
Math 4020/5020 - Solution of Assignment 4 - Winter 2012.

1. Compute the following integrals.

(i)
∫
γ
ez

2−z3
z+i

dz, where γ is a piecewise smooth simple closed curve in the upper
half-plane oriented positively.

(ii)
∫
γ
z2ez

3

z2+1
dz, where γ is a piecewise smooth simple closed curve oriented

positively.

(iii)
∫
γ
z
z2
dz, where γ is the circle of radius 1 centered at the origin and oriented

positively.

(iv)
∫
γ
|z|ez
2z−1dz, where γ is the circle of radius 1 centered at the origin and

oriented clockwise.

Solution of (i): The function f(z) = ez
2−z3
z+i

is analytic on C \ {−i}. Since γ
and its interior both lie in D, by Cauchy-Goursat theorem,∫

γ

ez
2 − z3

z + i
dz = 0.

Solution of (ii): The function f(z) = z2ez
3

z2+1
is analytic on C \ {−i, i}. Let Ω

denote the inside of γ. Note that i and −i do not lie on γ if the integral is
well-defined. We consider the following cases:

Case 1: Assume that i,−i /∈ Ω. Then by Cauchy-Goursat theorem,
∫
γ
z2ez

3

z2+1
dz =

0.
Case 2: Assume that −i /∈ Ω and i ∈ Ω. Then by Cauchy’s Integral formula,

∫
γ

z2ez
3

z2 + 1
dz =

∫
γ

z2ez
3

z+i

z − i
= 2πi(

i2ei
3

2i
) = −πe−i.

Case 3: Assume that i /∈ Ω and −i ∈ Ω. Then by Cauchy’s Integral formula,

∫
γ

z2ez
3

z2 + 1
dz =

∫
γ

z2ez
3

z−i

z + i
= 2πi(

(−i)2e(−i)3

−2i
) = πei.

Case 4: Assume that i,−i ∈ Ω. There exist r1 > 0 and r2 > 0 such that br1(i)
and br2(−i) both lie in Ω. Let C1 and C2 denote the circles of radius r1 and r2



centered at i and −i respectively. Then, by a theorem in the notes, since f is
analytic in between the curves,∫

γ

z2ez
3

z2 + 1
dz =

∫
C1

z2ez
3

z2 + 1
dz +

∫
C2

z2ez
3

z2 + 1
dz = −πe−i + πei,

using Cases 2 and 3.

Solution of (iii): We first parametrize γ as γ : [0, 1]→ C, γ(t) = e2πit. Then∫
γ

z

z2
dz =

∫ 1

0

e−2πit

e4πit
(2πi)e2πitdt = 2πi[

e−4πit

−4πi
]10 = 0

Solution of (iv): First note that |z| = 1 for every z on γ. Hence by Cauchy’s
integral formula,∫
γ

|z|ez

2z − 1
dz =

∫
γ

ez

2z − 1
dz = −

∫
−γ

ez

2z − 1
dz = −1

2

∫
−γ

ez

z − 1
2

dz = (2πi)(−1

2
e

1
2 ) = −πie

1
2 ,

where −γ is oriented positively.

2. Let f be a function analytic on the open disc b1(0) (i.e. the open disc centered
at the origin of radius 1). Prove that if f(b1(0)) ⊆ b1(0) then |f ′(0)| ≤ 1.

Solution: Let 0 < r < 1 be arbitrary. Let γr denote the circle of radius r
centered at the origin and oriented positively. Then f is analytic on and inside
γr, so by generalized Cauchy’s integral formula, we have

f ′(0) =
1

2πi

∫
γr

f(z)

z2
dz.

By the assumption, we know that |f(z)| < 1 for every z ∈ b1(0). Therefore,

|f ′(0)| ≤ 1

2π
max
z∈γr

∣∣∣∣f(z)

z2

∣∣∣∣L(γr)

<
1

2π

1

r2
(2πr) =

1

r
.

Now, letting r approach 1 (from the left), we conclude that |f ′(0)| ≤ 1.

2



3. Let f be an entire function. Suppose that there exists an integer n > 0 such
that the nth derivative of f , f (n), is identically zero on C. Show that f must
be a polynomial.

Solution: We prove the above claim by induction:
Basis of induction: Assume n = 1, i.e. f is an entire function such that f ′ is
identically zero on C. Then by a theorem in the notes, f should be a constant
function, i.e. a polynomial of degree 0.
Induction hypothesis: Assume that the claim holds for n = k, i.e. if f is an
entire function such that f (k) is identically zero then f is a polynomial of degree
k − 1.
Induction step: Let f be an entire function such that f (k+1) is identically 0.
Let g = f ′. Then by a theorem in the notes, g is entire as well. Moreover, g(k)

is identically 0. Hence by the induction hypothesis g is a polynomial of degree
k − 1, i.e.

g(z) = λk−1z
k−1 + λk−2z

k−2 + . . .+ λ1z + λ0,

where λ0, . . . , λk−1 ∈ C. Define the new function h : C→ C to be

h(z) =
λk−1
k

zk +
λk−2
k − 1

zk−1 + . . .+
λ1
2
z2 + λ0z.

Then h is an entire function, since it is a polynomial. Moreover, (h − f)′ =
h′− f ′ = h′− g is identically 0 on C. Hence h− f = µ for a constant µ in C by
the induction basis. Thus,

f(z) =
λk−1
k

zk +
λk−2
k − 1

zk−1 + . . .+
λ1
2
z2 + λ0z + µ.

4. Let f be an entire function. Suppose that there exists n ∈ N and K > 0 such
that |f(z)| < K|z|n for every z in C. Prove that f has to be a polynomial.

Solution: We will show that f (n+1) is identically zero. Let z0 be an arbitrary
element of C. Let Cr denote the circle of radius r centered at z0 and oriented
positively. By generalized Cauchy’s integral formula we have:

f (n+1)(z0) =
(n+ 1)!

2πi

∫
Cr

f(z)

(z − z0)n+2
dz.
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Hence

|f (n+1)(z0)| ≤
(n+ 1)!

2π
max
z∈Cr

|f(z)|
|z − z0|n+2

L(Cr)

≤ r(n+ 1)! max
z∈Cr

(
|f(z)|
|z|n

|z|n

|z − z0|n+2

)
≤ rK(n+ 1)! max

z∈Cr

(|z − z0|+ |z0|)n

|z − z0|n+2

≤ rK(n+ 1)!
(r + |z0|)n

rn+2
.

Now letting r approach infinity, we get |f (n+1)(z0)| = 0. Since z0 is arbitrary,
we conclude that f (n+1) is identically zero on C. Thus by Question 3, f is a
polynomial of degree n.

5. Let f be an entire function (i.e. f is analytic on C). Suppose that there exists
a constant M > 0 such that |f(z)| ≤ M for every z in C. Prove that f is a
constant function.

Solution: This is Liouville’s theorem. Let z ∈ C be fixed. Then, since f is
analytic on and inside CR for every R > 0,

f ′(z) =
1

2πi

∫
CR

f(w)

(w − z)2
dz,

where CR is the circle of radius R centred at z oriented positively. We have,

|f ′(z)| ≤ 1

2π
L(CR)

1

R2
max
z∈CR

|f(z)| ≤ 1

R
M,

which approaches to zero as R tends to infinity. Thus |f ′(z)| = 0, i.e. f ′(z) = 0
for every z ∈ C. Now by a theorem from the notes, this implies that f is a
constant function.
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