Probability

Readings: Ch 14, 15 DVB

What is probability?

- A number between 0 and 1 assigned to events
- Event: an event is a set of outcomes of an experiment to which a probability is assigned. It is the result of an observation or experiment, or the description of some potential outcome.
- Long run relative frequency interpretation.

$$
P(A)=\frac{\text { number of outcomes in } A}{\text { number of possible outcomes }}
$$

- Example: $A=$ female baby

$$
P(A)=\frac{\text { no. female babies }}{\text { no. babies }}
$$

Operations on events and probability

- Complement, A^{c} or \bar{A}, the event that A does not occur.
- Example: $A^{c}=$ male baby
- Union, $A \cup B$, either A or B or both occur.
- Example: $B=$ healthy baby, $A \cup B=$ baby is female or healthy or both
- Intersection, $A \cap B$, both A and B occur.
- Example: $A \cap B=$ baby is female and healthy
- Sample space, S, union of all events, must occur, $P(S)=1$.
- Null event, ϕ, can't occur, $P(\phi)=0$.
- A and B are mutually exclusive or disjoint if they can't both occur, ie if $A \cap B=\phi$.
- Example: $A=$ pill is red, $B=$ pill is green
- A and B are independent if occurrence of one doesn't affect the probability of the other.
- Example: $A=$ first baby is female, $B=$ second baby is male

Additive Rule

- If A and B are mutually exclusive (or disjoint),

$$
P(A \cup B)=P(A)+P(B)
$$

- Example: A box contains 3 pills, one is red (R), one is green (G) and one is white (W). If you choose one pill at random, then the probability it is either red or green is

$$
P(R \cup G)=\frac{1}{3}+\frac{1}{3}=\frac{2}{3} .
$$

- Otherwise

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) .
$$

- Example: If you choose two pills at random from the same box, then there are 3 possible outcomes, all equally likely, $S=R G, R W, G W$, so

$$
\begin{aligned}
& P(R G)=\frac{1}{3}, P(R)=\frac{2}{3}=P(G) \text {, and } \\
& \qquad P(R \cup G)=\frac{2}{3}+\frac{2}{3}-\frac{1}{3}=\frac{3}{3}=1 .
\end{aligned}
$$

- Because A and \bar{A} are mutually exclusive and $A \cup \bar{A}=S, P(\bar{A})=1-P(A)$.
- Sometimes it is much easier to calculate $P(\bar{A})$ than $P(A)$.

Conditional Probability

- The conditional probability of B given A is

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)} .
$$

- Example: Choosing two from the box with one red one green and one white pill

$$
P(R \mid G)=\frac{P(R \cap G)}{P(G)}=\frac{1}{3} / \frac{2}{3}=\frac{1}{2} .
$$

Independence

- A and B are independent if and only if $P(B \mid A)=P(B)$ or, equivalently, if $P(A \mid B)=P(A)$.
- Example: When choosing two from the box, the events R and G are not independent, because $P(R \mid G)=\frac{1}{2}$ is not the same as $P(R)=\frac{2}{3}$.

Multiplicative Rule

- In general,

$$
P(A \cap B)=P(A) P(B \mid A)=P(B) P(A \mid B)
$$

- If A and B are independent, then

$$
P(A \cap B)=P(A) P(B)
$$

Example: Consider the following table of probabilities:

		Cured		
		Yes	No	Total
Side Effects	Yes	.1	.1	.2
	No	.6	.2	.8
	Total	.7	.3	1.0

- Let A be the event that a patient has side effects, and B be the event that they are cured.
- Then $A \cup B$ is the event that a patient has side effects or is cured or both.
- $A \cap B$ is the event that a patient has side effects and is cured.
- A and B are not mutually exclusive because it is possible they have side effects and be cured $(A \cap B \neq \phi)$.
- From the table we can conclude

1. $P(A)=.2, P(B)=.7$
2. $P(A \cap B)=.1, A$ and B are not mutually exclusive.
3. $P(A \cup B)=.1+.1+.6=.8$
4. $P($ no side effects or cured $)=$
5. $P(A \cap B)=.1$, but $P(A) P(B)=.2 \times .7=.14$ so A and B are not independent.
6. $P(A \mid B)=P(A \cap B) / P(B)=.1 / .7=.14$ (which is $<P(A))$
7. $P(B \mid A)=P(A \cap B) / P(A)=.1 / .2=.5$ (which is $<P(B))$

Diagnostic Testing

- D^{+}is event subject has disease, $P\left(D^{+}\right)$is prevalence
- D^{-}is event subject does not have disease, $P\left(D^{-}\right)=1-P\left(D^{+}\right)$
- T^{+}is event subject has positive test result
- $P\left(T^{+} \mid D^{+}\right)$is the test sensitivity
- T^{-}is event subject has negative test result
- $P\left(T^{-} \mid D^{-}\right)$is the test specificity

Q: What is the probability of a positive test result?

$$
P\left(T^{+}\right)=P\left(T^{+} \mid D^{+}\right) P\left(D^{+}\right)+P\left(T^{+} \mid D^{-}\right) P\left(D^{-}\right)
$$

- This is an application of the law of total probability.

