Assignment 11:

Chapter 8

Questions 12, 18, 20, 26, 30, 32, 38, 42, 46, 48, 52

12.

- **a.** Let $\mu =$ true average braking distance for the new design at 40 mph. The hypotheses are $H_o: \mu = 120 \text{ }_{VS} H_a: \mu < 120$
- **b.** R₂ should be used, since support for H_a is provided only by an \overline{x} value substantially smaller than 120. ($E(\overline{x}) = 120$ when H_o is true and , 120 when H_a is true).

c.
$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{10}{6} = 1.6667$$

$$P\left(z \le \frac{115.20 - 120}{1.6667}\right) = P(z \le -2.88) = .002$$

$$C = 120 - 3.08(1.6667) = 114.87$$

$$P(\overline{x} \le 114.87 \text{ when } \mu = 120) = P(z \le -3.08) = .001$$

d.
$$\beta(115) = P(\bar{x} > 115.2 \text{ when } \mu = 115) = P(z > .12) = .4522$$

e. $\alpha = P(z \le -2.33) = .01$, because when H_o is true Z has a standard normal distribution (\overline{X} has been standardized using 120). Similarly $P(z \le -2.88) = .002$, so this second rejection region is equivalent to R₂.

18.

a.
$$\frac{72.3 - 75}{1.8} = -1.5$$

so 72.3 is 1.5 SD's (of \overline{x}) below 75.

- **b.** H_o is rejected if $z \le -2.33$; since z = -1.5 is not ≤ -2.33 , don't reject H_o.
- c. $\alpha = \text{area under standard normal curve below } -2.88 = \Phi(-2.88) = .0020$

$$\Phi\left(-2.88 + \frac{75 - 70}{9/5}\right) = \Phi(-.1) = .4602$$

so $\beta(70) = .5398$

e.
$$n = \left[\frac{9(2.88 + 2.33)}{75 - 70}\right]^2 = 87.95$$
, so use n = 88
f. $\alpha(76) = P(Z < -2.33)$ when $\mu = 76 = P(\overline{X} < 72.9)$ when $\mu = 76$

$$=\Phi\left(\frac{72.9-76}{.9}\right)=\Phi(-3.44)=.0003$$

20. With H_0 : $\mu = 750$, and H_a : $\mu < 750$ and a significance level of .05, we reject H_0 if z < -1.645; z = -2.14 < -1.645, so we reject the null hypothesis and do not continue with the purchase. At a significance level of .01, we reject H_0 if z < -2.33; z = -2.14 > -2.33, so we don't reject the null hypothesis and thus continue with the purchase.

26. Reject H_o if
$$z \ge 1.645$$
; $\frac{s}{\sqrt{n}} = .7155$, $z = \frac{52.7 - 50}{.7155} = 3.77$. Since 3.77 is ≥ 1.645 , reject H_o at level .05 and conclude that true average penetration exceeds 50 mils.

30. $n = 115, \bar{x} = 11.3, s = 6.43$

6 7

- 1 Parameter of Interest: μ = true average dietary intake of zinc among males aged 65 74 years.
- 2 Null Hypothesis: H_0 : $\mu = 15$

3 Alternative Hypothesis:
$$H_a$$
: $\mu < 15$

$$z = \frac{\overline{x} - \mu_o}{s / \sqrt{n}} = \frac{\overline{x} - 15}{s / \sqrt{n}}$$

4 $s/\sqrt{n} = s/\sqrt{n}$ 5 Rejection Region: No value of α was given, so select a reasonable level of significance,

such as
$$\alpha = .05$$
. $z \le z_{\alpha}$ or $z \le -1.645$

$$z = \frac{11.3 - \mu_o}{6.43/\sqrt{115}} = -6.17$$

-6.17 < -1.645, so reject H_o. The data does support the claim that average daily intake of zinc for males aged 65 - 74 years falls below the recommended daily allowance of 15 mg/day.

32. n =

- $n = 12, \ \overline{x} = 98.375, \ s = 6.1095$
- **a.** 1

Parameter of Interest: μ = true average reading of this type of radon detector when exposed to 100 pCi/L of radon.

