Inferences about proportions: the binomial distribution

Readings: Ch 22
Review: Ch 17, 19, 20, 21

- So far we have talked about continuous variables, which can be modeled using a density function.
- The t distributions was used to make inferences about one or more means.
- In many cases the data consists of counts.
- When there are only two possible outcomes and the interest is in the number of times one of these outcome occurs, the binomial distribution is the appropriate model.
- Suppose there are n independent trials, and call the two possible outcomes "success" and "failure", denoted S and F .
- Assume that the probability of success $P(S)=p$, is the same for each trial, and let X be the number of successes in the n trials.
- Then the binomial probability function is

$$
p(x)=\binom{n}{x} p^{x}(1-p)^{(n-x)}
$$

- The term $p^{x}(1-p)^{(n-x)}$ is the probability of x successes and $n-x$ failures in any particular order.
- The binomial coefficient $\binom{n}{x}$ is the number of possible orders.
- This distribution has mean $\mu=n p$ and variance $\sigma^{2}=n p(1-p)$.
- If both $n p$ and $n(1-p)$ are greater than 10 , the binomial can be approximated by the normal distribution with the same mean and variance.
- The figure shows the good agreement for $n=25$ and $p=.5$

Testing for a single population proportion

- Inferences about p are based on the observed proportion $\hat{p}=X / n$, which has an approximate normal distribution with mean p and variance $\sigma^{2}=p(1-p) / n$.
- Using the normal approximation, a $(1-\alpha) 100 \%$ confidence interval for p is given by

$$
\hat{p} \pm z_{\alpha / 2} \sqrt{\hat{p}(1-\hat{p}) / n}
$$

where $z_{\alpha / 2}$ is the value of the standard normal which has probability $\alpha / 2$ to the right.

- To test $H_{0}: p=p_{0}$ we use the test statistic

$$
Z=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}=\frac{X-n p_{0}}{\sqrt{n p_{0}\left(1-p_{0}\right)}}
$$

- The alternative hypothesis can be one-sided or two-sided, and this will affect the way the P value is calculated.
- Note that the null value for p, p_{0}, is used in the denominator of the test statistic because in testing we use the distribution of the test statistic when the null hypothesis is true.

Comparing two proportions

- We are often interested in comparing two binomial probabilities.

Example: To test the effectiveness of a new pain-relieving drug, 80 patients at a clinic were given a pill containing a drug and 80 others were given a placebo. In the first group, 56 of the patients showed improvement. In the second group, 38 of the patients showed improvement. How effective is the drug compared to the placebo?

Group	n	X	\hat{p}
Drug	80	56	.70
Placebo	80	38	.475

1. construct a confidence interval for $p_{1}-p_{2}$
2. test the hypothesis $H_{0}: p_{1}=p_{2}$, or $p_{1}-p_{2}=0$

- We require confidence intervals and tests for $p_{1}-p_{2}$, the difference in two proportions.
- We assume independent random samples from two populations.
- The following notation is used

Population		Sample		
no.	probability	size	count	proportion
1	p_{1}	n_{1}	X_{1}	$\hat{p}_{1}=X_{1} / n_{1}$
2	p_{2}	n_{2}	X_{2}	$\hat{p}_{2}=X_{2} / n_{2}$

- The difference between the sample proportions

$$
\hat{p}_{1}-\hat{p}_{2}
$$

is the natural estimate of $p_{1}-p_{2}$.

