Chapter 5 Joint Probability Distributions and Random Samples	5.3 Statistics and their Distributions	Statistic A statistic is any quantity whose value can be calculated from sample data. Prior to obtaining data, there is uncertainty as to what value of any particular statistic will result. A statistic is a random variable denoted by an uppercase letter; a lowercase letter is used to represent the calculated or observed value of the statistic.	 Random Samples The rv's X₁,,X_n are said to form a simple <i>random sample</i> of size <i>n</i> if The X_i's are independent rv's. Every X_i has the same probability distribution.
 Simulation Experiments The following characteristics must be specified: 1. The statistic of interest. 2. The population distribution. 3. The sample size <i>n</i>. 4. The number of replications <i>k</i>. 	5.4 The Distribution of the Sample Mean	Using the Sample Mean Let $X_1,, X_n$ be a random sample from a distribution with mean value μ and standard deviation σ . Then $1. E(\overline{X}) = \mu_{\overline{X}} = \mu$ $2. V(\overline{X}) = \sigma_{\overline{X}}^2 = \sigma_{/n}^2$ In addition, with $T_o = X_1 + + X_n$, $E(T_o) = n\mu$, $V(T_o) = n\sigma^2$, and $\sigma_{T_o} = \sqrt{n\sigma}$.	Normal Population Distribution Let $X_1,, X_n$ be a random sample from a normal distribution with mean value μ and standard deviation σ . Then for any n , \overline{X} is normally distributed. μ
The Central Limit Theorem Let $X_1,, X_n$ be a random sample from a distribution with mean value μ and variance σ^2 . Then if <i>n</i> sufficiently large, \overline{X} has approximately a normal distribution with $\mu_{\overline{X}} = \mu$ and $\sigma_{\overline{X}}^2 = \sigma^2/_n$, and T_o also has approximately a normal distribution with $\mu_{T_o} = n\mu$, $\sigma_{T_o} = n\sigma^2$. The larger the value of <i>n</i> , the better the approximation.	The Central Limit Theorem \overline{x} small to moderate n Population distribution μ	Rule of Thumb If $n > 30$, the Central Limit Theorem can be used.	5.5 The Distribution of a Linear Combination
Linear Combination Given a collection of <i>n</i> random variables $X_1,,X_n$ and <i>n</i> numerical constants $a_1,,a_n$, the rv $Y = a_1X_1 + + a_nX_n = \sum_{i=1}^n a_iX_i$ is called a <i>linear combination</i> of the X_i 's.	Expected Value of a Linear Combination Let $X_1,,X_n$ have mean values $\mu_1,\mu_2,,\mu_n$ and variances of $\sigma_1^2, \sigma_2^2,,\sigma_n^2$, respectively Whether or not the X_i 's are independent, $E(a_1X_1++a_nX_n) = a_1E(X_1)++a_nE(X_n)$ $= a_1\mu_1++a_n\mu_n$	Variance of a Linear Combination If $X_1,, X_n$ are independent, $V(a_1X_1 + + a_nX_n) = a_1^2V(X_1) + + a_n^2V(X_n)$ $= a_1^2\sigma_1^2 + + a_n^2\sigma_n^2$ and $\sigma_{a_1X_1 + + a_nX_n} = \sqrt{a_1^2\sigma_1^2 + + a_n^2\sigma_n^2}$	Variance of a Linear Combination For any $X_1,, X_n$, $V(a_1X_1 + + a_nX_n) = \sum_{i=1}^n \sum_{j=1}^n a_i a_j \text{Cov}(X_i, X_j)$

Difference Between Two Random Variables

 $E(X_1 - X_2) = E(X_1) - E(X_2)$ and, if X_1 and X_2 are independent,

 $V(X_1 - X_2) = V(X_1) + V(X_2)$

Difference Between Normal Random Variables

If $X_1, X_2,...X_n$ are independent, normally distributed rv's, then any linear combination of the X_i 's also has a normal distribution. The difference $X_1 - X_2$ between two independent, normally distributed variables is itself normally distributed.