
Math 4020 - Solutions of Assignment 1 - Winter 2011.

1. Let w be a nonzero complex number, and n be a positive integer. Present a
complete list of n’th roots of w. Prove the following three facts about your list:

(i) Every element of your list is an n’th root of w.

(ii) Each element of your list is distinct.

(iii) Your list is complete, i.e. it contains all the n’th roots of w.

Solution: Let w be a nonzero complex number, and θ = Arg(w). Then

w = |w|(cos θ + i sin θ).

For each k ∈ {0, . . . , n− 1}, define

wk = |w|
1
n (cos(

θ + 2kπ

n
) + i sin(

θ + 2kπ

n
)).

We will prove (i), (ii) and (ii) which prove that the above list is a complete list
of n’th roots of w.

Solution of (i): For each k ∈ {0, . . . , n− 1}, we have:

wnk =

[
|w|

1
n (cos(

θ + 2kπ

n
) + i sin(

θ + 2kπ

n
))

]n
= |w|(cos(θ + 2kπ) + i sin(θ + 2kπ)) = w.

Solution of (ii): Let 0 ≤ k 6= k′ ≤ n− 1. If wk = wk′ , then

|w|
1
n (cos(

θ + 2kπ

n
) + i sin(

θ + 2kπ

n
)) = |w|

1
n (cos(

θ + 2k′π

n
) + i sin(

θ + 2k′π

n
)),

which implies that cos( θ+2kπ
n

) = cos( θ+2k′π
n

) and sin( θ+2kπ
n

) = sin( θ+2k′π
n

). Thus,

θ + 2kπ

n
=
θ + 2k′π

n
+ 2πj, for some j ∈ Z.

Therefore, k − k′ = jn. Since k, k′ ∈ {0, . . . , n− 1}, we have −(n− 1) ≤ jn ≤
n− 1. So, j has to be 0, and k = k′ which is a contradiction.



Solution of (iii): Let w′ = |w′|(cos(ψ) + i sin(ψ)) be an n’th root of w, i.e. we
have

|w|(cos(θ) + i sin(θ)) = (|w′|(cos(ψ) + i sin(ψ)))n = |w′|n(cos(nψ) + i sin(nψ)).

Therefore |w′|n = |w| and θ+ 2kπ = nψ for some k ∈ Z. Therefore, |w′| = |w| 1n
and ψ = θ+2kπ

n
.

Case 1: Let k ≥ 0. Let k = nq + r with 0 ≤ r < n. Then

w′ = |w|
1
n (cos(

θ + 2rπ

n
) + i sin(

θ + 2rπ

n
)) = wr,

which belongs to the above list.

Case 2: Let k < 0. Let q′ and 0 ≤ r′ ≤ n−1 be such that −k = nq′+ r′. Then

w′ = |w|
1
n (cos(

θ + 2(n− r′)π
n

) + i sin(
θ + 2(n− r′)π

n
)) = wn−r′ ,

which belongs to the above list.

2. Let ρ > 1, and z0, z1 ∈ C be fixed. Prove that the set of all the complex points
z that satisfy the equation

|z − z0| = ρ|z − z1|

forms a circle in the complex plane. Find the center and radius of that cycle.

Solution: Since |z − z0|2 = ρ2|z − z1|2, we have

(z − z0)(z − z0) = ρ2(z − z1)(z − z1)
⇒

zz − zz0 − z0z + z0z0 = ρ2(zz − zz1 − z1z + z1z1)

⇒
|z|2 − 2Re(zz0) + |z0|2 = ρ2(|z|2 − 2Re(zz1) + |z1|2).

Thus,
(ρ2 − 1)|z|2 + 2Re(zz0)− 2ρ2Re(zz1) + ρ2|z1|2 − |z0|2 = 0.

2



Therefore,

0 = (ρ2 − 1)|z|2 + 2Re(zz0)− 2ρ2Re(zz1) + ρ2|z1|2 − |z0|2

= (ρ2 − 1)|z|2 + 2Re(z(z0 − ρ2z1)) + ρ2|z1|2 − |z0|2

= (ρ2 − 1)

[
|z|2 + 2Re(z(

z0 − ρ2z1
ρ2 − 1

)) +
ρ2|z1|2 − |z0|2

ρ2 − 1

]
= (ρ2 − 1)

[
|z +

z0 − ρ2z1
ρ2 − 1

|2 +
ρ2|z1|2 − |z0|2

ρ2 − 1
− |z0 − ρ

2z1
ρ2 − 1

|2
]

= (ρ2 − 1)

[
|z +

z0 − ρ2z1
ρ2 − 1

|2 +
(ρ2|z1|2 − |z0|2)(ρ2 − 1)− |z0 − ρ2z1|2

(ρ2 − 1)2

]
= (ρ2 − 1)

[
|z +

z0 − ρ2z1
ρ2 − 1

|2 − ρ2|z0 − z1|2

(ρ2 − 1)2

]
.

