- 1. Compute the following integrals.
 - (i) $\int_{\gamma} \frac{e^{z^2} z^3}{z+i} dz$, where γ is a piecewise smooth simple closed curve in the upper half-plane oriented positively.
 - (ii) $\int_{\gamma} \frac{z^2 e^{z^3}}{z^2 + 1} dz$, where γ is a piecewise smooth simple closed curve oriented positively.
 - (iii) $\int_{\gamma} \frac{\overline{z}}{z^2} dz$, where γ is the circle of radius 1 centered at the origin and oriented positively.
 - (iv) $\int_{\gamma} \frac{|z|e^z}{2z-1} dz$, where γ is the circle of radius 1 centered at the origin and oriented clockwise.

Solution of (i): The function $f(z) = \frac{e^{z^2} - z^3}{z+i}$ is analytic on $\mathbb{C} \setminus \{-i\}$. Since γ and its interior both lie in D, by Cauchy-Goursat theorem,

$$\int_{\gamma} \frac{e^{z^2} - z^3}{z+i} dz = 0.$$

Solution of (ii): The function $f(z) = \frac{z^2 e^{z^3}}{z^2 + 1}$ is analytic on $\mathbb{C} \setminus \{-i, i\}$. Let Ω denote the inside of γ . Note that i and -i do not lie on γ if the integral is well-defined. We consider the following cases:

Case 1: Assume that $i, -i \notin \Omega$. Then by Cauchy-Goursat theorem, $\int_{\gamma} \frac{z^2 e^{z^3}}{z^2+1} dz = 0.$

Case 2: Assume that $-i \notin \Omega$ and $i \in \Omega$. Then by Cauchy's Integral formula,

$$\int_{\gamma} \frac{z^2 e^{z^3}}{z^2 + 1} dz = \int_{\gamma} \frac{\frac{z^2 e^{z^3}}{z + i}}{z - i} = 2\pi i \left(\frac{i^2 e^{i^3}}{2i}\right) = -\pi e^{-i}.$$

Case 3: Assume that $i \notin \Omega$ and $-i \in \Omega$. Then by Cauchy's Integral formula,

$$\int_{\gamma} \frac{z^2 e^{z^3}}{z^2 + 1} dz = \int_{\gamma} \frac{\frac{z^2 e^{z^3}}{z - i}}{z + i} = 2\pi i \left(\frac{(-i)^2 e^{(-i)^3}}{-2i}\right) = \pi e^i.$$

Case 4: Assume that $i, -i \in \Omega$. There exist $r_1 > 0$ and $r_2 > 0$ such that $\overline{b_{r_1}(i)}$ and $\overline{b_{r_2}(-i)}$ both lie in Ω . Let C_1 and C_2 denote the circles of radius r_1 and r_2

centered at i and -i respectively. Then, by a theorem in the notes, since f is analytic in between the curves,

$$\int_{\gamma} \frac{z^2 e^{z^3}}{z^2 + 1} dz = \int_{C_1} \frac{z^2 e^{z^3}}{z^2 + 1} dz + \int_{C_2} \frac{z^2 e^{z^3}}{z^2 + 1} dz = -\pi e^{-i} + \pi e^i,$$

using Cases 2 and 3.

Solution of (iii): We first parametrize γ as $\gamma : [0,1] \to \mathbb{C}, \gamma(t) = e^{2\pi i t}$. Then

$$\int_{\gamma} \frac{\overline{z}}{z^2} dz = \int_0^1 \frac{e^{-2\pi i t}}{e^{4\pi i t}} (2\pi i) e^{2\pi i t} dt = 2\pi i \left[\frac{e^{-4\pi i t}}{-4\pi i}\right]_0^1 = 0$$

Solution of (iv): First note that |z| = 1 for every z on γ . Hence by Cauchy's integral formula,

$$\int_{\gamma} \frac{|z|e^z}{2z-1} dz = \int_{\gamma} \frac{e^z}{2z-1} dz = -\int_{-\gamma} \frac{e^z}{2z-1} dz = -\frac{1}{2} \int_{-\gamma} \frac{e^z}{z-\frac{1}{2}} dz = (2\pi i)(-\frac{1}{2}e^{\frac{1}{2}}) = -\pi i e^{\frac{1}{2}},$$

where $-\gamma$ is oriented positively.

2. Let f be a function analytic on the open disc $b_1(0)$ (i.e. the open disc centered at the origin of radius 1). Prove that if $f(b_1(0)) \subseteq b_1(0)$ then $|f'(0)| \leq 1$.

