Survival Analysis - part 1

- Often the response of interest in a study is the length of time, T, until an event occurs.
- This could be the time from birth until death, the time from transplant surgery until the new organ fails, the time until progression from one stage of a disease to another, or length of remission from disease, etc.
- When death is the event, T is called the survival time, and this is the name used for T in other situations as well.
- The survival function S(t) gives the probability of survival beyond a given time, i.e.

$$S(t) = P(T > t)$$

• This probability decreases from one at T = 0 to zero when $T = \infty$.

Example

Sample 1	(6)	6	6	6	7	(9)	(10)
	10	(11)	13	16	(17)	(19)	(20)
	22	23	(25)	(32)	(32)	(34)	(35)
sample 2	1	1	2	2	3	4	4
	5	5	8	8	8	8	11
	11	12	12	15	17	22	23

Time of remission (weeks) of leukemia patients, treated with 6-mercaptopurine (sample 1), and placebo (sample 2) (Freireich et al, *Blood*, 1963)

• A feature of survival data is that there are often **censored** values, typically denoted by bracketed values or with the + symbol. For example, the first time, (6) in Sample 1, is censored, indicating that the survival time for that individual is **at least** 6 weeks. It might have been denoted 6+.

- Subjects may be censored because they are lost to observation, because they move away, quit the trial, die from other causes, or have not died before the end of a study.
- In this example, we would like to determine whether a treatment prolongs survival, i.e. whether the survival curve is shifted to the right relative to the control.
- The Kaplan-Meier estimate of the survival curve is a step function which decreases at each observed failure time, sometime including ticks at censoring times.

Survival curves for leukemia study

- Upper curve (treatment group) shows longer remission.
- Lower curve falls to zero as everyone in this group ended remission. Upper curve does not fall to 0, because the longest time for the treatment group is censored.

• When there is no censoring, survival at t is estimated by the proportion surviving beyond t

$$\hat{S}(t) = \frac{\# \text{ subjects with } T > t}{\text{total sample size}}.$$

• For the control group

Time	No. failures	No. survivors	$\hat{S}(t)$
0	0	21	1
1	2	19	19/21
2	2	17	17/21
3	1	16	16/21
4	2	14	14/21
5	2	12	12/21
8	4	8	8/21
11	2	6	6/21
12	2	4	4/21
15	1	3	3/21
17	1	2	2/21
22	1	1	1/21
23	1	0	0
Total	21		

When there is censoring, another approach is required.

• where $t_i, i = 1, 2, ...$ are the unique ordered survival times (but not including censoring times), we can write

$$P(T > t_i) = P(T > t_{i-1})P(T > t_i | T > t_{i-1})$$

or

$$S(t_i) = S(t_{i-1})P(T > t_i | T > t_{i-1})$$

- The second term is estimated by the proportion of those at risk at t_i who survive past t_i .
- The number at risk at t_i is the overall sample size n, minus the number of deaths or failures before t_i , minus the number censored before t_i .
- The calculations are summarized below for the treatment group.

	No.	No.	No.	Prop.	
Time	at risk	of failures	surviving	surv.	$\hat{S}(t)$
6	21	3	18	18/21	.857
7	17	1	16	16/17	.857(16/17) = .807
10	15	1	14	14/15	.753
13	12	1	11	11/12	.690
16	11	1	10	10/11	.627
22	7	1	6	6/7	.538
23	6	1	5	5/6	.448

Kaplan Meier example

• Note that when the last observation is censored the survival curve does not drop to zero.

Some computer programs will also give standard errors and confidence intervals.

```
leuktr.km=survfit(leuktr.Surv~1)
> print(leuktr.km)
Call: survfit(formula = leuktr.Surv ~ 1)
records
          n.max n.start
                          events
                                  median 0.95LCL 0.95UCL
                               9
                                      23
     21
             21
                      21
                                               16
                                                       NA
> summary(leuktr.km)
Call: survfit(formula = leuktr.Surv ~ 1)
time n.risk n.event survival std.err lower 95% CI upper 95% CI
    6
          21
                   3
                         0.857
                                0.0764
                                               0.720
                                                            1.000
   7
                         0.807
          17
                   1
                                0.0869
                                               0.653
                                                            0.996
   10
                         0.753 0.0963
          15
                   1
                                               0.586
                                                            0.968
   13
          12
                   1
                         0.690 0.1068
                                               0.510
                                                            0.935
   16
          11
                         0.627
                                0.1141
                                               0.439
                                                            0.896
                   1
   22
           7
                   1
                         0.538 0.1282
                                               0.337
                                                            0.858
   23
                   1
                         0.448
                               0.1346
                                               0.249
                                                            0.807
           6
```

• Note that the standard error gets larger as time goes on, and that the confidence intervals are very large due to the small sample size.