
Math 4020 - Solutions of Assignment 2 - Winter 2012.

1. Use the ε-δ definition of continuity to prove that the function f(z) = z + z3

is continuous on C. Find the largest subset of C on which f is differentiable.
Reference any theorem that you use.

Solution: Let z0 ∈ C be arbitrary. We will show that f is continuous at z0.
First note that for z ∈ b1(z0),

|z2 + z20 + zz0| ≤ |z|2 + |z0|2 + |z||z0| ≤ (|z0|+ 1)2 + |z0|2 + |z0|(|z0|+ 1),

where we applied the triangle inequality. Let δ = min{ ε
2((|z0|+1)2+|z0|2+|z0|(|z0|+1))

, ε
2
, 1}.

Then for every z ∈ bδ(z0) we have

|f(z)− f(z0)| = |z + z3 − z0 − z30 |
≤ |z − z0|+ |z3 − z30 |
= |z − z0|+ |z − z0||z2 + z20 + zz0|
≤ δ + δ[(|z0|+ 1)2 + |z0|2 + |z0|(|z0|+ 1)]

≤ ε

2
+
ε

2
= ε.

Thus f is continuous.

As for differentiability, note that the real and imaginary components of f are

u(x, y) = x3 − 3xy2 + x and v(x, y) = 3x2y − y3 − y,

and

∂u

∂x
(x, y) = 3x2 − 3y2 + 1

∂u

∂y
(x, y) = −6xy

∂v

∂x
(x, y) = 6xy

∂v

∂y
(x, y) = 3x2 − 3y2 − 1.

If Cauchy-Riemann equations are satisfied, we should have 3x2 − 3y2 + 1 =
3x2 − 3y2 − 1, which never holds. So f is never differentiable.



2. Prove that the function f(z) = zRe(z) is differentiable only at the point z = 0,
and find f ′(0).

Solution: The real and imaginary parts of f are

u(x, y) = x2 and v(x, y) = xy.

If f is differentiable at (x, y), then by Cauchy-Riemann equations, we have

∂u

∂x
(x, y) = 2x = x =

∂v

∂y
(x, y) and

∂v

∂x
(x, y) = y = 0 = −∂u

∂y
(x, y).

Thus the Cauchy-Riemann equations are only satisfied at 0. Hence f is not
differentiable at any point of C \ {0}. Now observe that u, v and all their first
order partial derivatives with respect to x and y are continuous on C. So by
the theorem on the sufficient condition of differentiability, f is differentiable at
0, and

f ′(0) =
∂u

∂x
(0, 0) + i

∂v

∂x
(0, 0) = 0.

3. Prove that the Cauchy-Riemann equations are satisfied for the function f(x +
iy) =

√
xy at the point z0 = 0, but the derivative of f at z0 = 0 does not exist.

Explain why this does not contradict the theorem on the sufficient condition
for differentiability.

Solution: We need to show that

∂u

∂x
(0, 0) =

∂v

∂y
(0, 0) and

∂u

∂y
(0, 0) = −∂v

∂x
(0, 0).

Note that u(x, y) =
√
xy and v(x, y) = 0. Thus clearly ∂v

∂x
(0, 0) = ∂v

∂y
(0, 0) = 0.

Moreover,
∂u

∂x
(0, 0) = lim

h→0,h∈R

√
(h)(0)−

√
0

h
= 0.

Similarly, we can show that ∂u
∂y

(0, 0) = 0. Thus the Cauchy-Riemann equations
are satisfied at zero.

To check whether the derivation of f exists at 0, we compute

lim
h→0,h∈C

√
hxhy

h
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where h = hx + ihy. Note that this limit does not exist, because it takes
different values as h approaches zero on different curves (compare the limit
along the curve hx = 0 and hy → 0, and the curve hx = hy → 0.) Thus f is not
differentiable at 0.

This does not contradict the theorem on sufficient condition for differentiability,
because the partial derivatives of u with respect to x and y are not continuous
around 0.

4. Let D,Ω ⊆ C be domains. Show (with an ε − δ proof) that if f is continuous
on D, and g is continuous on Ω, and f(D) ⊆ Ω, then the composition function
g ◦ f is continuous on D as well.

Solution: Let z0 ∈ D and ε > 0 be given. Since g is continuous at f(z0),
there exists r > 0 such that |w − f(z0)| < r implies that |g(w)− g(f(z0))| < ε.
Moreover, since f is continuous at z0, there exists δ > 0 such that |z − z0| < δ
implies that |f(z)− f(z0)| < r. Putting these two together, we conclude that if
|z − z0| < δ then |g(f(z))− g(f(z0))| < ε. Therefore g ◦ f is continuous.

5. Let D,Ω ⊆ C be domains. Show that if f is analytic on D, and g is analytic
on Ω, and f(D) ⊆ Ω, then the composition function g ◦ f is analytic on D, and
the chain rule holds:

(g ◦ f)′(z) = g′(f(z))f ′(z) ∀z ∈ D.

Solution: Let z0 ∈ D be fixed, and define

φ(w) =

{
g(w)−g(f(z0))
w−f(z0) w 6= f(z0)

g′(f(z0)) w = f(z0)

Clearly φ is continuous on Ω. Observe that, if z 6= z0, we have

g(f(z))− g(f(z0))

z − z0
= φ(f(z))

f(z)− f(z0)

z − z0
.

Indeed, in the case of f(z) 6= f(z0), the above equality holds by the definition of
φ, and if f(z) = f(z0) then both sides of the equality are equal to zero. Since φ
is continuous on Ω, and f is continuous on D, by Question 2, φ◦f is continuous
on D as well, and we have

lim
z→z0

φ(f(z)) = φ(f(z0)) = g′(f(z0)).
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Thus, by taking the limit of both sides, we get

lim
z→z0

g(f(z))− g(f(z0))

z − z0
= lim

z→z0
φ(f(z))

f(z)− f(z0)

z − z0

= lim
z→z0

φ(f(z)) lim
z→z0

f(z)− f(z0)

z − z0
= g′(f(z0))f

′(z0),

which finishes the proof.
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