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Partial Generalized Additive Models: An
Information-Theoretic Approach for Dealing

With Concurvity and Selecting Variables

Hong GU, Toby KENNEY, and Mu ZHU

Scientists are often interested in which covariates are important, and how these co-
variates affect the response variable, rather than just making predictions. This requires
inputs from both statistical modeling and background knowledge. Generalized addi-
tive models (GAMs) are a class of interpretable, multivariate nonparametric regression
models which are very useful data exploration tools for these purposes, but concurvity
among covariates (the nonlinear analogue of collinearity for linear regression) can lead
GAMs to produce unstable or even wrong estimates of the covariates’ functional ef-
fects. We develop a new procedure called partial generalized additive models (pGAM),
based on mutual information (MI), a measure of nonlinear dependence between vari-
ables. Our procedure is similar in spirit to the Gram–Schmidt method for linear least
squares. By building a GAM on a selected set of transformed variables, pGAM pro-
duces more stable models, selects variables parsimoniously, and provides insight into
the nature of concurvity between the covariates by calculating functional dependen-
cies among them. With simulation experiments and real-data examples, we show that
pGAM produces much better estimates of the covariates’ functional effects, and also
incorporates a reasonable and meaningful variable selection method. R code for fitting
pGAMs is available online (see Supplemental Materials Section).

Key Words: Concurvity; Generalized additive models; Interpretation; Mutual infor-
mation; Partial generalized additive models; Variable selection.

1. INTRODUCTION

The generalized additive model (GAM) (Hastie and Tibshirani 1986, 1990) is a popular

nonparametric and semiparametric model fitting technique. Let Y be the response variable
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and X = (X1, . . . ,Xp) be the covariates. GAM assumes

E(Y |X) = h(η(X)) = h(f0 + f1(X1) + · · · + fp(Xp)), (1.1)

where Y has an exponential family distribution; h is a known monotonic link function; and
the fj ’s (j > 0) are unspecified smooth functions. This simple functional form allows for
easy and intuitive interpretation of the covariates’ functional effects. For this reason, users
sometimes prefer GAM even at the expense of predictive accuracy compared with some
other available nonparametric methods.

However, the interpretation of GAM is not straightforward when many covariates are
involved, since each function fj (Xj ) can only be interpreted as the effect of Xj on the
response Y while keeping all other functional effects fixed. When strong functional rela-
tionships exist among the covariates themselves, GAM often produces functional estimates
that are statistically unstable or even wrong.

The term “concurvity” is used as the analogue of “collinearity” to describe such de-
generacies (Hastie and Tibshirani 1990). In a broad sense, concurvity can be defined as
a measure of statistical dependency among covariates or the existence of multiple solu-
tions when fitting a GAM. If all covariates are continuous as is the case in this paper, then
concurvity can simply be taken to mean the existence of functional relationships among
them. Donnell, Buja, and Stuetzle (1994) developed a nonlinear generalization of principal
components and used the smallest additive principal component

∑
j φj (Xj ) ≈ 0 as a diag-

nostic tool for checking concurvity. Using simulation experiments and applying GAM to
time series data, Ramsay, Burnett, and Krewski (2003) showed that concurvity can cause
us to underestimate standard errors.

When fitting linear models, one way to deal with collinearity is to use penalized regres-
sion techniques such as ridge regression. It is also possible, to some extent, to deal with
concurvity in GAM by controlling the complexity or smoothness of each fitted function.
Green and Silverman (1994), Hastie and Tibshirani (1990), and Wahba (1990) provide nice
surveys of penalized likelihood methods. More recently, Simon Wood further advanced the
art of GAM fitting in a series of important papers. Wood (2000) applied generalized cross-
validation (GCV) to the penalized likelihood function and provided a method to efficiently
select multiple smoothing parameters. Wood (2004) solved a difficult numeric rank defi-
ciency problem and showed through simulation that his methods not only provided much
more stable functional reconstruction but also gave very competitive mean squared errors
when compared with other existing methods for fitting GAMs. Although Wood (2004)
simulated all the covariates to be independent in his examples, our experience shows that
Wood’s method still generates stable and optimally fitted values and properly minimizes
mean squared error when the covariates are dependent.

