Survival Analysis - part 1

- Often the response of interest in a study is the length of time, T, until an event occurs.
- This could be the time from birth until death, the time from transplant surgery until the new organ fails, the time until progression from one stage of a disease to another, or length of remission from disease, etc.
- When death is the event, T is called the survival time, and this is the name used for T in other situations as well.
- The survival function $S(t)$ gives the probability of survival beyond a given time, i.e.

$$
S(t)=P(T>t)
$$

- This probability decreases from one at $T=0$ to zero when $T=\infty$.

Example

Time of remission (weeks) of leukemia patients, treated with 6-mercaptopurine (sample 1), and placebo (sample 2) (Freireich et al, Blood, 1963)

Sample 1	(6)	6	6	6	7	(9)	(10)
	10	(11)	13	16	(17)	(19)	(20)
	22	23	(25)	(32)	(32)	(34)	(35)
sample 2	1	1	2	2	3	4	4
	5	5	8	8	8	8	11
	11	12	12	15	17	22	23

- A feature of survival data is that there are often censored values, typically denoted by bracketed values or with the + symbol. For example, the first time, (6) in Sample 1, is censored, indicating that the survival time for that individual is at least 6 weeks. It might have been denoted $6+$.
- Subjects may be censored because they are lost to observation, because they move away, quit the trial, die from other causes, or have not died before the end of a study.
- In this example, we would like to determine whether a treatment prolongs survival, i.e. whether the survival curve is shifted to the right relative to the control.
- The Kaplan-Meier estimate of the survival curve is a step function which decreases at each observed failure time, sometime including ticks at censoring times.

- Upper curve (treatment group) shows longer remission.
- Lower curve falls to zero as everyone in this group ended remission. Upper curve does not fall to 0 , because the longest time for the treatment group is censored.
- When there is no censoring, survival at t is estimated by the proportion surviving beyond t

$$
\hat{S}(t)=\frac{\# \text { subjects with } T>t}{\text { total sample size }}
$$

- For the control group

Time	No. failures	No. survivors	$\hat{S}(t)$
0	0	21	1
1	2	19	$19 / 21$
2	2	17	$17 / 21$
3	1	16	$16 / 21$
4	2	14	$14 / 21$
5	2	12	$12 / 21$
8	4	8	$8 / 21$
11	2	6	$6 / 21$
12	2	4	$4 / 21$
15	1	3	$3 / 21$
17	1	2	$2 / 21$
22	1	1	$1 / 21$
23	1	0	0
Total	21		

When there is censoring, another approach is required.

- where $t_{i}, i=1,2, \ldots$ are the unique ordered survival times (but not including censoring times), we can write

$$
P\left(T>t_{i}\right)=P\left(T>t_{i-1}\right) P\left(T>t_{i} \mid T>t_{i-1}\right)
$$

or

$$
S\left(t_{i}\right)=S\left(t_{i-1}\right) P\left(T>t_{i} \mid T>t_{i-1}\right)
$$

- The second term is estimated by the proportion of those at risk at t_{i} who survive past t_{i}.
- The number at risk at t_{i} is the overall sample size n, minus the number of deaths or failures before t_{i}, minus the number censored before t_{i}.
- The calculations are summarized below for the treatment group.

Kaplan Meier example

Time	No. at risk	No. of failures	No. surviving	Prop. surv.	$\hat{S}(t)$
6	21	3	18	$18 / 21$.857
7	17	1	16	$16 / 17$	$.857(16 / 17)=.807$
10	15	1	14	$14 / 15$.753
13	12	1	11	$11 / 12$.690
16	11	1	10	$10 / 11$.627
22	7	1	6	$6 / 7$.538
23	6	1	5	$5 / 6$.448

- Note that when the last observation is censored the survival curve does not drop to zero.

Some computer programs will also give standard errors and confidence intervals.

```
    leuktr.km=survfit(leuktr.Surv~1)
> print(leuktr.km)
Call: survfit(formula = leuktr.Surv ~ 1)
lrrrords m.max n.start revents median 0.95LCL 0.95UCL
\begin{tabular}{rrrrrrr} 
time & n.risk & n.event & survival & std.err & lower & 95\% CI \\
6 & 21 & 3 & 0.857 & 0.0764 & 0.720 & 1.000 \\
7 & 17 & 1 & 0.807 & 0.0869 & 0.653 & 0.996 \\
10 & 15 & 1 & 0.753 & 0.0963 & 0.586 & 0.968 \\
13 & 12 & 1 & 0.690 & 0.1068 & 0.510 & 0.935 \\
16 & 11 & 1 & 0.627 & 0.1141 & 0.439 & 0.896 \\
22 & 7 & 1 & 0.538 & 0.1282 & 0.337 & 0.858 \\
23 & 6 & 1 & 0.448 & 0.1346 & 0.249 & 0.807
\end{tabular}
```

- Note that the standard error gets larger as time goes on, and that the confidence intervals are very large due to the small sample size.

