
Correlation and Simple Linear Regression

Readings: DVB Ch. 7-9, 27

Scatterplot

• Each pair of values is shown as a dot.

• Distance along each axis represents magnitude.

• Reveals nature of association between two continuous random

variables.
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Example: Carbon monoxide levels were measured in the lung and the 10

subjects were asked how many cigarettes they smoked per day (Selvin, pg.

54)

cigs 12 30 40 12 2 5 20 30 75 40
CO 2 11 14 16 18 18 18 22 23 26

• The plot shows a weak positive association, large CO values tend to

occur with large numbers of cigarettes.

• The dashed lines are at the average number of cigarettes and average

CO.

•

•

•

•

• • •

•
•

•

CO vs no. of cigarettes

number

C
O

0 20 40 60

5
10

15
20

25

• If all the values fell in the bottom left or top right quadrants, the

association would be stronger.
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Pearson Correlation Coefficient

• Denote the data (xi, yi), i = 1, . . . , n, then the Pearson correlation

coefficient is

r =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

∑
(yi − ȳ)2

or

r =
1

n− 1

∑ (xi − x̄)

sx

(yi − ȳ)

sy
.

• r measures the direction and strength of the linear association

between the two variables.

• It is a dimensionless quantity.

• It has value 1 (-1) if all values on a line with positive (negative) slope.

• It has value 0 if there is no linear association (there may still be a

nonlinear association).

• Remember that association does not imply causality!!

• We shouldn’t extrapolate relationship beyond range of the data.

• This measure is sensitive to outliers.

• For calculation, use

r =
SXY√

SXX × SY Y
where

SXY =
∑

(xi − x̄)(yi − ȳ)

or

SXY =
∑
xiyi − (

∑
xi

∑
yi)/n

SXX =
∑
x2i − (

∑
xi)

2/n

and

SY Y =
∑
y2i − (

∑
yi)

2/n.
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• In the example, with x =number of cigarettes, y = CO, we get

∑
xiyi = 5017,

∑
xi = 266,

∑
x2i = 11342,

∑
yi = 168,

∑
y2i = 3238,

so

SXY = 5017− 266(168)/10 = 548.2

SXX = 11342− 2662/10 = 4266.4

and

SY Y = 3238− 1682/10 = 415.6,

so

r =
548.2√

4266.4(415.6)
= .41
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• Some examples:
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r =  0.79

Notes

1. The bottom left example has strong (nonlinear) association, but small

r.

2. The bottom right shows reversal of sign due to outlier.
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Material on this page concerns test hypotheses regarding the
population correlation coefficient ρ. You are not responsible for
this material, as one needs some mathematically fairly
sophisticated ideas to define the population correlation
coefficient. We will see below that testing that the population
correlation is 0 is equivalent to testing that the slope of a
regression line equals 0, which is a more understandable way of
phrasing the problem.

• If our data are a random sample from a population with true

correlation ρ, then r is an estimate of ρ with standard error

se(r̂) =

√√√√√1− r2
n− 2

.

• We can test H0 : ρ = 0 vs Ha : ρ 6= 0 using

t =
r − 0

se(r̂)
=

√
n− 2 r√
1− r2

which has a t distribution with n− 2 degrees of freedom if the

population is (bivariate) normal.

• In the example,

t =
√

10− 2(.41)/
√

1− .412 = 1.28

which gives P = .24 (using the computer), so there is no evidence

that the population correlation is different from 0.
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Spearman’s (Rank) Correlation Coefficient

• Rank the x’s and y’s separately.

• Calculate Pearson’s correlation coefficient on the ranks.

• In the example, the ranks are as follows (where fractions represent

mid ranks)

cigs 3.5 6.5 8.5 3.5 1 2 5 6.5 10 8.5
CO 1 2 3 4 6 6 6 8 9 10

• rS = .35.

• Or we can calculate the difference di between the two ranks for each

subject

cigs 3.5 6.5 8.5 3.5 1 2 5 6.5 10 8.5
CO 1 2 3 4 6 6 6 8 9 10
di 2.5 4.5 5.5 -.5 -5 -4 -1 -1.5 1 -1.5

• Then rS can be calculated as:

rs = 1− 6
∑
d2i

n(n2 − 1)

• This gives rs = .37.

• We often get an answer similar to the Pearson correlation coefficient.

• The Spearman correlation is less sensitive to outliers than the

Pearson correlation.

• For n ≥ 10 we can test as before.

• Spearman’s measure can be used with ordinal data.

• Spearman’s correlation measures monotone (possibly nonlinear)

association.

• Ranking turns a curved monotone relationship into a linear one.
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Conc = 0 + 0.00460*t -0.00004*t^2
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Simple Linear Regression

• Simple linear regression is used to find the best straight line fit to the

data.

