Math 4020 - Solutions of Assignment 6 - Winter 2012.

1. Let f(z +iy) = u(x,y) + iv(x,y) be an entire function. Assume that v has an
upper bound in the zy-plane (i.e. there exists M € R such that u(z,y) < M
for every (z,y) € R?). Prove that u must be constant throughout the plane.

Solution: Define the new function g : C — C, g(z) = exp(f(2)). Since f and
exp are entire functions, the function g is entire as well. Moreover, for every
z=ux+1y in C,

()| = [exp(f(2))] = [exp(u(z,y) + iv(z, y))| = [exp(u(z, y))|| exp(iv(z,y))]
= exp(u(m,y)) < eM’

since the exponential function on the real line is increasing. Now, by Liouville’s
theorem, we conclude that g is constant throughout C. Hence |g| = exp(u), and
therefore u, must be constant throughout R2.

2. Let f denote the function )  z". Determine the domain of f. Find an ana-
lytic continuation of f to the domain C\ {1}.

Solution: The radius of convergence of >~ 2™ is 1. Moreover, for any point z
such that |z| = 1, the above sum diverges, since lim,,_, |2|* = 1 # 0. Thus b;(0)
is the domain of definition of f. It is easy to see that the function h(z) = liz
is the analytic continuation of f to C\ {1}.

3. (i) Find all the roots of the equation sin z = 0 in the complex plane. Support
your answer.

(i) Let f(z) = ﬁ Find all the singularities of f, and determine whether
each singularity is an isolated singularity or not.
(iii) Let g(z) = sin(lm). Find all the singularities of g. For each singularity,

determine if it is a pole, a removable, or an essential singularity. For each
pole, find the order of the pole and the residue of f at that pole.

Hint: To determine the type of singularity at z, try to factor sin(rz) by
zZ — Z0.

(iv) Compute fv Sin‘f—fm), where 7 is a circle of radius 4.5 centered at the origin.
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Solution of (i): Let z = x + iy be a complex number. If sinz = 62’2—1‘3_ =0
then e¢* = e~%. In particular, we have e™¥ = |e le™*| = ¢¥, which implies
that y = 0 and € = e~*. Hence

cos(x) +isin(r) = e = e = cos(x) — isin(z),
which means that sin(xz) = 0. Hence z = kw +i0 = k7, k € Z, are all the zeros
of sin(z).

Solution of (ii): Using part (i), it is clear that the singularities of f are
{+ : k€ Z}U{0}. The point 0 is the only singularity which is not isolated.

Solution of (iii): Using part (i), it is clear that the singularities of g are all of
the points of Z. Let k € Z be fixed, and consider the Taylor series of sin(mz)
about k.

sin(rz) = ag + a1(z — k) +ag(z — k)2 +as(z — k)* + ...,

where ag = sin(km) = 0, a; = wcos(kr) = w(=1)%, .... Thus we get the
following factorization:

sin(rz) = (2 — k)[a; + as(z — k) +as(z — k)*> +...] valid Vz € C.

Define the new function h to be h(z) = a; + as(z — k) + as(z — k)? + .. ..
Then h is entire, since the radius of convergence of the power series defining h
is 0o (because it is the same as the radius of convergence of the power series
representation of sin which is entire). Moreover, h(k) = a; # 0. Thus

1 ()

9(2) = sin(7z) Tk

and % is analytic and nonzero at k. We now conclude that k is a pole of order

1. Moreover,
1 1 1
Res(g k) = —— = — = ———.
O 7 el e o

Solution of part (iv): By the residue theorem,

d
/ - 27mi[Rez(g,0) + Rez(g, )+ Rez(g, —7) + Rez(g, 27) + Rez(g, —27)
., sin(7z)

+ Rez(g,37) + Rez(g, —37) + Rez(g,47) + Rez(g, —4n)] = 2i,

if v is oriented positively, and f7 sin‘ﬁ 3= —24¢ if v is oriented negatively.
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4. Use the residue theorem to evaluate the following integrals:

(1) foo xsmxdl,

oo xt41
(ii) 0 m6+1d:z;

Solution of part 1: Let f(z) = 255
larities:

—7- The function f has four isolated singu-

mi 3mi 5mi i

Z1=€e4, Zg=et, z3=€e4 = —21,24=€4 = —Z29.
Let C'r be the semicircular curve in the upper half-plane from R to —R, and
Lpg denote the line segment from —R to R. Consider the curve yg = Cr + Lg.
If R > 1 then z; and 2 are the only singularities of f that lie in vz. Hence by
the residue theorem,

/ f(z)dz = 2mi[Res(f, z1) + Res(f, z2)]

zzm{ il P }
(of —23)(21 — 23) (23— 27)(22 — 2)
‘ Zleizl ZQG’ZZQ :|
= 27 | —— + .
{(2 +1)(221)  (=20)(22)
. , 2
= E[em — e = ime™ % sin(i).
2 2
We now show that fc z)dz approaches 0 as R goes to infinity. Indeed,
ReztezRe i
| . f(2)dz| = |/ pio g e
Re~ Rsint R2 T
< R———dt < (—)—=
- /0 R*—1 _(R4—1)R’

which converges to zero as R tends to infinity. Note that we used Jordan’s
Lemma in the last inequality.

