Survival Analysis - part 2

Testing the Equality of Two Survival Curves

- The log rank test, a special case of the Cochran-Mantel-Haenszel test, is used to test $H_0: S_T(t) = S_C(t)$.
- The null hypothesis states that the survival functions are the same for each time t.
- Calculation of the test statistic is shown below.
- At the *i*'th observed failure time t_i , let
 - $-\ M_i$ be the number at risk in the treatment group
 - $-T_i$ be the total number at risk (for both groups)
 - $-a_i$ be the number of deaths in the treatment group
 - $-N_i$ be the total number of deaths (for both groups)

• At each failure time t_i , we construct a 2 by 2 table comparing the number of failures in the two groups.

	Dead	Surviving	At Risk
Treat	a_i	$M_i - a_i$	M_i
Control	$N_i - a_i$	$\begin{aligned} M_i - a_i \\ T_i - N_i - M_i + a_i \end{aligned}$	$T_i - M_i$
	N_i	$T_i - N_i$	T_i

- If the failure rate is the same in both groups, the expected number of deaths in the Treatment group is $M_i N_i/T_i$, which is the number at risk M_i times the combined proportion of deaths.
- The test statistic compares the observed to expected number of deaths in the treatment group, standardized by an estimate of its variance

$$Z = \sum_{i} (a_i - E_i) / \sqrt{\sum_{i} V_i}$$

where

$$E_i = \frac{M_i N_i}{T_i}$$

and

$$V_i = \frac{M_i N_i (T_i - M_i) (T_i - N_i)}{T_i^2 (T_i - 1)}$$

• The p-value against the two-sided alternative is

$$2P(Z > |Z_{obs}|)$$

• For the leukemia study, the necessary information to construct these tables is as follows:

	Num at Risk		Num of Deaths			
	Treat	Total	Treat	Total		
t_i	M_i	T_i	a_i	N_i	E_i	V_i
1	21	42	0	2	1.00	0.49
2	21	40	0	2	1.05	0.49
3	21	38	0	1	0.55	0.25
4	21	37	0	2	1.14	0.48
5	21	35	0	2	1.20	0.47
6	21	33	3	3	1.91	0.65
7	17	29	1	1	0.59	0.24
8	16	28	0	4	2.29	0.87
10	15	23	1	1	0.65	0.23
11	13	21	0	2	1.24	0.45
12	12	18	0	2	1.33	0.42
13	12	16	1	1	0.75	0.19
15	11	15	0	1	0.73	0.20
16	11	14	1	1	0.79	0.17
17	10	13	0	1	0.77	0.18
22	7	9	1	2	1.56	0.30
23	6	7	1	2	1.71	0.20
Total			9		19.25	6.26

• The test statistic is

$$Z = (9 - 19.25) / \sqrt{6.26} = -4.098$$

- The *P* value is $2P(Z > | -4.098|) = 4.17 \times 10^{-5}$, so we conclude that there is very strong evidence against the null hypothesis that the survival curves are the same.
- Note that $Z^2 = 16.79$ which equals the χ^2 value obtained from the computer in the last set of notes.

Proportional hazards model

 The hazard function is the rate of failure in a small interval Δ after time t, given that the subject has survived until t

$$h(t)\Delta = P(t \le T < t + \Delta | T \ge t)$$

• If the failure time T has cumulative distribution function F(t), density f(t) = F'(t) and survival function S(t) = 1 - F(t), then the hazard function is

$$h(t) = \frac{f(t)}{S(t)}$$

• The simplest probability model for survival is the exponential, with density

$$f(t) = \lambda e^{-\lambda t}$$

The cumumlative distribution function is

$$F(t) = 1 - e^{-\lambda t}$$

and survival function

$$S(t) = e^{-\lambda t}$$

• The hazard function in this case is constant over time

$$h(t) = \frac{\lambda e^{-\lambda t}}{e^{-\lambda t}} = \lambda$$

- More realistic hazard functions are increasing, decreasing or 'bathtub' shaped first decreasing, then constant, then increasing.
- To compare two groups, like Treatment and Control, we can compare their hazard functions.

- A smaller hazard indicates a slower rate of failures.

• Often it is assumed that hazard functions for two groups are *proportional*, so that

$$h_T(t) = kh_C(t)$$

for some k.

• The following shows two cases with proportional hazards (top) and two where the hazards are not proportional (bottom).

- Cox's proportional hazard regression model is used to model survival as a function of predictors or covariates X_1, \ldots, X_p .
- Cox's model says that, if an individual has predictors X_1, \ldots, X_p , then their hazard is

$$h(t) = h_0(t)exp(b_1X_1 + \ldots + b_pX_p)$$

- $h_0(t)$ is the baseline hazard, estimated nonparametrically.
- The term $exp(b_1X_1 + \ldots + b_pX_p)$ is 1 if all X's are zero, and positive otherwise.
- The probability of survival at time t is estimated by

$$S(t) = exp(-H(t))$$

where H(t) is the cumulative hazard, obtained by integrating h(s) up to time t

• The *hazard ratio* for two values of a covariate X_i (with all other covariates held the same) is

$$\frac{h_1(t)}{h_2(t)} = \exp(b_i x_{i1} - b_i x_{i2}) = \exp[b_i (x_{i1} - x_{i2})]$$

• Equivalently

$$\log\left(\frac{h_1(t)}{h_2(t)}\right) = b_i(x_{i1} - x_{i2})$$

- and we see that b_i is the logarithm of the hazard ratio associated with a unit increase in X_i , with all other variables held constant.
- If X_i is binary, such as an indicator equal to 1 for the treatment group and 0 for the control group, then

$$\frac{h_1(t)}{h_2(t)} = \exp(b_i)$$

• A hazard ratio greater than 1 implies subjects with X_{i1} fare less well than those with X_{i2} .

• Computer output for the leukemia data is shown below.

- In this case the only covariate is an indicator for Treatment vs Control.
- A test for difference between Treatment and Control is given by a test that the β coefficient is zero.
- The output gives us the Z statistic (coef/se) and P-value.
- Note that this test statistic is close to the log rank statistic obtained above.
- One reason they are slightly different is that this approach assumes that the hazards are proportional whereas the log rank test does not.