Probability

Readings: Ch 14, 15 DVB

What is probability?

- A number between 0 and 1 assigned to events
- Event: an event is a set of outcomes of an experiment to which a probability is assigned. It is the result of an observation or experiment, or the description of some potential outcome.
- Long run relative frequency interpretation.

$$P(A) = \frac{number \ of \ outcomes \ in \ A}{number \ of \ possible \ outcomes}$$

- Example: A = female baby

$$P(A) = \frac{no. \ female \ babies}{no. \ babies}$$

Operations on events and probability

• Complement, A^c or \overline{A} , the event that A does not occur.

- Example: $A^c = male \ baby$

- Union, $A \cup B$, either A or B or both occur.
 - Example: $B = healthy \ baby$, $A \cup B = baby \ is \ female \ or \ healthy \ or \ both$
- Intersection, $A \cap B$, both A and B occur.

- Example: $A \cap B = baby$ is female and healthy

- Sample space, S, union of all events, must occur, P(S) = 1.
- Null event, ϕ , can't occur, $P(\phi) = 0$.
- A and B are mutually exclusive or disjoint if they can't both occur, ie if A ∩ B = φ.

- Example: A = pill is red, B = pill is green

• A and B are *independent* if occurrence of one doesn't affect the probability of the other.

- Example: $A = first \ baby \ is \ female$, $B = second \ baby \ is \ male$

Additive Rule

• If A and B are mutually exclusive (or disjoint),

$$P(A \cup B) = P(A) + P(B).$$

 Example: A box contains 3 pills, one is red (R), one is green (G) and one is white (W). If you choose one pill *at random*, then the probability it is either red or green is

$$P(R \cup G) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}.$$

• Otherwise

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

- Example: If you choose two pills *at random* from the same box, then there are 3 possible outcomes, all equally likely, S = RG, RW, GW, so $P(RG) = \frac{1}{3}$, $P(R) = \frac{2}{3} = P(G)$, and

$$P(R \cup G) = \frac{2}{3} + \frac{2}{3} - \frac{1}{3} = \frac{3}{3} = 1.$$

• Because A and \bar{A} are mutually exclusive and $A \cup \bar{A} = S$, $P(\bar{A}) = 1 - P(A)$.

- Sometimes it is much easier to calculate $P(\overline{A})$ than P(A).

Conditional Probability

• The conditional probability of B given A is

$$P(B|A) = \frac{P(A \cap B)}{P(A)}.$$

- Example: Choosing two from the box with one red one green and one white pill

$$P(R|G) = \frac{P(R \cap G)}{P(G)} = \frac{1}{3}/\frac{2}{3} = \frac{1}{2}.$$

Independence

- A and B are *independent* if and only if P(B|A) = P(B) or, equivalently, if P(A|B) = P(A).
 - Example: When choosing two from the box, the events R and G are not independent, because $P(R|G) = \frac{1}{2}$ is not the same as $P(R) = \frac{2}{3}$.

Multiplicative Rule

• In general,

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B).$$

• If A and B are independent, then

$$P(A \cap B) = P(A)P(B)$$

Example: Consider the following table of probabilities:

			Cured		
		Yes		No	Total
	Yes	.1		.1	.2
Side Effects					
	No	.6		.2	.8
	Total	.7		.3	1.0

- Let A be the event that a patient has side effects, and B be the event that they are cured.
- Then $A \cup B$ is the event that a patient has side effects or is cured or both.
- $A \cap B$ is the event that a patient has side effects and is cured.
- A and B are not mutually exclusive because it is possible they have side effects and be cured (A ∩ B ≠ φ).
- From the table we can conclude
 - 1. P(A) = .2, P(B) = .7
 - 2. $P(A \cap B) = .1$, A and B are not mutually exclusive.
 - **3**. $P(A \cup B) = .1 + .1 + .6 = .8$
 - 4. $P(no \ side \ effects \ or \ cured) =$
 - 5. $P(A \cap B) = .1$, but $P(A)P(B) = .2 \times .7 = .14$ so A and B are not independent.
 - 6. $P(A|B) = P(A \cap B)/P(B) = .1/.7 = .14$ (which is < P(A))
 - 7. $P(B|A) = P(A \cap B)/P(A) = .1/.2 = .5$ (which is < P(B))