Solution: Let 0 < r < 1 be arbitrary. Let γ_r denote the circle of radius r centered at the origin and oriented positively. Then f is analytic on and inside γ_r , so by generalized Cauchy's integral formula, we have

$$f'(0) = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(z)}{z^2} dz.$$

By the assumption, we know that |f(z)| < 1 for every $z \in b_1(0)$. Therefore,

$$|f'(0)| \leq \frac{1}{2\pi} \max_{z \in \gamma_r} \left| \frac{f(z)}{z^2} \right| L(\gamma_r) < \frac{1}{2\pi} \frac{1}{r^2} (2\pi r) = \frac{1}{r}.$$

Now, letting r approach 1 (from the left), we conclude that $|f'(0)| \leq 1$.

3. Let f be an entire function. Suppose that there exists an integer n > 0 such that the nth derivative of f, $f^{(n)}$, is identically zero on \mathbb{C} . Show that f must be a polynomial.

Solution: We prove the above claim by induction:

Basis of induction: Assume n = 1, i.e. f is an entire function such that f' is identically zero on \mathbb{C} . Then by a theorem in the notes, f should be a constant function, i.e. a polynomial of degree 0.

Induction hypothesis: Assume that the claim holds for n = k, i.e. if f is an entire function such that $f^{(k)}$ is identically zero then f is a polynomial of degree k-1.

Induction step: Let f be an entire function such that $f^{(k+1)}$ is identically 0. Let g = f'. Then by a theorem in the notes, g is entire as well. Moreover, $g^{(k)}$ is identically 0. Hence by the induction hypothesis g is a polynomial of degree k - 1, i.e.

$$g(z) = \lambda_{k-1} z^{k-1} + \lambda_{k-2} z^{k-2} + \ldots + \lambda_1 z + \lambda_0,$$

where $\lambda_0, \ldots, \lambda_{k-1} \in \mathbb{C}$. Define the new function $h : \mathbb{C} \to \mathbb{C}$ to be

$$h(z) = \frac{\lambda_{k-1}}{k} z^k + \frac{\lambda_{k-2}}{k-1} z^{k-1} + \dots + \frac{\lambda_1}{2} z^2 + \lambda_0 z$$

Then h is an entire function, since it is a polynomial. Moreover, (h - f)' = h' - f' = h' - g is identically 0 on \mathbb{C} . Hence $h - f = \mu$ for a constant μ in \mathbb{C} by the induction basis. Thus,

$$f(z) = \frac{\lambda_{k-1}}{k} z^k + \frac{\lambda_{k-2}}{k-1} z^{k-1} + \dots + \frac{\lambda_1}{2} z^2 + \lambda_0 z + \mu.$$

4. Let f be an entire function. Suppose that there exists n ∈ N and K > 0 such that |f(z)| < K|z|ⁿ for every z in C. Prove that f has to be a polynomial.
Solution: We will show that f⁽ⁿ⁺¹⁾ is identically zero. Let z₀ be an arbitrary element of C. Let C_r denote the circle of radius r centered at z₀ and oriented positively. By generalized Cauchy's integral formula we have:

$$f^{(n+1)}(z_0) = \frac{(n+1)!}{2\pi i} \int_{C_r} \frac{f(z)}{(z-z_0)^{n+2}} dz.$$

Hence

$$|f^{(n+1)}(z_0)| \leq \frac{(n+1)!}{2\pi} \max_{z \in C_r} \frac{|f(z)|}{|z-z_0|^{n+2}} L(C_r)$$

$$\leq r(n+1)! \max_{z \in C_r} \left(\frac{|f(z)|}{|z|^n} \frac{|z|^n}{|z-z_0|^{n+2}} \right)$$

$$\leq rK(n+1)! \max_{z \in C_r} \frac{(|z-z_0|+|z_0|)^n}{|z-z_0|^{n+2}}$$

$$\leq rK(n+1)! \frac{(r+|z_0|)^n}{r^{n+2}}.$$

Now letting r approach infinity, we get $|f^{(n+1)}(z_0)| = 0$. Since z_0 is arbitrary, we conclude that $f^{(n+1)}$ is identically zero on \mathbb{C} . Thus by Question 3, f is a polynomial of degree n.

5. Let f be an entire function (i.e. f is analytic on \mathbb{C}). Suppose that there exists a constant M > 0 such that $|f(z)| \leq M$ for every z in \mathbb{C} . Prove that f is a constant function.

Solution: This is Liouville's theorem. Let $z \in \mathbb{C}$ be fixed. Then, since f is analytic on and inside C_R for every R > 0,

$$f'(z) = \frac{1}{2\pi i} \int_{C_R} \frac{f(w)}{(w-z)^2} dz,$$

where C_R is the circle of radius R centred at z oriented positively. We have,

$$|f'(z)| \le \frac{1}{2\pi} L(C_R) \frac{1}{R^2} \max_{z \in C_R} |f(z)| \le \frac{1}{R} M,$$

which approaches to zero as R tends to infinity. Thus |f'(z)| = 0, i.e. f'(z) = 0 for every $z \in \mathbb{C}$. Now by a theorem from the notes, this implies that f is a constant function.