While shrinkage methods can numerically stabilize the model fitting procedure, they are
not meant to deal with the inherent difficulty in model simplification, variable selection and
model interpretation when there exists concurvity among covariates. In scientific applica-
tions, the selection of important covariates and the proper interpretation of their functional
effects are sometimes more important than predictive accuracy. To effectively deal with
variable selection and concurvity, properly estimate the covariates’ functional effects, and
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facilitate more precise interpretations of a GAM model, we develop a procedure called
partial generalized additive models (pGAM).

Hastie and Tibshirani (1990, p. 125) described a modified backfitting algorithm, which
partially deals with the concurvity problem. The basic idea is to separate each smoothing
operator into a projection part (corresponding to directions with unit eigenvalues) and a
shrinking part (corresponding to directions with eigenvalues less than one), combine all
the projection parts into one large projection, and only use back-fitting for the shrinking
parts. For symmetric smoothers having eigenvalues in [0,1], exact concurvity occurs only
in the projection part, i.e., only if the covariates are perfectly collinear (Hastie and Tib-
shirani 1990, sections 5.3.5 and 5.4.2), so the modified back-fitting algorithm allows us to
deal with concurvity in the projection step alone. However, Hastie and Tibshirani (1990)
went on to emphasize that approximate concurvity is still of practical concern, when the
covariates are clustered around some lower dimensional manifold. This is precisely the
situation that we aim to address with pGAM.

1.1 AN ILLUSTRATIVE EXAMPLE

We first simulate a somewhat exaggerated example to demonstrate how GAM can have
difficulty determining functional effects in the case of strong concurvity. A total of n = 500
observations are simulated. The covariates X1,X2,X3,X4 are simulated independently
from Unif[0,1]. The covariate X5 is generated by

X5 = 2X3
1 + N(0, σ 2

1 ); (1.2)

and the response variable Y is generated by

Y = (5e−X1 + 2X3
1) + X3 + N(0, σ 2

2 ), (1.3)

where σ1 = 0.01 and σ2 = 0.1. That is, Y is a function of X1 and X3, but there is very
strong concurvity between X1 and X5. Of primary interest here is the question: what is
the effect of X1 on Y ? This is difficult for GAM to pin down due to the strong concurvity
between X1 and X5.

The upper left panel of Figure 1 shows the true function f1(x1) = 5e−x1 + 2x3
1 and the

remaining panels show the result of GAM, using Simon Wood’s mgcv package in R (Wood
2006). Notice the difference between the estimated and the true functional effects of X1.
Notice also the estimated effect of X5.

Our procedure, pGAM, sequentially maximizes the mutual information (MI) between
the response variable and the covariates. Starting with a null model, pGAM first chooses
to add the covariate whose mutual information with Y is the largest. It then removes any
functional effects of this covariate from all remaining covariates before searching for the
next covariate to add. The final result is a model based on a sequence of adjusted predictor
variables. The removal of functional dependencies at each step eliminates problems caused
by concurvity and gives much more precise and reliable interpretations of the covariates’
effects. After the first covariate, all covariates are transformed during the fitting process.
We use the notation Xj to denote the original covariates and X(j) to denote the transformed
covariates.
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Figure 1. Illustrative example. Upper left: the function f (x) = 5e−x + 2x3 on [0,1]. Others: effects estimated
by GAM.

