Pharm 3011 - Fall 2019 - Assignment 3 Solutions

out of 40 points

1. A logistic regression of "toxemia" ($1=\mathrm{yes}, 0=\mathrm{no})$ on mother's age was carried out. Where p_{x} denotes the probability of toxemia given a mother of age x, the model fit was

$$
\log \left(\frac{p_{x}}{1-p_{x}}\right)=\alpha+\beta x
$$

leading to the following partial computer output.

Logistic Regression Table

Predictor	Coef	SE Coef	Z
Intercept	-16.0	4.0	
mother's age	0.8	0.4	

(a) What is the estimated \log odds of toxemia for a mother of age 25 years?

$$
\begin{equation*}
-16+.8(25)=4 \tag{1}
\end{equation*}
$$

(b) What is the estimated log odds of toxemia for a mother of age 30 years?
$-16+.8(30)=8$
(c) What is the odds ratio for a 30 year old mother, as compared to a 25 year old mother? the estimated log odds ratio for a 30 year old mother compared to a 25 year old mother $8-4=4$
the estimated odds ratio for a 30 year old compared to a 25 year old mother is $e^{4} \approx 54.6$. (deduct 1 point if the reciprocal of the odds ratio is calculated [ie $e^{-4} \approx .018$], or if base 10 logarithms were used)
(d) To test the hypothesis $H_{0}: \beta=0$ against the alternative $H_{0}: \beta \neq 0$, what is the observed value of the test statistic?
The test statistic is $Z=\frac{\hat{\beta}}{\hat{s . e} .(\hat{\beta})}$, which in this case is $.8 / .4=2$
(e) Construct a 90% confidence interval for β.

In general, the confidence interval is
$\hat{\beta} \pm Z_{.05} \widehat{\text { s.e. }}(\hat{\beta})$, which in this case, is
$.8 \pm 1.645(.4)$, or $.8 \pm .658$, or approximately (.142, 1.458) (full marks for anything which rounds to (.14,1.46). Deduct 1 point for each error).
(f) Construct a 90% confidence interval for the log odds ratio,

$$
\begin{equation*}
\log \left(\frac{p_{26}}{1-p_{26}} \frac{1-p_{25}}{p_{25}}\right) \tag{2}
\end{equation*}
$$

β_{1} is equal to $\log \left(\frac{p_{26}}{1-p_{26}} \frac{1-p_{25}}{p_{25}}\right)$, so the confidence interval for this log odds ratio is identical to the confidence interval for β_{1}. Give 2 points for reporting the same interval as in part (e).
(g) Transform the CI from part f to get a 90% confidence interval for the odds ratio

$$
\frac{p_{26}}{1-p_{26}} \frac{1-p_{25}}{p_{25}}
$$

The CI for the odds ratio has endpoints which are calculated by exponentiating the endpoints of the CI for the log odds ratio. (Give 2 points for exponentiating the endpoints of the interval in part e or part f. Deduct 1 point if log to base 10 is used). Based on my answer to part (e), the CI is $\left(e^{.142}, e^{1.458}\right)$, or approximately $(1.15,4.30)$.
(h) Based on the CI calculated in part g , would you reject the null hypothesis in part d when testing at level .10? Why?
Yes. From part (g), we would reject the hypothesis that the odds ratio is 1 when testing at level .1, because the 90% CI for the odds ratio does not contain 1. But the odds ratio equals 1 if and only if $\beta=0$, so we would reject the hypothesis that $\beta=0$ at level . 10 . (1 point for answering yes, 2 points for some similar explanation).
2. A second study estimated the \log odds of toxemia for a 25 year old mother as -3 . For this second study, what is the estimated probability of toxemia for that mother.

$$
\begin{gather*}
\log \left(\frac{p}{1-p}\right)=-3 \rightarrow \frac{p}{1-p}=e^{-} 3 \approx .0498 \\
\frac{p}{1-p}=.0498 \rightarrow p=\frac{.0498}{1+.0498} \approx .047 \tag{3}
\end{gather*}
$$

(3 marks for something which rounds to .05 . Deduct 1 point for each mistake in the arithmetic, or for using \log base 10)
3. A study was carried out to compare two population means, μ_{1} and μ_{2}. A 95% confidence interval for $\mu_{1}-\mu_{2}$ was calculated as ($-8.5,12.9$), and a 90% confidence interval was calculated as $(-6.9,10.7)$.
(a) When carrying out an equivalence test of $H_{0}:\left|\mu_{1}-\mu_{2}\right| \geq 15$ vs. $H_{A}:\left|\mu_{1}-\mu_{2}\right|<15$ at level .05 , would you reject the null hypothesis? Why?
Yes, because the 95% CI for $\mu_{1}-\mu_{2}$ is contained in $(-15,15)$
(b) Assuming that a large value of the mean is a favourable outcome, when carrying out a non-inferiority test of $H_{0}: \mu_{1} \leq \mu_{2}-15$, vs. $H_{A}: \mu_{1}>\mu_{2}-15$ at level .05 , would you conclude that treatment 1 (which gave mean μ_{1}) is noninferior to treatment 2 (which gave mean μ_{2}). Why?
Yes, because the lower end of the 90% confidence interval for $\mu_{1}-\mu_{2}$ is GREATER THAN - 15
(3 points for correct Y / N answer, and 4 points for some similar reasoning, including reference to the 90% CI. deduct 3 points if the 95% CI was used, which is incorrect.)
(c) Assuming that a large value of the mean is a favourable outcome, when carrying out a superiority test of $H_{0}: \mu_{1} \leq \mu_{2}+15$, vs. $H_{A}: \mu_{1}>\mu_{2}+15$ at level .05 , , would you conclude that treatment 1 (which gave mean μ_{1}) is superior to treatment 2 (which gave mean μ_{2}). Why?
No, because the lower end of the 90% confidence interval for $\mu_{1}-\mu_{2}$ is SMALLER THAN 15
(3 points for correct Y / N answer, and 4 points for some similar reasoning, including reference to the 90% CI. deduct 3 points if the 95% CI was used, which is incorrect.)

