Pharm 3011 - Fall 2019 - Assignment 1 Due Thursday, September 26, at beginning of class

1. An analysis of variance is to be carried out comparing the mean forced expiratory volume in patients with coronary artery disease. Patients were sampled at each of three centres, leading to the following summary data:

location	i	sample size	sample mean	sample variance
		n_i	$\bar{x}_{i.}$	s_i^2
Johns Hopkins	1	10	2.7	.25
Rancho Los Amigos	2	10	3.0	.30
St. Louis	3	5	2.9	.25

Using these summary statistics:

- (a) Calculate the grand mean of the samples $\bar{x}_{..}$.
- (b) Calculate the treatment sum of squares SS_{Tr} .
- (c) Calculate the error sum of squares SSE.
- 2. Fill in the blanks in the following analysis of variance table. Evaluate the p-value as accurately as possible using the F tables provided on the course website. (For example .01 < p-value < .05)

Source	\mathbf{SS}	df	MS	F	p-value
Treatment		4			
Error	180				
Total	500	20			

3. A remotivation team in a psychiatric hospital conducted an experiment to compare five methods for remotivating patients. Patients were grouped according to level of initial motivation (IM). Patients in each group were randomly assigned to the five methods (METH). At the end of the experimental period the patients were evaluated by a team composed of a psychiatrist, a psychologist, a nurse, and a social worker, none of whom was aware of the method to which patients had been assigned. The team assigned each patient a composite score as a measure of his or her level of motivation. The results were as follows:

Level of						
initial	Remotivation method					
motivation	А	В	\mathbf{C}	D	Ε	
Nil	68	68	60	68	64	
Very low	62	70	65	80	69	
Low	67	78	68	81	70	
Average	70	81	70	89	74	

A partial ANOVA table is shown below:

Source	DF	\mathbf{SS}	MS
IM	3	346.2	
METH		525.8	
Error	12	137.8	11.483
Total			

Assess whether there is an effect of initial motivation (IM)

(a) State the hypotheses.

- (b) What is the mean square for initial motivation?
- (c) Calculate the test statistic, and state the degrees of freedom.
- (d) Put bounds on the P value.
- (e) Give a conclusion at level $\alpha = .01$.

4. The following table gives data for a two factor experiment with two replications.

		FACTOR B				
		1	2	3		
FACTOR A	1	3.1, 4.0	4.6, 4.2	6.4,7.1		
	2	5.9, 5.3	2.9, 2.2	3.3, 2.5		

(a) A partial ANOVA table is given below. FILL IN THE MISSING ENTRIES.

Source	DF	\mathbf{SS}	MS	F
А		4.44		
В		4.13		
INTERACTION	2	18.00	9.00	36
ERROR	6		.25	
TOTAL		28.05		

(b) **Test for interaction.**

- i. State the null and alternative hypotheses.
- ii. What is the observed value of the test statistic?
- iii. What are the numerator and denominator degrees of freedom?
- iv. Bound the p-value as accurately as possible
- v. What is your conclusion when testing at level .01?
- (c) Based on your conclusion when testing for interaction, does it make sense to test for the main effects of factors A and B? Why?