• The result can be used to describe the association, and to predict

values.

• We must identify a response variable, y, and an explanatory variable,

x.

• Statistical Model

The observed value yi includes an additive deviation, εi

yi = α + βxi + εi.

• Data: (x1, y1), (x2, y2), . . . , (xn, yn)

• Assumptions: we assume that the deviations ε1, ε2, . . . , εn are

independent N(0, σ2). That is, they are independent and have normal

distributions with a common mean 0, and common variance σ2.

• Another way to write the model is

yi = µyi|xi + εi

where µyi|xi = α+ βxi is the mean of y when the predictor variable x

is equal to xi.

• To find the best line, we minimize the sum of squares of the vertical

deviations between the observed and fitted response values at each

value of the explanatory variable.

• This is called the method of least squares.
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• Recall that the equation of a line is

y = a + bx

where a is the y − intercept and b is the slope.

• The method of least squares chooses the intercept and slope to

minimize the error sum of squares

SSE =
∑

(yi − ŷi)2 =
∑

(yi − α− βxi)2

The minimizing values are denoted as α̂ and β̂.
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Example: We would think of CO levels as a response to the number of

cigarettes smoked per day.
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• The solid line is the least squares fit

ŷ = 13.38 + .1285x, SSE = 345.16

• The other lines are

ŷ = 10 + .25x, SSE = 408.375

and

ŷ = 15 + .17x, SSE = 426.604.
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Calculations of the slope and intercept

• The least squares estimates of the slope and intercept can be written

as

β̂ =
SXY

SXX
= r

sy
sx

α̂ = ȳ − β̂x̄.

• The slope quantifies the average change in y that corresponds to

each one-unit increase in x.

• The intercept, often labeled as the constant in software output, is the

expected mean value of y when x = 0.

• If x never equals 0, then the intercept has no intrinsic meaning.

Assessing the Fit

• We can summarize the fit using an analysis of variance table.

Source Sum of Squares Degrees of Freedom Mean Square
Regression 70.44 1 70.44
Residual 345.16 8 43.15
Total 415.60 9

• The Total sum of squares, SST, is the sample variance without the

division by n− 1

SST =
∑

(yi − ȳ)2.

• The Regression sum of squares, SSR, is obtained by subtraction

SSR = SST − SSE.

• The total degrees of freedom is n− 1.

• The regression degrees of freedom is 1.

• The residual degrees of freedom is the difference, n− 2.
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The coefficient of determination

R2 =
SSR

SST

is the proportion of variation in y which is explained by x.

– R2 is between 0 and 1.

– R2 = 1 implies a perfect fit

(SSE = 0), all the points are on the line.

– R2 = 0 implies no linear relationship, the best fitting line has zero

slope (SSE = SST).

– R2 = r2, i.e. the coefficient of determination is the square of

Pearson’s correlation coefficient between x and y.

• In the example R2 = 70.44/415.60 = .169 so 17% of the variation in

CO levels can be attributed to variation in numbers of cigarettes

smoked.

13



Hypothesis test for the slope

• Usually we first wish to test whether there is a significant relationship

between the variables.

• The hypotheses are H0 : β = 0 versus Ha : β 6= 0

• The test statistic is

t =
β̂ − 0

ŝe(β̂)
.

• This has a t distribution with n− 2 degrees of freedom, if

assumptions satisfied.

• The standard error of the slope estimate, β̂, is

se(β̂) =
σ√
SXX

.

• where we estimate σ by

s =

√√√√√SSE
n− 2

=
√
MSE.

and se(β̂) by

ŝe(β̂) =
s√
SXX

.

• Note: this is equivalent to testing H0 : ρ = 0 vs Ha : ρ 6= 0.
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Confidence Intervals

• We can construct a confidence interval for β, using

β̂ ± tα/2,n−2ŝe(β̂).
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• We typically do the calculations on a computer.

• eg. minitab output for the CO/cigarette data follows

MTB > set c1

DATA> 12 30 40 12 2 5 20 30 75 40

DATA> set c2

DATA> 2 11 14 16 18 18 18 22 23 26

DATA> regress c2 1 c1

The regression equation is

C2 = 13.4 + 0.128 C1

Predictor Coef Stdev t-ratio p

Constant 13.382 3.387 3.95 0.004

C1 0.1285 0.1006 1.28 0.237 *this is the test for

association, Stdev is

s/sqrt(SXX)

s = 6.568 R-sq = 16.9% * s = sqrt(MSE) and estimates sigma

* R^2 is the coefficient of determination

and equals SSR/SST

Analysis of Variance

SOURCE DF SS MS F p

Regression 1 70.44 70.44 1.63 0.237

Error 8 345.16 43.15

Total 9 415.60

Unusual Observations *you can ignore this part

Obs. C1 C2 Fit Stdev.Fit Residual St.Resid

1 12.0 2.00 14.92 2.54 -12.92 -2.13R

9 75.0 23.00 23.02 5.29 -0.02 -0.00 X

R denotes an obs. with a large st. resid.