- 2 Null Hypothesis: H_0 : $\mu = 100$
- 3 Alternative Hypothesis: H_a : $\mu \neq 100$

$$t = \frac{\overline{x} - \mu_o}{s / \sqrt{n}} = \frac{\overline{x} - 100}{s / \sqrt{n}}$$

$$t \le -2.201 \text{ or } t \ge 2.201$$

$$t = \frac{98.375 - 100}{6.1095 / \sqrt{12}} = -.9213$$

6 6.10957√12
7 Fail to reject H₀. The data does not indicate that these readings differ significantly from 100.

b. $\sigma = 7.5$, $\beta = 0.10$. From table A.17, df ≈ 29 , thus n ≈ 30 .

38.

a. We wish to test H_o: p = .02 vs H_a: p < .02; only if H_o can be rejected will the inventory be postponed. The lower-tailed test rejects H_o if z ≤ -1.645. With $\hat{p} = \frac{15}{1000} = .015$, z = -1.01,

which is not \leq -1.645. Thus, H_o cannot be rejected, so the inventory should be carried out.

b.
$$\beta(.01) = 1 - \Phi\left[\frac{.02 - .01 - 1.645\sqrt{.02(.98)/1000}}{\sqrt{.01(.99)/1000}}\right] = 1 - \Phi(0.86) = .1949$$

c.
$$\beta(.05) = 1 - \Phi\left[\frac{.02 - .05 - 1.645\sqrt{.02(.98)/1000}}{\sqrt{.05(.95)/1000}}\right] = 1 - \Phi(-5.41) \approx 1$$
, so the

chance the inventory will be *postoned* is P(reject H₀ when $p = .05) = 1 - \beta(.05) = 0$. It is highly unlikely that H₀ will be rejected, and the inventory will almost surely be carried out.

42. The hypotheses are H_0 : p = .10 vs. H_a : p > .10, so R has the form {c, ..., n}. For n = 10, c = 3 (i.e. R = {3, 4, ..., 10}) yields $\alpha = 1 - B(2; 10, .1) = .07$ while no larger R has $\alpha \le .10$; however $\beta(.3) = B(2; 10, .3) = .383$. For n = 20, c = 5 yields $\alpha = 1 - B(4; 20, .1) = .043$, but again $\beta(.3) = B(4; 20, .3) = .238$. For n = 25, c = 5 yields $\alpha = 1 - B(4; 25, .1) = .098$ while $\beta(.7) = B(4; 25, .3) = .090 \le .10$, so n = 25 should be used.

46. In each case the p-value = $1 - \Phi(z)$ a. .0778

b. .1841

- **c.** .0250
- **d.** .0066
- **e.** .5438

48.

- **a.** In the df = 8 row of table A.5, t = 2.0 is between 1.860 and 2.306, so the p-value is between .025 and .05: .025 < p-value < .05.
- **b.** 2.201 < | -2.4 | < 2.718, so .01 < p-value < .025.
- c. 1.341 < |-1.6| < 1.753, so .05 < P(t < -1.6) < .10. Thus a two-tailed p-value: 2(.05 < P(t < -1.6) < .10), or .10 < p-value < .20
- **d.** With an upper-tailed test and t = -.4, the p-value = P(t > -.4) > .50.
- e. 4.032 < t=5 < 5.893, so .001 < p-value < .005
- f. 3.551 < |-4.8|, so P(t < -4.8) < .0005. A two-tailed p-value = 2[P(t < -4.8)] < 2(.0005), or p-value < .001.

- a. For testing H_0 : p = .2 vs H_a : p > .2, an upper-tailed test is appropriate. The computed Z is z = .97, so p-value = $1 \Phi(.97) = .166$. Because the p-value is rather large, H_0 would not be rejected at any reasonable α (it can't be rejected for any $\alpha < .166$), so no modification appears necessary.
- **b.** With p = .5, $1 \beta(.5) = 1 \Phi[(-.3 + 2.33(.0516))/.0645] = 1 \Phi(-2.79) = .9974$

52.