Thus,

|z +
z0 − ρ2z1
ρ2 − 1

| = ρ|z0 − z1|
(ρ2 − 1)

,

which is the equation of a circle with center − z0−ρ2z1
ρ2−1 and radius ρ|z0−z1|

(ρ2−1) .

3. Let D be a proper subset of C. Prove that

(i) The set of boundary points of D is the same as the set of boundary points
of C \D.

(ii) D is open if and only if D has no boundary points.

(iii) D is closed if and only if it includes all its boundary points.

Solution of (i): Let z0 ∈ C. Then z0 is a boundary point of D if and only if

∀r > 0, br(z0) ∩D 6= ∅ and br(z0) ∩ (C \D) 6= ∅,

if and only if

∀r > 0, br(z0) ∩ (C \D) 6= ∅ and br(z0) ∩ (C \ (C \D)) 6= ∅,

which is equivalent to the fact that z0 is a boundary point of C \D.

Solution of (ii): (⇒) Let D ⊆ C be a proper subset of the complex plane, and
z0 ∈ D be arbitrary. Since D is open, the point z0 is an interior point of D, i.e.
there exists r > 0 such that br(z0) ⊆ D. This implies that br(z0)∩ (D \C) = ∅.
Thus z0 is not a boundary point of D.
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(⇐) Let z0 ∈ D be an arbitrary element of D. Since D has no boundary point,
there exists r > 0 such that

br(z0) ∩D = ∅ or br(z0) ∩ (C \D) = ∅.

Note that z0 ∈ Br(z0) ∩ D 6= ∅. Thus, Br(z0) ∩ (C \ D) = ∅, i.e. br(z0) ⊆ D
which implies that z0 is an interior point of D, and D is open.

Solution (iii): By part (i) we have ∂D = ∂C \ D. Then, D is closed if and
only if C \D is open, if and only if (C \D) ∩ ∂(C \D) = ∅. But,

(C \D) ∩ ∂(C \D) = (C \D) ∩ ∂D = ∅,

which means that ∂D ⊆ D.

4. Let f be a complex function whose real and imaginary components are u and
v, i.e. f(z) = u(x, y) + iv(x, y) where z = x + iy. Let z0 = x0 + iy0 and
w0 = s0 + it0 be two complex numbers. Prove that if limx→x0,y→y0 u(x, y) = s0
and limx→x0,y→y0 v(x, y) = t0 then limz→z0 f(z) = w0.

Solution: Let ε > 0 be given. Since limx→x0,y→y0 u(x, y) = s0, there exists
δ1 > 0 such that

|x− x0| < δ1 and |y − y0| < δ1 ⇒ |u(x, y)− s0| <
ε

2
.

Similarly, there exists δ2 > 0 such that

|x− x0| < δ2 and |y − y0| < δ2 ⇒ |v(x, y)− t0| <
ε

2
.

Let δ = min{δ1, δ2}. If |z − z0| < δ, then |x− x0| ≤ |z − z0| < δ and |y − y0| ≤
|z − z0| < δ for z = x+ iy. Thus,

|f(z)− f(z0)| = |u(x, y)− u(x0, y0) + i(v(x, y)− v(x0, y0))|
≤ |u(x, y)− u(x0, y0)|+ |v(x, y)− v(x0, y0)|
≤ ε,

which implies that limz→z0 f(z) = w0.
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5. Suppose that f and g are complex functions, and M and L are complex numbers
such that limz→z0 f(z) = M and limz→z0 g(z) = L. Prove that limz→z0(fg)(z) =
ML.

Solution: Let f(x + iy) = uf (x, y) + ivf (x, y) be the decomposition of f into
its real and imaginary components. Let g(x + iy) = ug(x, y) + ivg(x, y) be the
decomposition of g into its real and imaginary components. Let z0 = x0 + iy0.
Since limz→z0 f(z) = M and limz→z0 g(z) = L, we have

lim
x→x0,y→y0

uf (x, y) = Re(M),

lim
x→x0,y→y0

vf (x, y) = Im(M),

lim
x→x0,y→y0

ug(x, y) = Re(L),

lim
x→x0,y→y0

vg(x, y) = Im(L).

Therefore,

Re( lim
z→z0

f(z)g(z)) = lim
x→x0,y→y0

Re(f(z)g(z))

= lim
x→x0,y→y0

(uf (x, y)ug(x, y)− vf (x, y)vg(x, y))

= Re(M)Re(L)− Im(M)Im(L).

Similarly,

Im( lim
z→z0

f(z)g(z)) = lim
x→x0,y→y0

Im(f(z)g(z))

= lim
x→x0,y→y0

(uf (x, y)vg(x, y) + vf (x, y)ug(x, y))

= Re(M)Im(L) + Im(M)Re(L).

Therefore,

lim
z→z0

f(z)g(z) = Re( lim
z→z0

f(z)g(z)) + iIm( lim
z→z0

f(z)g(z))

= Re(M)Re(L)− Im(M)Im(L) + i(Re(M)Im(L) + Im(M)Re(L))

= ML.
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