
Math 4020 - Solution of Assignment 5 - Winter 2012.

1. Let
∑∞

n=0 an(z − z0)n be a power series of radius of convergence R > 0. Prove
that the power series converges uniformly on br(z0) for every r < R.
Solution: Fix r < R. We need to show that for every ε > 0, there exists N ∈ N
such that

|S(z)− Sm(z)| < ε, ∀m ≥ N and ∀z ∈ br(z0),

where Sm(z) =
∑m

n=0 an(z − z0)n and S(z) =
∑∞

n=0 an(z − z0)n.

Let ε > 0 be given. Fix z1 ∈ bR(z0) such that |z1 − z0| = r. Then the above
power series is absolutely convergent at z1, i.e.

∑∞
n=0 |an(z1−z0)n| is convergent.

Thus there exists N > 0 such that
∑∞

n=m |an(z1 − z0)n| < ε for every m ≥ N .
Now, for every z ∈ br(z0) and every m ≥ N , we have

|f(z)−
m∑
n=0

an(z − z0)n| = |
∞∑

n=m+1

an(z − z0)n| ≤
∞∑

n=m+1

|an(z − z0)n|

≤
∞∑

n=m+1

|an(z1 − z0)n| < ε.

2. “Analytic continuation is unique”. Let D1 and D2 be two domains such that
D1 ∩D2 6= ∅ is a domain as well. Suppose f is an analytic function on D1. A
function g is called an analytic continuation of f into D2 if g is analytic on D2

and f(z) = g(z) for z ∈ D1 ∩D2. Prove that for D1, D2 and f as above, there
is a unique analytic continuation.
Solution: Suppose not, i.e. assume that there are two distinct analytic func-
tions g1 and g2 on D2 such that

f(z) = g1(z) = g2(z) ∀z ∈ D1 ∩D2.

Thus, g1 − g2 is a nonzero analytic function on D2 such that (g1 − g2)(z) = 0
for every z ∈ D1 ∩ D2. But this is a contradiction with the fact that zeros of
non-constant analytic functions are isolated.

3. Find the Taylor series expansion of the following functions. In each case, find
the domain in which the expansion converges to the function.

• cos(z) := 1
2
(eiz + e−iz) about z = 0.

• sin(z) := 1
2i

(eiz − e−iz) about z = 0.



• 2z
z2+9

about z = 0.

• sin(z2) about z = 0.

• z cos(z) about z = π
2
.

Solution of Parts (i) and (ii): Note that ez =
∑∞

n=0
zn

n!
is the Taylor series

of the exponential function, valid on C. Therefore,

cos(z) =
1

2
(eiz + e−iz)

=
1

2

(
∞∑
n=0

(iz)n

n!
+
∞∑
n=0

(−iz)n

n!

)

=
1

2

∞∑
n=0

in + (−i)n

n!
zn

=
∞∑
n=0

(−1)n

(2n)!
z2n.

Similarly,

sin(z) =
1

2i
(eiz − e−iz)

=
1

2i

(
∞∑
n=0

(iz)n

n!
−
∞∑
n=0

(−iz)n

n!

)

=
1

2i

∞∑
n=0

in − (−i)n

n!
zn

=
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1.

Both of the above Taylor series are valid throughout C, because the Taylor
series of the exponential function is valid for the whole complex plane.

Solution of part (iii) Recall that 1
1−z =

∑∞
n=0 z

n, valid for all z ∈ b1(0). Thus,

2z

z2 + 9
=

2z

9

(
1

1− (− z2

9
)

)

=
2z

9

∞∑
n=0

(−z
2

9
)n

=
∞∑
n=0

2(−1)n

9n+1
z2n+1,
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valid for every z such that | z2
9
| < 1, i.e. valid for every element of b3(0).

Solution of part (iv) From Question 2, we have sin(z) =
∑∞

n=0
(−1)n
(2n+1)!

z2n+1

for every z ∈ C. Hence,

sin(z2) =
∞∑
n=0

(−1)n

(2n+ 1)!
(z2)2n+1 =

∞∑
n=0

(−1)n

(2n+ 1)!
z4n+2,

valid for all z ∈ C.

Solution of part (v) Recall that cos(z) = sin(π
2
− z) = − sin(z − π

2
). Recall

that sin(z) =
∑∞

n=0
(−1)n
(2n+1)!

z2n+1 for every z ∈ C. Hence,

z cos(z) = −(
π

2
+ (z − π

2
)) sin(z − π

2
)

= −(
π

2
+ (z − π

2
))
∞∑
n=0

(−1)n

(2n+ 1)!
(z − π

2
)2n+1

= −π
2

∞∑
n=0

(−1)n

(2n+ 1)!
(z − π

2
)2n+1 +

∞∑
n=0

(−1)n+1

(2n+ 1)!
(z − π

2
)2n+2,

valid for every z ∈ C.

4. Find the Laurent series expansion of the function f(z) = 1
z5(z+2)

about the ori-
gin in all the possible domains.

Solution: The function f is analytic on C\{0,−2}. We can define the following
two annular domains about f in which f is analytic:

D1 = {z ∈ C : 0 < |z| < 2} and D2 = {z ∈ C : 2 < |z|}.

On D1: For every z ∈ D1, we have | z
2
| < 1, and therefore 1

1−(− z
2
)

=
∑∞

n=0(−
z
2
)n.

Hence the Laurent series of f on D1 is given as

f(z) =
1

z5(z + 2)
=

1

2z5

∞∑
n=0

(−z
2

)n =
∞∑
n=0

(−1)n2−n−1zn−5, valid for z ∈ D1.

On D2: For every z ∈ D2, we have |2
z
| < 1, and therefore 1

1−(− 2
z
)

=
∑∞

n=0(−
2
z
)n.

Hence the Laurent series of f on D2 is given as

f(z) =
1

z5(z + 2)
=

1

z6

∞∑
n=0

(−2

z
)n =

∞∑
n=0

(−1)n2nz−n−6, valid for z ∈ D2.
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5. Prove that if f is analytic at z0 and f(z0) = f ′(z0) = . . . = f (k)(z0) = 0, then
the function g defined below is analytic at z0.

g(z) =

{
f(z)

(z−z0)k+1 if z 6= z0
f (k+1)(z0)
(k+1)!

if z = z0

Solution: Since f is analytic at z0, there exists r > 0 such that f is analytic
on br(z0). Thus f has a Taylor series expansion of the form

f(z) =
∞∑
n=0

an(z − z0)n,

valid on br(z0), where an = f (n)(z0)
n!

. Since f(z0) = f ′(z0) = . . . = f (k)(z0) = 0,
the smallest power of z in the Taylor series of f is k + 1, i.e.

f(z) = ak+1(z − z0)k+1 + ak+2(z − z0)k+2 + . . . .

Note that the radius of convergence of the above power series is at least r (by
Taylor’s Theorem). Define the new function h on br(z0) to be

h : br(z0)→ C, g(z) = ak+1 + ak+2(z − z0) + ak+3(z − z0)2 + . . . .

Clearly h is analytic on br(z0). Moreover, f(z) = (z − z0)
k+1h(z) for every

z ∈ br(z0), which implies that h(z) = f(z)
(z−z0)k+1 for every z ∈ br(z0) \ {z0}. In

addition, h(z0) = ak+1 by the definition of h. Thus h(z) = g(z) on br(z0), which
implies that g is analytic at z0 (since h is analytic at z0).
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