Q: What is the probability someone with a positive test result has the disease?

$$
P\left(D^{+} \mid T^{+}\right)=\frac{P\left(D^{+} \cap T^{+}\right)}{P\left(T^{+}\right)}=\frac{P\left(T^{+} \mid D^{+}\right) P\left(D^{+}\right)}{P\left(T^{+}\right)}
$$

- This is the predictive value of a positive test or positive predictive value of the test.
- This is an application of Bayes Rule.
Q. What is the probability someone with a negative test result does not have the disease?

$$
P\left(D^{-} \mid T^{-}\right)=\frac{P\left(D^{-} \cap T^{-}\right)}{P\left(T^{-}\right)}=\frac{P\left(T^{-} \mid D^{-}\right) P\left(D^{-}\right)}{P\left(T^{-}\right)}
$$

- This is the negative predictive value of the test.

Bayes' theorem: For two events A and B,

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{-}\right) P\left(A^{-}\right)}
$$

Example: The Pap smear is used as a test for cervical cancer. Studies have shown that the probability of a false negative is .1625 , and that the probability of a false positive is .1864 . The prevalence of cervical cancer is .000083 .

From the statement $P(D+)=.000083, P(T+\mid D-)=.1864$, $P(T-\mid D+)=.1625$.

1. What is the sensitivity?
$\mathrm{P}($ false negative $)=P(T-\mid D+)=.1625$
sensitivity $=P(T+\mid D+)=1-P(T-\mid D+)=1-.1625$.
2. What is the specificity?
$\mathrm{P}($ false positive $)=P(T+\mid D-)=.1864$
specificity $=P(T-\mid D-)=1-P(T+\mid D-)=1-.1864$
3. What is the probability of testing positive?
$P(T+)=P(T+\mid D+) P(D+)+P(T+\mid D-) P(D-)=$
$(1-.1625) * .000083+.1864 *(1-.000083)$
4. What is the positive predictive value? using Bayes' theorem,
$p p v=P(D+\mid T+)=P(T+\mid D+) P(D+) / P(T+)$
all pieces on right hand side have already been calculated, or are given.
5. What is the negative predictive value?
using Bayes' theorem, npv $=P(D-\mid T-)=P(T-\mid D-) P(D-) / P(T-)$
all three terms on right hand side have been calculated, are given, or are easy to find. for example $P(T-)=1-P(T+)$.
(answers on next page show some additional calculations)

- $P\left(T^{-} \mid D^{+}\right)=.1625$ (probability of false negative [test negative given diseased] GIVEN)
- $P\left(T^{+} \mid D^{+}\right)=1-.1625=0.8375$ (sensitivity)
- $P\left(T^{+} \mid D^{-}\right)=.1864$ (probability of false positive [test positive given non-diseased] GIVEN)
- $P\left(T^{-} \mid D^{-}\right)=1-P\left(T^{+} \mid D^{-}\right)=0.8136$ (specificity)
- $P\left(D^{+}\right)=.000083$ (prevalence [probability diseased] GIVEN)
- $P\left(D^{-}\right)=1-P\left(D^{+}\right)=0.999917$ (probability non-diseased)
- $P\left(T^{+} \cap D^{+}\right)=P\left(T^{+} \mid D^{+}\right) P\left(D^{+}\right)=(1-.1625) * .000083=6.95125 e-05$ (prob. test positive and diseased)
- $P\left(T^{+} \cap D^{-}\right)=.1864 *(1-.000083)=0.1863845$ (prob. test positive and non-diseased)
- $P\left(T^{-} \cap D^{+}\right)=.1625 * .000083=1.34875 e-05$ (prob. test negative and diseased)
- $P\left(T^{-} \cap D^{-}\right)=(1-.1864) * .999917=0.8135325$ (prob. test negative and non-diseased)
- $P\left(T^{+}\right)=P\left(T^{+} \cap D^{-}\right)+P\left(T^{+} \cap D^{+}\right)=0.1864540$ (probability of positive test)
- $P\left(T^{-}\right)=1-P\left(T^{+}\right)=0.813546$ (probability of negative test)
- $p p v=P\left(T^{+} \cap D^{+}\right) / P\left(T^{+}\right)=0.0003728131$ (positive predictive value $=$ prob. diseased given test positive)
- $n p v=P\left(T^{-} \cap D^{-}\right) / P\left(T^{-}\right)=0.9999834$ (negative predictive value $=$ prob. non-diseased given test negative)

The following figure uses a tree diagram to show the performance of the Pap smear as a diagnostic test for cervical cancer.

Observed Test Results
(from Pagano \& Gauvreau: Principles of Biostatistics, 2nd edition, page 138)

