For final exam, I will bring the statistical tables we have used in class.

Possible topics covered:

- 1. One way ANOVA
 - hypotheses and assumptions
 - construction of ANOVA table sums of squares, degrees of freedom, additivity relationships for sums of squares and degrees of freedom; mean squares
 - observed test statistic (F_{obs}) and *p*-value
- 2. Two way ANOVA
 - hypotheses and assumptions
 - construction of ANOVA table degrees of freedom, additivity relationships for SS and df
 - what is interaction? test for interaction first, then decide if need to test for main effects.
- 3. Multiple regression
 - multiple regression model, assumptions.

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + e$$

- interpreting the estimated model e.g. predicting the mean; the β coefficient of an explanatory variable x is the change in the dependent variable y for a unit increase in this x while holding all other explanatory variables constant.
- hypothesis tests for individual coefficients (t test). to test the hypothesis $H_0: \beta_j = 0$ against the two sided alternative, calculate the observed value of the test statistic

$$t = \frac{\hat{\beta}_j}{s.e.(\hat{\beta}_j)}$$

- the *p*-value is $2P(t_{n-1-q} > |t_{obs}|)$.
- the degrees of freedom are n 1 q and q is the number of the explanatory variables in the model.
- confidence intervals for individual coefficients. A $100(1-\alpha)\%$ CI for β_j is $\hat{\beta}_j \pm t_{\alpha/2,n-1-q}s.e.(\hat{\beta}_j)$
- overall F test. what is really being tested?
- coefficient of determination (R^2) . what is it; how is it calculated.
- 4. Logistic regression
 - logistic regression model:

$$\log\left(\frac{p}{1-p}\right) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots$$

• interpreting coefficients. β is log odds ratio associated with a unit increase in x. how to recover probability p from log odds.

- confidence intervals and tests for β .
- manipulating to get from β to odds ratio.
- 5. Survival analysis
 - survivor function S(t)
 - Kaplan-Meier (product limit) estimate
 - Cochran-Mantel-Haenszel (log rank) test for equality of two survivor functions: hypothesis tested, calculation of test statistic.
 - Cox proportional hazards model:

$$h(t) = h_0(t)e^{b_1x_1 + b_2x_2 + b_3x_3 + \dots}$$

where $h_0(t)$ is the baseline hazard, x_1, x_2, x_3, \dots are covariates.

- hazard, hazard ratio, interpretation of coefficients.
- 6. Meta analysis
 - fixed effects model only. calculation of weighted estimate, with associated confidence interval.

$$\hat{\theta} = \frac{\sum W_i Y_i}{\sum W_i}$$

where $W_i = 1/s_i^2$, with s_i^2 the sample variance from the *i*'th study. The variance of θ is $1/\sum_i W_i$. The confidence interval for the weighted estimate is

$$\hat{\theta} \pm Z_{\alpha/2} \sqrt{1/\sum_i W_i}$$

- 7. Equivalence, non-inferiority, superiority tests
 - hypotheses
 - test using confidence intervals (remember to double confidence level for non-inferiority and superiority tests)