Pharm 3011 - Fall 2019 - Assignment 2 Due Thursday, October 17, at beginning of class.

1. Following is a partial computer output for a regression of body length of newborn on gestational age, birthweight, mom's age and toxemia. There were 85 observations in the data set.

Let y denote body length in cm, x_1 denote gestational age in weeks, x_2 denote birthweight in grams, x_3 denote mom's age in years and x_4 denote presence $(x_4 = 1)$ or absence $(x_4 = 0)$ of toxemia. The regression equation, formally, is

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \epsilon$$

where the errors ϵ are assumed to be normal with mean 0 and standard deviation σ .

The regression equation is

length = 1.8 + 0.36 gestage + 0.01 birthwt -0.03 momage - 1.00 toxemia

Predictor	Coef	SE Coef	Т
Constant	1.80	3.0	0.6
gestage	0.36	0.12	3.0
birthwt	0.01	0.001	10.0
momage	-0.03	0.03	-1.0
toxemia	-1.00	4.00	-0.25

Analysis of Variance

Source	DF	SS	MS	F	Р
Regression	4	900	225.0	75.0	0.000
Residual Error	80	240	3.0		
Total	84	1140			

The error sum of squares is given, SSE=240.

- (a) What is the predicted body length of a baby of gestational age of 33 weeks and birthweight 1250 grams, whose mother is 37 years of age and was NOT toxemic?
- (b) All other things being equal what is the mean difference in body length of a baby of a toxemic mother, as compared to a non-toxemic mother?
- (c) What is the estimate of σ , the standard deviation of the errors in the regression model?
- (d) Of the four predictor variables, which is the least useful for predicting body length, given that the other three are already included in the regression model? Why?
- (e) What proportion of the variation in body length is explained by the linear relationship of length with the four predictor variables?
- (f) What is the least squares estimate of β_3 ?
- (g) Construct a 90% confidence interval for β_3 . Note that $t_{.05,80} = 1.664$.

2. There were n=24 observations from a similar study at a different hospital. The following is a partial computer output using those data, and carrying out a regression of body length y on gestational age (x_1) , toxemia (x_2) , and the interaction between toxemia and gestational age $(x_1 \times x_2)$. Here if $x_2 = 1$ the pregnancy was toxemic, and if $x_2 = 0$ it was non-toxemic.

Formally, the regression equation is

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon$$

The estimated regression equation is

length = 2.0 + 1.0 gestage - 3.0 toxemia - 0.5 gestage*toxemia

Predictor	Coef	SE Coef	Т
Constant	2.0		2.0
gestage	1.0		10.0
toxemia	-3.0		-2.0
interaction	-0.5	0.25	

- (a) What is the difference in predicted body length for two babies of gestational age x_1 , where one of the mothers was toxemic, and the other was not? (Note: the answer should be a formula (a function of x_1), and not a number.)
- (b) In testing for the effect of toxemia $H_0: \beta_2 = 0$, against the two sided alternative, the observed value of the test statistic is -2.0.
 - i. What are the degrees of freedom for this test?
 - ii. Bound the p-value as closely as possible.
- (c) What is the observed value of the test statistic used to test for the significance of the interaction?

3. In the meta-analysis of prophylactic lidocaine as a treatment for acute myocardial infarction, suppose we focus on the probability of death in the control group. The data are

Study	randomized	dead				
i	n_i	x_i	\hat{p}_i	s_i^2	W_i	$\frac{W_i \hat{p}_i}{\sum W_i}$
1.	43	1	.023	.0005	1893	.0026
2.	44	4	\hat{p}_2	s_2^2	W_2	.0028
3.	110	4	.036	.0003	3140	.0067
4.	100	5	.050	.0005	2105	.0062
5.	106	3	.028	.0003	3854	.0064
6.	146	4	.027	.0002	5479	.0088
Total	549	21			17003	

where $\hat{p}_i = \frac{x_i}{n_i}$, $s_i^2 = \frac{\hat{p}_i(1-\hat{p}_i)}{n_i}$, and $W_i = 1/s_i^2$.

- (a) Calculate a 95% confidence interval for the probability p of death for patient in the control group, using only the data from the first study. (ie $\hat{p}_1 \pm z_{\alpha/2} \sqrt{\hat{p}_1(1-\hat{p}_1)/n_1}$)
- (b) What is the value of \hat{p}_2 ?
- (c) What is the value of s_2^2 ?
- (d) What is the value of W_2 ?
- (e) Carry out a meta analysis to construct a 95% CI for the probability p of death for patient in the control group.