In this example, the first covariate to enter the model is X1, so X(1) = X1. We then
proceed to remove any effect of X(1) from the remaining covariates by letting

X(j) = Xj − gj1
(
X(1)

)
, (1.4)

where gj1 is obtained by smoothing Xj onto X(1) for all j �= 1. The next covariate to
enter the model is X(3). Theoretically, since X3 is independent of X(1), the transformed
version X(3) should be identical to the original version X3 but, in practice, they will not
be exactly the same. Notice that, after removing the effect of X(1), X(5) no longer contains
any information about Y . In this case, none of the remaining variables is found useful after
X(3). The final model thus only includes X(1) and X(3). Figure 2 shows the functional
effects of X(1) and X(3) as estimated by pGAM. Notice that the interpretation of each
covariate’s effect will now depend on previous covariates in the model. Plots of functional
dependencies between pairs of covariates thus provide insight into the nature of concurvity,
and allow us to better interpret the resulting model.

Figure 2. Illustrative example. Effects estimated by pGAM. Notice that only X(1) and X(3) are included in the
final model.
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1.2 OUTLINE

The remainder of our paper is structured as follows. In Section 2, we develop our main
methodology, pGAM. Two simulation studies are presented in Section 3 and two real-data
examples are analyzed in Section 4. A number of related issues are discussed in Section 5.

2. MAIN METHODOLOGY

In this section, we first give a brief review of mutual information (Section 2.1). We then
look at GAM fitting from the viewpoint of maximizing mutual information (Section 2.2).
This leads us to develop the pGAM algorithm in Section 2.3.

2.1 BRIEF REVIEW OF MUTUAL INFORMATION

First introduced by Shannon (1948), mutual information (MI) is a measure of depen-
dence between two random variables. For the bivariate random vector (X,Y ), their mutual
information is defined as

MI(X;Y) = E

(
log

f (X,Y )

fX(X)fY (Y )

)
, (2.1)

where f , fX , and fY are their joint and marginal probability distribution functions, respec-
tively. This is closely related to the notion of entropy, H(X) = −E log(p(X1, . . . ,Xp)),
where X = (X1, . . . ,Xp) is a random vector and p(x1, . . . , xp) is the joint distribution
function. Entropy measures the amount of uncertainty in a random variable or a random
vector. Mutual information is the relative entropy between the joint distribution and the
product distribution. It is easy to show that if H(Y |X) = −E(logp(Y |X1, . . . ,Xp)) is the
conditional entropy, then

MI(Y ;X) = H(Y) − H(Y |X) = H(X) − H(X|Y).

Thus, MI is the amount of information in X that can be used to reduce the uncertainty of
Y . More properties of entropy and mutual information can be found in chapter 2 of Cover
and Thomas (1991).

It is well known that Pearson’s correlation coefficient ρ measures the linear relationship
between two random variables. The following properties of MI, listed in Brillinger (2004),
suggest that MI can be used as a measure of nonlinear relationships and thus is to non-
parametric regression analysis as Pearson’s correlation coefficient is to linear regression
analysis:

(1) MI(Y ;X) = 0 if and only if X is independent of Y .

(2) For the continuous case, MI(Y ;X) = ∞ if Y = g(X) for some function g.

(3) Invariance, i.e., MI(Y ;X) = MI(V ;U) if U = U(X) and V = V (Y ) are individu-
ally 1–1 measurable transformations.

(4) If (X,Y ) has a bivariate normal distribution, then MI(Y ;X) = − 1
2 log(1 − ρ2

XY ).
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2.2 GAM AND MAXIMIZATION OF MUTUAL INFORMATION

Suppose that, given X = x, Y has conditional density h(y, η(x)). Hastie and Tibshirani
(1986) showed that GAM chooses η̂(·) to maximize the expected log-likelihood, i.e.,

E
(
l(η̂(X),Y )

) = max
η

E
(
l(η(X),Y )

)
,

where l(η(x), y) is the log-likelihood of Y given η(X), and the expectation is taken over
the joint distribution of X and Y . On the other hand, the mutual information between Y

and η(X) is equal to

MI(Y ;η(X)) = E

{
log

f (η(X),Y )

fη(X)(η(X))fY (Y )

}
= E

(
l(η(X),Y )

) − E logfY (Y ). (2.2)

Since E logfY (Y ) does not depend on η(X), choosing η̂(·) to maximize the expected
log-likelihood E(l(η(X),Y )) is equivalent to choosing η̂(·) to maximize MI(Y ;η(X)).
Therefore, GAM chooses η so as to maximize MI(Y, η(X)), subject to the constraint that
η(X) = f0 + f1(X1) + · · · + fp(Xp).