X denotes an obs. whose X value gives it large influence.

• In this example the test for the relationship between amount of

smoking and CO is not significant (t = 1.28, P = .237).
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Example: (Daniel) Habib and Lutchen present a diagnositic technique

that is of interest to repiratory disorder specialists. The following are the

scores elicited by this technique, called AMDN, and the forced expiratory

volume (FEV1) scores for 22 subjects.

AMDN FEV1
1.36 102
1.42 92
1.41 111
1.44 94
1.47 99
1.39 98
1.47 99
1.79 80
1.71 87
1.44 100
1.63 86
1.68 102
1.75 81
1.95 51
1.64 78
2.22 52
1.85 43
2.24 59
2.51 30
2.20 61
2.20 29
1.97 86

A plot of the data shows a strong negative association.
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Some data summaries are n = 22,
∑
xi = 38.74,

∑
yi = 1720,∑

xiyi = 2875.01,
∑
x2i = 70.6468,

∑
y2i = 147138.

• From these we can calculate

x̄ =
∑
xi/n = 1.76, ȳ = 1720/22 = 78.18,

SXX =
∑
x2i − (

∑
xi)

2/n

= 70.6468− (38.74)2/22 = 2.4292,

SXY =
∑
xiyi −

∑
xi

∑
yi/n

= 2875.01− 38.74(1720)/22

= −153.7536

and

SY Y =
∑
y2i − (

∑
yi)

2/n

= 147138− 17202/22

= 12665.27
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• Pearson’s correlation coefficient is

r =
SXY√

SXX × SY Y
=

−153.7536√
2.4292(12665.27)

= −.8766

• The least squares estimate of slope is

β̂ =
SXY

SXX
=
−153.7536

2.4292
= −63.3.

• The intercept estimate is

α̂ = ȳ − β̂x̄ = 78.18 + 63.3(1.76) = 189.6

• Some computer output follows from the R package

> summary(resp.out)

Call:

lm(formula = resp.y ~ resp.x)

Residuals:

Min 1Q Median 3Q Max

-29.543 -4.285 1.817 5.112 21.052

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 189.638 13.925 13.619 1.41e-11 ***

resp.x -63.294 7.771 -8.145 8.81e-08 *** #this is the test for

association

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.11 on 20 degrees of freedom *this is s=sqrt(MSE)

Multiple R-squared: 0.7684,

F-statistic: 66.35 on 1 and 20 DF, p-value: 8.814e-08

> anova(resp.out)

Analysis of Variance Table *unlike MINITAB, this program doesn’t give

the SST

Response: resp.y

Df Sum Sq Mean Sq F value Pr(>F)

resp.x 1 9731.7 9731.7 66.348 8.814e-08 ***

Residuals 20 2933.5 146.7

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

19



Residual Plots - used to check assumptions for linear regression

• Assumptions: Residuals are independent and have normal

distributions with a common mean 0, and common variance σ2.

• A plot of the residuals εi = yi − ŷi versus x or εi versus ŷi, the fitted

or predicted values of the response variables, should show random

scatter.

• Curvature indicates a more complicated model is required, such as a

quadratic y = a + bx + cx2 + ε.

• A ‘fanning out’ of residuals indicates the variance changes with the

mean or with x.

• Outliers in the x or y variable could show up.
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• These residuals show no problems in the randomness of the residuals.

Subjects 17, 21 and 22 have the largest absolute values of the

residuals.

• Another often used residual plot is the quantile-quantile (Q-Q) plot.

The following figure shows the normality of the residuals is somewhat

violated especially for those subjects having large absolute residual

values.
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Note: you are not responsible for this page.

The confidence interval for µy|x, the mean of y when the predictor

variable equals x, is

α̂ + β̂x± tα/2,n−2ŝe(µy|x).

where

ŝe(µy|x) = s

√√√√√1

n
+

(x− x̄)2

SXX
A prediction interval for a new y at x is

α̂ + β̂x± tn−2α/2 ŝe(ŷnew)

where

ŝe(ŷnew) = s

√√√√√1 +
1

n
+

(x− x̄)2

SXX

Because ŝe(ŷnew) is larger than ŝe(µy|x), the prediction interval for a new

y at x is wider than the confidence interval for µy|x.
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