Diagnostic Testing

- D^+ is event subject has disease, $P(D^+)$ is **prevalence**
- D^- is event subject does not have disease, $P(D^-) = 1 P(D^+)$
- T^+ is event subject has positive test result
- $P(T^+|D^+)$ is the *test* sensitivity
- $\bullet~T^-$ is event subject has negative test result
- $P(T^{-}|D^{-})$ is the *test* specificity

Q: What is the probability of a positive test result?

$$P(T^+) = P(T^+|D^+)P(D^+) + P(T^+|D^-)P(D^-)$$

- This is an application of the *law of total probability*.
- Q: What is the probability someone with a positive test result has the disease?

$$P(D^+|T^+) = \frac{P(D^+ \cap T^+)}{P(T^+)} = \frac{P(T^+|D^+)P(D^+)}{P(T^+)}$$

- This is the *predictive value* of a positive test or *positive predictive value* of the test.
- This is an application of Bayes Rule.

Q. What is the probability someone with a negative test result does not have the disease?

$$P(D^{-}|T^{-}) = \frac{P(D^{-} \cap T^{-})}{P(T^{-})} = \frac{P(T^{-}|D^{-})P(D^{-})}{P(T^{-})}$$

• This is the *negative predictive value* of the test.

Bayes' theorem: For two events A and B,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^{-})P(A^{-})}$$

Example: The Pap smear is used as a test for cervical cancer. Studies have shown that the probability of a false negative is .1625, and that the probability of a false positive is .1864. The prevalence of cervical cancer is .000083.

From the statement P(D+) = .000083, P(T + |D-) = .1864, P(T - |D+) = .1625.

1. What is the sensitivity?

P(false negative) = P(T - |D+) = .1625sensitivity=P(T + |D+) = 1 - P(T - |D+) = 1 - .1625.

2. What is the specificity?

P(false positive) = P(T + |D-) = .1864

specificity = P(T - |D-) = 1 - P(T + |D-) = 1 - .1864

- 3. What is the probability of testing positive? P(T+) = P(T+|D+)P(D+) + P(T+|D-)P(D-) =(1 - .1625) * .000083 + .1864 * (1 - .000083)
- 4. What is the **positive predictive value**? using Bayes' theorem, ppv = P(D + |T+) = P(T + |D+)P(D+)/P(T+)

all pieces on right hand side have already been calculated, or are given.

5. What is the negative predictive value?

using Bayes' theorem, npv = P(D - |T-) = P(T - |D-)P(D-)/P(T-)all three terms on right hand side have been calculated, are given, or are easy to find. for example P(T-) = 1 - P(T+).

(answers on next page show some additional calculations)

- $P(T^{-}|D^{+}) = .1625$ (probability of false negative [test negative given diseased] GIVEN)
- $P(T^+|D^+) = 1 .1625 = 0.8375$ (sensitivity)
- $P(T^+|D^-) = .1864$ (probability of false positive [test positive given non-diseased] GIVEN)
- $P(T^{-}|D^{-}) = 1 P(T^{+}|D^{-}) = 0.8136$ (specificity)
- $P(D^+) = .000083$ (prevalence [probability diseased] GIVEN)
- $P(D^{-}) = 1 P(D^{+}) = 0.999917$ (probability non-diseased)
- $P(T^+ \cap D^+) = P(T^+|D^+)P(D^+) = (1 .1625) * .000083 = 6.95125e 05$ (prob. test positive and diseased)
- $P(T^+ \cap D^-) = .1864 * (1 .000083) = 0.1863845$ (prob. test positive and non-diseased)
- $P(T^- \cap D^+) = .1625 * .000083 = 1.34875e 05$ (prob. test negative and diseased)
- $P(T^- \cap D^-) = (1 .1864) * .999917 = 0.8135325$ (prob. test negative and non-diseased)
- $P(T^+) = P(T^+ \cap D^-) + P(T^+ \cap D^+) = 0.1864540$ (probability of positive test)
- $P(T^{-}) = 1 P(T^{+}) = 0.813546$ (probability of negative test)
- $ppv = P(T^+ \cap D^+)/P(T^+) = 0.0003728131$ (positive predictive value = prob. diseased given test positive)
- $npv = P(T^- \cap D^-)/P(T^-) = 0.9999834$ (negative predictive value = prob. non-diseased given test negative)

The following figure uses a **tree diagram** to show the performance of the Pap smear as a diagnostic test for cervical cancer.

(from Pagano & Gauvreau: Principles of Biostatistics, 2nd edition, page 138)