
Math 4020 - Solutions of Assignment 6 - Winter 2012.

1. Let f(x+ iy) = u(x, y) + iv(x, y) be an entire function. Assume that u has an
upper bound in the xy-plane (i.e. there exists M ∈ R such that u(x, y) ≤ M
for every (x, y) ∈ R2). Prove that u must be constant throughout the plane.

Solution: Define the new function g : C→ C, g(z) = exp(f(z)). Since f and
exp are entire functions, the function g is entire as well. Moreover, for every
z = x+ iy in C,

|g(z)| = | exp(f(z))| = | exp(u(x, y) + iv(x, y))| = | exp(u(x, y))|| exp(iv(x, y))|
= exp(u(x, y)) ≤ eM ,

since the exponential function on the real line is increasing. Now, by Liouville’s
theorem, we conclude that g is constant throughout C. Hence |g| = exp(u), and
therefore u, must be constant throughout R2.

2. Let f denote the function
∑∞

n=0 z
n. Determine the domain of f . Find an ana-

lytic continuation of f to the domain C \ {1}.

Solution: The radius of convergence of
∑∞

n=0 z
n is 1. Moreover, for any point z

such that |z| = 1, the above sum diverges, since limn→∞ |z|n = 1 6= 0. Thus b1(0)
is the domain of definition of f . It is easy to see that the function h(z) = 1

1−z
is the analytic continuation of f to C \ {1}.

3. (i) Find all the roots of the equation sin z = 0 in the complex plane. Support
your answer.

(ii) Let f(z) = 1
sin(π

z
)
. Find all the singularities of f , and determine whether

each singularity is an isolated singularity or not.

(iii) Let g(z) = 1
sin(πz)

. Find all the singularities of g. For each singularity,
determine if it is a pole, a removable, or an essential singularity. For each
pole, find the order of the pole and the residue of f at that pole.
Hint: To determine the type of singularity at z0, try to factor sin(πz) by
z − z0.

(iv) Compute
∫
γ

dz
sin(πz)

, where γ is a circle of radius 4.5 centered at the origin.



Solution of (i): Let z = x + iy be a complex number. If sin z = eiz−e−iz
2i

= 0
then eiz = e−iz. In particular, we have e−y = |eiz| = |e−iz| = ey, which implies
that y = 0 and eix = e−ix. Hence

cos(x) + i sin(x) = eix = e−ix = cos(x)− i sin(x),

which means that sin(x) = 0. Hence z = kπ + i0 = kπ, k ∈ Z, are all the zeros
of sin(z).

Solution of (ii): Using part (i), it is clear that the singularities of f are
{ 1
k

: k ∈ Z} ∪ {0}. The point 0 is the only singularity which is not isolated.

Solution of (iii): Using part (i), it is clear that the singularities of g are all of
the points of Z. Let k ∈ Z be fixed, and consider the Taylor series of sin(πz)
about k.

sin(πz) = a0 + a1(z − k) + a2(z − k)2 + a3(z − k)3 + . . . ,

where a0 = sin(kπ) = 0, a1 = π cos(kπ) = π(−1)k, . . . . Thus we get the
following factorization:

sin(πz) = (z − k)[a1 + a2(z − k) + a3(z − k)2 + . . .] valid ∀z ∈ C.

Define the new function h to be h(z) = a1 + a2(z − k) + a3(z − k)2 + . . ..
Then h is entire, since the radius of convergence of the power series defining h
is ∞ (because it is the same as the radius of convergence of the power series
representation of sin which is entire). Moreover, h(k) = a1 6= 0. Thus

g(z) =
1

sin(πz)
=

1
h(z)

z − k
,

and 1
h

is analytic and nonzero at k. We now conclude that k is a pole of order
1. Moreover,

Res(g, k) =
1

h(k)
=

1

a1
=

1

(−1)kπ
.

Solution of part (iv): By the residue theorem,∫
γ

dz

sin(πz)
= 2πi[Rez(g, 0) + Rez(g, π) + Rez(g,−π) + Rez(g, 2π) + Rez(g,−2π)

+ Rez(g, 3π) + Rez(g,−3π) + Rez(g, 4π) + Rez(g,−4π)] = 2i,

if γ is oriented positively, and
∫
γ

dz
sin(πz)

= −2i if γ is oriented negatively.
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4. Use the residue theorem to evaluate the following integrals:

(i)
∫∞
−∞

x sinx
x4+1

dx.

(ii)
∫∞
0

x2

x6+1
dx.

Solution of part 1: Let f(z) = zeiz

z4+1
. The function f has four isolated singu-

larities:
z1 = e

πi
4 , z2 = e

3πi
4 , z3 = e

5πi
4 = −z1, z4 = e

7πi
4 = −z2.

Let CR be the semicircular curve in the upper half-plane from R to −R, and
LR denote the line segment from −R to R. Consider the curve γR = CR + LR.
If R > 1 then z1 and z2 are the only singularities of f that lie in γR. Hence by
the residue theorem,∫

γR

f(z)dz = 2πi[Res(f, z1) + Res(f, z2)]

= 2πi

[
z1e

iz1

(z21 − z22)(z1 − z3)
+

z2e
iz2

(z22 − z21)(z2 − z4)

]
= 2πi

[
z1e

iz1

(i+ i)(2z1)
+

z2e
iz2

(−2i)(2z2)

]
=

π

2
[eiz1 − eiz2 ] = iπe−

√
2

2 sin(

√
2

2
).

