosonde launch 1011 times. (c) Each curve shows the surface pressure response, calculated using ISH surface station data 1012 within the Southeast United States region, to TRMM rain events occurring at a particular time. For 1013 each curve, the local time of the TRMM rain events is shown in the legend. The circles in the 1014 middle panel indicate the local time of the rain events about which the pressure anomaly was 1015 calculated. For example, the red circles of the middle panel indicate surface pressure anomalies 1016 calculated from radiosondes launched at 18 LT, from rain events at 15 LT. Each red circle of the 1017 middle panel corresponds to a red circle in the lower panel, which indicates the effect of rain 1018 occurring events at that time on the surface pressure anomaly. In general, maxima in the curves of 1019 the middle panel occur at times when the corresponding rain events have a reduced impact on 1020 surface pressure, and vice versa. 1021

Figure 8. The radial distribution of the temperature anomaly about high rain events in each region.
The horizontal axis refers to the radial distance between a radiosonde location and a TRMM high
rain event. The patterns were constructed from radiosonde launches within 3 h of a TRMM rain
event.

Figure 9. Each figure shows the effect of local high rain events on the relative humidity of the
background atmosphere in each region. The horizontal axis refers to time since peak rainfall.

Figure 10. The radial distribution of the relative humidity anomaly about high rain events in each
region. The horizontal axis refers to the radial distance between a radiosonde location and a TRMM
high rain event. The patterns were constructed from radiosonde launches within 3 h of a TRMM
rain event.

Figure 11. (upper) The variation in total column water vapor about high rain events in each region.
(lower) The variation in the total column water vapor anomaly. The total column water vapor is a
vertical sum of the water vapor between 1000 and 200 hPa, as measured by a radiosonde profile.

Figure 12. (upper) The response of boundary layer CAPE to high rain events in the Western
Tropical Pacific and Southeast United States regions. The horizontal axis refers to time since peak
rainfall. (lower) Similar to the upper panels, except showing the CAPE anomaly.

1049

1050 Figure 13. The effect of high rain events on the anomaly in geopotential height (GPHT) of each

1051 region. The horizontal axis refers to time since peak rainfall.

Figure 14. The effect of high rain events on the mass divergence anomaly of each region. Thehorizontal axis refers to time since peak rainfall.

Figure 15. The effect of high rain events on the atmospheric stability of each region. The horizontalaxis refers to time since peak rainfall.

Figure 16. The effect of high rain events on the relative vorticity anomaly, calculated fromradiosonde arrays in the Southeast United States and China. The horizontal axis refers to time since

1064 peak rainfall.

1065

1066

Figure 17. (a) and (b) show the vertical evolution of Potential Vorticity (PV) about high rain events, as calculated from radiosonde arrays in the Southeast United States and China regions. The horizontal axis refers to time since peak rainfall. (c) and (d) show the potential vorticity anomaly about high rain events. The potential vorticity is expressed in potential vorticity units (PVU), where $1 \text{ PVU} = 10^{-6} \text{ m}^2 \text{s}^{-1} \text{Kkg}^{-1}$.

Figure 18. (a) The observed temperature tendency pattern (dT/dt), calculated from the Western
Tropical Pacific temperature anomaly patterns shown in Figure 5(a). (b) The temperature tendency
pattern due to vertical advection, calculated from the vertical pressure velocity and stability
anomaly patterns. (c) The relative humidity tendency pattern (dRH/dt) calculated from the Western
Tropical Pacific relative humidity pattern shown in Figure 9(a). (d) The vertical pressure velocity
calculated from the Western Pacific divergence anomaly pattern shown in Figure 14(a).

Figure 19. (upper) The mass weighted column heating rate about rain events in the Western
Tropical Pacific region, calculated from the temperature anomaly patterns shown in Figure 5(a).
The horizontal axis refers to time since peak rainfall. (lower) The mass divergence about high rain
events along particular pressure surfaces, derived from the mass divergence anomaly patterns
shown in Figure 14(a).

Figure 20. (a) The primary convective circulations associated with congestus, deep, and stratiform clouds. Red arrows refer to heating (descent in the background atmosphere) while blue arrows refer to cooling (ascent in the background atmosphere). (b) The induced dry circulations associated with the convective circulations of each cloud type shown in (a). Inflows and outflows at the boundary of the convecting region (radiosonde array) are indicated by horizontal arrows. (c) The direct convective circulation associated with a precipitating cloud with no downdrafts. (d) The induced dry circulation generated by the convective circulation shown in (c).