- The variance of $\hat{p}_{1}-\hat{p}_{2}$ is

$$
\sigma_{\hat{p}_{1}-\hat{p}_{2}}^{2}=\sigma_{\hat{p}_{1}}^{2}+\sigma_{\hat{p}_{2}}^{2}
$$

or

$$
\sigma_{\hat{p}_{1}-\hat{p}_{2}}^{2}=\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}} .
$$

- $\hat{p}_{1}-\hat{p}_{2}$ is approximately normally distributed if n_{1} and n_{2} are large and p_{1} and p_{2} are not too close to 0 or 1 .
- For a confidence interval, substitute observed proportions in the standard error

$$
S E\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}} .
$$

- The confidence interval is

$$
\hat{p}_{1}-\hat{p}_{2} \pm z_{\alpha / 2} S E\left(\hat{p}_{1}-\hat{p}_{2}\right)
$$

or

$$
\hat{p}_{1}-\hat{p}_{2} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}} .
$$

Example: Pain clinic. Recall the data

Group	n	X	\hat{p}
Drug	80	56	.70
Placebo	80	38	.475

- The estimates are $\hat{p}_{1}=56 / 80=.7$ and $\hat{p}_{2}=38 / 80=0.475$.
- The standard error for confidence intervals is

$$
S E\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{.7(1-.7)}{80}+\frac{.475(1-.475)}{80}}=.0758
$$

- The approximate 90% confidence interval for $p_{1}-p_{2}$ is

$$
.7-.475 \pm 1.645(.0758)
$$

or

$$
.225 \pm .1247
$$

or

$$
(.1003, .3497) .
$$

- This corresponds to a two-sided test at the $\alpha=.10$ level. Since the $90 \% \mathrm{Cl}$ does not contain 0 , so p-value <0.1.
- We can also estimate the 95% or 99% confidence interval for $p_{1}-p_{2}$, which correspond to $\alpha=0.05$ and $\alpha=.01$ levels, respectively, for a two-sided test.
- For instance, for a 99% confidence interval:

$$
.7-.475 \pm 2.576(.0758)
$$

or

$$
.225 \pm .1953
$$

or
(.0297, .4203).

- Since the $99 \% \mathrm{Cl}$ still does not contain 0 , so p-value <0.01.

Hypothesis test for two proportions

- The test for

$$
H_{0}: p_{1}=p_{2} \quad\left(p_{1}-p_{2}=0\right)
$$

versus

$$
H_{a}: p_{1}>p_{2}, \quad H_{a}: p_{1}<p_{2}
$$

or

$$
H_{a}: p_{1} \neq p_{2} \quad\left(p_{1}-p_{2} \neq 0\right)
$$

uses the test statistic

$$
Z=\frac{\hat{p}_{1}-\hat{p}_{2}}{S E_{p}\left(\hat{p}_{1}-\hat{p}_{2}\right)} .
$$

- The standard error in the denominator is calculated using the pooled estimate of the population proportion p

$$
\hat{p}_{p}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}
$$

- This is appropriate because the proportions are assumed equal under H_{0}.
- Assuming that $p_{1}=p_{2}=p$

$$
\sigma_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{p(1-p)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)},
$$

so the standard error for testing is

$$
S E_{p}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\hat{p}_{p}\left(1-\hat{p}_{p}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} .
$$

- The normal approximation is used to calculate P-values
- The number of successes and failures in each group should be at least 5 .
- The test statistic is

$$
Z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}_{p}\left(1-\hat{p}_{p}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

Example: The drug minoxidil has been approved for the treatment of male pattern baldness. A clinical trial was carried out, in which some patients were given the drug, and others were given an identical looking placebo. The treatment group had $n_{1}=310$ subjects, of whom 99 demonstrated new hair growth. The control group had $n_{2}=309$ subjects and 62 of them had new hair growth. Does this study suggest that minoxidil is effective in promoting new hair growth?