We now show that
∫
CR
f(z)dz approaches 0 as R goes to infinity. Indeed,

|
∫
CR

f(z)dz| = |
∫ π

0

ReiteiRe
it

R4e4it + 1
iReitdt|

≤
∫ π

0

R
Re−R sin t

R4 − 1
dt ≤ (

R2

R4 − 1
)
π

R
,

which converges to zero as R tends to infinity. Note that we used Jordan’s
Lemma in the last inequality.

Finally, let R approach infinity, and observe that

iπe−
√
2

2 sin(

√
2

2
) =

∫ ∞
−∞

xeix

x4 + 1
dx =

∫ ∞
−∞

x cos(x)

x4 + 1
dx+ i

∫ ∞
−∞

x sin(x)

x4 + 1
dx.

By equating the imaginary pasts of the above equality, we get∫ ∞
−∞

x sin(x)

x4 + 1
dx = πe−

√
2

2 sin(

√
2

2
).
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Solution of Part (ii): Let f(z) = z2

z6+1
. The function f has six isolated

singularities:

z1 = e
πi
6 , z2 = e

πi
2 , z3 = e

5πi
6 , z4 = e

7πi
6 , z5 = e

9πi
6 , z6 = e

11πi
6 .

Let CR be the semicircular curve in the upper half-plane from R to −R, and
LR denote the line segment from −R to R. Consider the curve γR = CR + LR.
If R > 1 then z1, z2, and z3 are the only singularities of f that lie in γR. Hence
by the residue theorem,∫

γR

f(z)dz = 2πi[Res(f, z1) + Res(f, z2) + Res(f, z3)]

= 2πi[
z21

(z21 − z22)(z21 − z23)(2z1)

+
z22

(z22 − z21)(z22 − z23)(2z2)
+

z23
(z23 − z22)(z23 − z21)(2z3)

]

= 2πi[
−i
6

+
i

6
+
−i
6

] =
π

3
.

We now show that
∫
CR
f(z)dz approaches 0 as R goes to infinity. Indeed,

|
∫
CR

f(z)dz| ≤ max
z∈CR

|f(z)|L(CR) ≤ R2

R6 − 1
(πR),

which converges to zero as R tends to infinity.

Finally, let R approach infinity, and observe that

π

3
=

∫ ∞
−∞

x2

x6 + 1
dx,

hence ∫ ∞
0

x2

x6 + 1
dx =

π

6
.

5. Let f be an analytic function on the open disc b1(0). Assume that |f(z)| ≤ 1
for all z ∈ b1(0), and f(0) = 0.

(i) Prove that |f ′(0)| ≤ 1.

(ii) Prove that |f(z)| ≤ |z| for all z ∈ b1(0).

(iii) Prove that if |f(w)| = |w| for some nonzero w ∈ b1(0), then there exists
c ∈ C such that f(z) = cz for all z ∈ b1(0).
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Solution of Part (i): Let 0 < r < 1 be arbitrary. Let γr denote the circle of
radius r centered at the origin and oriented positively. Then f is analytic on
and inside γr, so by generalized Cauchy’s integral formula, we have

f ′(0) =
1

2πi

∫
γr

f(z)

z2
dz.

By the assumption, we know that |f(z)| ≤ 1 for every z ∈ b1(0). Therefore,

|f ′(0)| ≤ 1

2π
max
z∈γr

∣∣∣∣f(z)

z2

∣∣∣∣L(γr)

≤ 1

2π

1

r2
(2πr) =

1

r
.

Now, letting r approach 1 (from the left), we conclude that |f ′(0)| ≤ 1.

Solution of Part (ii): Let g(z) = f(z)
z

for every z ∈ b1(0) \ {0}. Note that
z0 = 0 is a removable singularity of g, since

lim
z→z0

g(z) = lim
z→z0

f(z)

z
= lim

z→z0

f(z)− f(0)

z
= f ′(0).

Let h be the analytic continuation of g to b1(0). We need to show that |h(z)| ≤ 1
for every z ∈ b1(0) \ {0}. Let r < 1. Then by the maximum modulus principle,

max
z∈br(0)\{0}

|h(z)| ≤ max
z∈br(0)

|h(z)| ≤ max
|z|=r
|h(z)| ≤ max

|z|=r

|f(z)|
|z|

≤ 1

r
.

Thus if r → 1−, we get maxz∈b1(0)\{0} |h(z)| ≤ 1.

Solution of Part (iii): First note that h(0) = limz→0 h(z) = limz→0 g(z) =
f ′(0). Hence, by Part (ii), we have |h(z)| ≤ 1 for every z ∈ b1(0).

6. (MATH5020): Suppose that f is entire and non-constant. Show that the
closure of the range if f is the whole complex plane, i.e.

{f(z) : z ∈ C} = C.

Solution: Suppose not, i.e. suppose that there exists w ∈ C and r > 0
such that br(w) ∩ {f(z) : z ∈ C} = ∅. Define the complex function g to be
g(z) = 1

f(z)−w . Clearly, g is analytic on C. Moreover, for every z ∈ C,

|g(z)| = | 1

f(z)− w
| ≤ 1

r
,

i.e. g is bounded on the complex plane. Hence, by Liouville’s theorem, g is a
constant function, therefore f is constant, which is a contradiction.
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