Survival Analysis - part 2

Testing the Equality of Two Survival Curves

- The log rank test, a special case of the Cochran-Mantel-Haenszel test, is used to test $H_{0}: S_{T}(t)=S_{C}(t)$.
- The null hypothesis states that the survival functions are the same for each time t.
- Calculation of the test statistic is shown below.
- At the i^{\prime} th observed failure time t_{i}, let
- M_{i} be the number at risk in the treatment group
- T_{i} be the total number at risk (for both groups)
- a_{i} be the number of deaths in the treatment group
- N_{i} be the total number of deaths (for both groups)
- At each failure time t_{i}, we construct a 2 by 2 table comparing the number of failures in the two groups.

	Dead	Surviving	At Risk
Treat	a_{i}	$M_{i}-a_{i}$	M_{i}
Control	$N_{i}-a_{i}$	$T_{i}-N_{i}-M_{i}+a_{i}$	$T_{i}-M_{i}$
	N_{i}	$T_{i}-N_{i}$	T_{i}

- If the failure rate is the same in both groups, the expected number of deaths in the Treatment group is $M_{i} N_{i} / T_{i}$, which is the number at risk M_{i} times the combined proportion of deaths.
- The test statistic compares the observed to expected number of deaths in the treatment group, standardized by an estimate of its variance

$$
Z=\sum_{i}\left(a_{i}-E_{i}\right) / \sqrt{\sum_{i} V_{i}}
$$

where

$$
E_{i}=\frac{M_{i} N_{i}}{T_{i}}
$$

and

$$
V_{i}=\frac{M_{i} N_{i}\left(T_{i}-M_{i}\right)\left(T_{i}-N_{i}\right)}{T_{i}^{2}\left(T_{i}-1\right)}
$$

- The p-value against the two-sided alternative is

$$
2 P\left(Z>\left|Z_{\text {obs }}\right|\right)
$$

- For the leukemia study, the necessary information to construct these tables is as follows:

	Num at Risk						
	Treat	Total	Treat of Deaths				
Total							
t_{i}	M_{i}	T_{i}	a_{i}	N_{i}	E_{i}	V_{i}	
1	21	42	0	2	1.00	0.49	
2	21	40	0	2	1.05	0.49	
3	21	38	0	1	0.55	0.25	
4	21	37	0	2	1.14	0.48	
5	21	35	0	2	1.20	0.47	
6	21	33	3	3	1.91	0.65	
7	17	29	1	1	0.59	0.24	
8	16	28	0	4	2.29	0.87	
10	15	23	1	1	0.65	0.23	
11	13	21	0	2	1.24	0.45	
12	12	18	0	2	1.33	0.42	
13	12	16	1	1	0.75	0.19	
15	11	15	0	1	0.73	0.20	
16	11	14	1	1	0.79	0.17	
17	10	13	0	1	0.77	0.18	
22	7	9	1	2	1.56	0.30	
23	6	7	1	2	1.71	0.20	
Total			9		19.25	6.26	

- The test statistic is

$$
Z=(9-19.25) / \sqrt{6.26}=-4.098
$$

- The P value is $2 P(Z>|-4.098|)=4.17 \times 10^{-5}$, so we conclude that there is very strong evidence against the null hypothesis that the survival curves are the same.
- Note that $Z^{2}=16.79$ which equals the χ^{2} value obtained from the computer in the last set of notes.

Proportional hazards model

- The hazard function is the rate of failure in a small interval Δ after time t, given that the subject has survived until t

$$
h(t) \Delta=P(t \leq T<t+\Delta \mid T \geq t)
$$

- If the failure time T has cumulative distribution function $F(t)$, density $f(t)=F^{\prime}(t)$ and survival function $S(t)=1-F(t)$, then the hazard function is

$$
h(t)=\frac{f(t)}{S(t)}
$$

- The simplest probability model for survival is the exponential, with density

$$
f(t)=\lambda e^{-\lambda t}
$$

The cumumlative distribution function is

$$
F(t)=1-e^{-\lambda t}
$$

and survival function

$$
S(t)=e^{-\lambda t}
$$

- The hazard function in this case is constant over time

$$
h(t)=\frac{\lambda e^{-\lambda t}}{e^{-\lambda t}}=\lambda
$$

- More realistic hazard functions are increasing, decreasing or 'bathtub' shaped - first decreasing, then constant, then increasing.
- To compare two groups, like Treatment and Control, we can compare their hazard functions.
- A smaller hazard indicates a slower rate of failures.
- Often it is assumed that hazard functions for two groups are proportional, so that

$$
h_{T}(t)=k h_{C}(t)
$$

for some k.

- The following shows two cases with proportional hazards (top) and two where the hazards are not proportional (bottom).

- Cox's proportional hazard regression model is used to model survival as a function of predictors or covariates X_{1}, \ldots, X_{p}.
- Cox's model says that, if an individual has predictors X_{1}, \ldots, X_{p}, then their hazard is

$$
h(t)=h_{0}(t) \exp \left(b_{1} X_{1}+\ldots+b_{p} X_{p}\right)
$$

- $h_{0}(t)$ is the baseline hazard, estimated nonparametrically.
- The term $\exp \left(b_{1} X_{1}+\ldots+b_{p} X_{p}\right)$ is 1 if all X 's are zero, and positive otherwise.
- The probability of survival at time t is estimated by

$$
S(t)=\exp (-H(t))
$$

where $H(t)$ is the cumulative hazard, obtained by integrating $h(s)$ up to time t

- The hazard ratio for two values of a covariate X_{i} (with all other covariates held the same) is

$$
\frac{h_{1}(t)}{h_{2}(t)}=\exp \left(b_{i} x_{i 1}-b_{i} x_{i 2}\right)=\exp \left[b_{i}\left(x_{i 1}-x_{i 2}\right)\right]
$$

- Equivalently

$$
\log \left(\frac{h_{1}(t)}{h_{2}(t)}\right)=b_{i}\left(x_{i 1}-x_{i 2}\right)
$$

- and we see that b_{i} is the logarithm of the hazard ratio associated with a unit increase in X_{i}, with all other variables held constant.
- If X_{i} is binary, such as an indicator equal to 1 for the treatment group and 0 for the control group, then

$$
\frac{h_{1}(t)}{h_{2}(t)}=\exp \left(b_{i}\right)
$$

- A hazard ratio greater than 1 implies subjects with $X_{i 1}$ fare less well than those with $X_{i 2}$.
- Computer output for the leukemia data is shown below.

```
> leuktr.Surv=Surv(leuk.t,1-leuk.cen)
> leuk.ph=coxph(leuktr.Surv^leuktr)
> leuk.ph=coxph(leuktr.Surv~leuk.tr)
> print(leuk.ph)
Call:
coxph(formula = leuktr.Surv ~ leuk.tr)
```

```
    coef exp(coef) se(coef) z p
leuk.tr -1.57 0.208 0.412 -3.81 0.00014
Likelihood ratio test=16.4 on 1 df, p=5.26e-05
n= 42, number of events= 30
```

- In this case the only covariate is an indicator for Treatment vs Control.
- A test for difference between Treatment and Control is given by a test that the β coefficient is zero.
- The output gives us the Z statistic (coef/se) and P-value.
- Note that this test statistic is close to the log rank statistic obtained above.
- One reason they are slightly different is that this approach assumes that the hazards are proportional whereas the log rank test does not.