- The hypotheses are $H_{0}: p_{1}=p_{2}$ versus $H_{a}: p_{1}>p_{2}$.
- The pooled estimate is

$$
\hat{p_{p}}=\frac{99+62}{310+309}=.2601 .
$$

- The estimated standard error of the difference is

$$
\begin{aligned}
& S E_{p}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\hat{p_{p}}\left(1-\hat{p_{p}}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\
& \quad=\sqrt{.2601(1-.2601)\left(\frac{1}{310}+\frac{1}{309}\right)} \\
& \quad=\sqrt{.1924(0.0065)} \\
& \quad=.0353
\end{aligned}
$$

- The test statistic is

$$
Z=\frac{99 / 310-62 / 309}{.0353}=3.3662 .
$$

- The P value is $P(Z>3.3662)=.0004$ using the computer.
- Using the standard normal tables we find the value 3.3 in the left column, and go across the row to the column labelled .07 .
- There we find the probability .9996.
- We subtract this from 1 to get $P=.0004$.
- We therefore have very strong evidence against the null hypothesis of no difference due to the drug.
- The drug effect is statistically significant using $\alpha=.05$ and with $\alpha=.01$.

Paired binary samples

McNemar's test is appropriate in the case of paired binary data.

You will not be responsible for McNemar's test.

- In some sitiuations samples are not independent, and the methods described above cannot be used.
- Pairing arises with matched controls, siblings, and repeated trials on the same subjects, for example.

Example: A study was carried out to determine whether marijuana users had the same difficulty sleeping as matched controls, with the following results:

	Marijuana group			
	+	-	Total	
Control	+	4	9	13
group	-	3	16	19
Total	7	25	32	

- Note that there are 64 subjects in 32 pairs in this study.
- Each pair appears once in the table, so for example there were 3 pairs where the marijuana user slept well but the matched control did not.
- The hypotheses are the same as before

$$
H_{0}: p_{1}=p_{2} \quad\left(p_{1}-p_{2}=0\right)
$$

versus

$$
H_{a}: p_{1}>p_{2}, \quad H_{a}: p_{1}<p_{2}
$$

or

$$
H_{a}: p_{1} \neq p_{2} \quad\left(p_{1}-p_{2} \neq 0\right)
$$

- The analysis uses only the data for pairs which give a different result.
- These are the off-diagonal entries in the table. (3 and 9 in the example)
- If there is no difference in the probability of "Success" in the two groups, the two off-diagonal entries should be close together.
- Denote the table entries as follows

		Group 1		
		S	F	Total
Group	S	a	b	a+b
2	F	c	d	$\mathrm{c}+\mathrm{d}$
Total		$a+c$	b+d	N

- The test amounts to a test of $H_{0}: p=.5$ versus $H_{a}: p \neq .5$ (or a one-sided alternative) for the $n=b+c$ trials with response $X=b$.
- From page 2 of these notes, the test statistic is

$$
\begin{aligned}
Z & =\frac{b-n / 2}{\sqrt{n / 4}}=\frac{2 b-n}{\sqrt{n}} \\
& =\frac{b-c}{\sqrt{b+c}}
\end{aligned}
$$

- The P value is calculated from the standard normal tables.
- In the literature, one often sees the squared statistic

$$
X^{2}=\frac{(b-c)^{2}}{b+c}
$$

which is compared to a chi-squared $\left(\chi^{2}\right)$ distribution with 1 degree of freedom.

- This version is not as good for one-sided alternatives.
- To use the normal or χ^{2} distributions here, one should have $b+c>10$. Example: Marijuana
- Here $Z=(9-3) / \sqrt{12}=1.73$.
- Using the normal table, we find the row 1.7 and column .03, which gives probability . 9582 .
- This is the probability to the left of 1.73 .
- We subtract from 1 to get the right tail probability, and multiply by 2 because we are using a two-sided alternative, to get $P=2(1-.9582)=.0836$.
- We conclude there is only weak evidence against the null hypothesis of no difference between sleeping difficulty in the marijuana and matched control groups.
- If we used the squared statistic $X^{2}=3.000$, we compare to the first row of the χ^{2} tables.
- Our value is greater than 2.706 and less than 3.841 , so we find $.05<P<.10$.
- The P value is not as precisely determined, but the conclusion is the same.
- Our results are statistically significant at the $\alpha=.10$ level but not at the $\alpha=.05$ level.