Finally, let R approach infinity, and observe that

3 2 oo T 00 00 .
iﬂe\gsin(\/?_):/ ze dm:/ xcos(m)dx_i_i/ xsm(x)da:

o T+ 1 xt+1 x4+ 1

By equating the imaginary pasts of the above equality, we get

/°° xsin(z) vz V2

N x4+1dx:7re 2 sin( 5

).
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Solution of Part (ii): Let f(z) = ;&5. The function f has six isolated
singularities:

5mi Trmi Imi 117md

, B3 =e€e6  z4=€e6 zz=€6 zg=e¢€ 6 .

jus}
2

i
Z1=€6, Z9g =¢€

Let C'r be the semicircular curve in the upper half-plane from R to —R, and
Ly denote the line segment from —R to R. Consider the curve yg = Cg + Lg.
If R > 1 then 21, 29, and 23 are the only singularities of f that lie in vz. Hence
by the residue theorem,

/ f(2)dz = 2mi[Res(f, z1) + Res(f, z2) + Res(f, 23)]

2

zZ
= 2m 1
D@ D)
25 23
+ 2 2 2 2 + 2 2 2 2 ]
(2’2 - 21)(32 - 23)(222) (23 - ZQ)(ZS - 21)(223)
e I R
TN T T e T 3

We now show that fCR f(2)dz approaches 0 as R goes to infinity. Indeed,

2

[ 76| < mas (P EILCr) < (),

which converges to zero as R tends to infinity.

Finally, let R approach infinity, and observe that
T > g
- = dx
3 /_ o0+ 1

o 2
/ Gm dx = _.

o x%+1 6
. Let f be an analytic function on the open disc by(0). Assume that |f(z)] < 1
for all z € b1(0), and f(0) = 0.

hence

(i) Prove that |f/(0)] < 1.
(ii) Prove that |f(z)| < |z| for all z € b;(0).

(iii) Prove that if |f(w)| = |w| for some nonzero w € b;(0), then there exists
¢ € C such that f(z) = ez for all z € b;(0).
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Solution of Part (i): Let 0 < r < 1 be arbitrary. Let -, denote the circle of
radius r centered at the origin and oriented positively. Then f is analytic on
and inside 7,, so by generalized Cauchy’s integral formula, we have

oy L[ 10

— : >
271 - ?

dz.

By the assumption, we know that |f(z)| < 1 for every z € b;(0). Therefore,

1 f(2)
£ (0)] < 9 ax | =5 L)
11 1
< - S
- 2777’2(27W) r

Now, letting r approach 1 (from the left), we conclude that |f’'(0)] < 1.

Solution of Part (ii): Let g(z) = @ for every z € b1(0) \ {0}. Note that
2o = 0 is a removable singularity of g, since

ILm g(z) = ILm f(;) = le M = f'(0).

Let h be the analytic continuation of g to b1(0). We need to show that |h(2)| <1
for every z € b;(0) \ {0}. Let r < 1. Then by the maximum modulus principle,

max |h(z)] < max |h(z)] < max|h(z)| < max 1f(2)]
2€b-(0)\{0} 2€br(0) |2l=r = 2|

1
<=
r

Thus if r — 17, we get max.cp, (0)\{0} |2(2)] < 1.
Solution of Part (iii): First note that h(0) = lim, ,oh(z) = lim, ,0g(2) =
17(0). Hence, by Part (ii), we have |h(z)| < 1 for every z € by(0).

. (MATHS5020): Suppose that f is entire and non-constant. Show that the
closure of the range if f is the whole complex plane, i.e.

{f(z):zeC} =C.

Solution: Suppose not, i.e. suppose that there exists w € C and r > 0
such that b.(w) N {f(z) : = € C} = (). Define the complex function g to be

g(z) = m Clearly, g is analytic on C. Moreover, for every z € C,
1 1
— | <=
l9(2)] |f(z) —ls

i.e. g is bounded on the complex plane. Hence, by Liouville’s theorem, g is a
constant function, therefore f is constant, which is a contradiction.