Cover and Thomas (1991, section 2.8) showed that, for any function η(X),

MI(Y ;η(X)) ≤ MI(Y ;X). (2.3)

This is essentially a “no-free-lunch” principle that says we cannot increase the information
about Y by transforming the original predictors X. We want to find η(X) to maximize
MI(Y ;η(X)), i.e., to make MI(Y ;η(X)) as close to its upper bound, MI(Y ;X1, . . . ,Xp),
as possible. The chain rule for mutual information gives

MI(Y ;X1, . . . ,Xp) (2.4)

= MI(Y ;X1) + MI(Y ;X2|X1) + · · · + MI(Y ;Xp|Xp−1, . . . ,X1) (2.5)

= MI(Y ;X1, . . . ,Xp−1) + MI(Y ;Xp|Xp−1, . . . ,X1). (2.6)

Therefore, one approach to maximize MI(Y, η(X)) is to construct η(X) term by term,
making each term as close as possible to the terms in (2.5). We obtain f1(X1) by fitting a
(univariate) GAM of Y onto X1. As we argued above, this makes MI(Y,f1(X1)) approach
MI(Y ;X1).

Now suppose Y = f1(X1) + Z, where Z is independent of X1 and also conditionally
independent of X1 given X2. Then,

MI(Y ;X2|X1) = H(Y |X1) − H(Y |X2,X1) (2.7)

= H
(
(f1(X1) + Z)|X1

) − H
(
(f1(X1) + Z)|X2,X1

)
(2.8)

= H(Z|X1) − H(Z|X2,X1) (2.9)

= H(Z) − H(Z|X2) (2.10)

= MI(Z,X2). (2.11)

Here, (2.7) and (2.11) follow directly from the definition of mutual information; (2.9) is
because there is no uncertainty in f1(X1) once X1 is given; and (2.10) is due to the as-
sumption that Z is independent of X1 and conditionally independent of X1 given X2.
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These equations suggest that, to construct the next term, f2(X2), we can simply take the
partial residual Z = Y − f1(X1) and then fit a (univariate) GAM of Z onto X2.

To carry out this argument recursively, suppose Y = ηk(X1, . . . ,Xk) + Z, where Z and
(X1, . . . ,Xk) are independent as well as conditionally independent given Xk+1. A similar
argument leads to

MI(Y ;Xk+1|X1, . . . ,Xk) = MI(Z;Xk+1). (2.12)

Sequentially approximating the terms in (2.5), using f1(X1) + · · · + fk(Xk) as an approx-
imation to ηk(X1, . . . ,Xk) when estimating fk+1(Xk+1), leads to the first pass of the fa-
miliar back-fitting algorithm. However, the conditions given immediately before (2.7) and
(2.12) suggest that this approximation works only when X1, . . . ,Xk are independent. Sup-
pose that, for example, there is concurvity between Xk and X1, . . . ,Xk−1. Then, even if the
additive approximation holds up to ηk−1(X1, . . . ,Xk−1), the partial residual after adding
fk(Xk), namely Z = Y − ηk−1(X1, . . . ,Xk−1) − fk(Xk), will still not be independent of
(X1, . . . ,Xk−1), rendering equation (2.12) false. This is why the back-fitting algorithm
requires multiple passes and each function must be iteratively re-fitted. The re-fitting is
justified because the chain rules given in (2.5) and (2.6) do not depend on the order of the
Xj ’s.

2.3 PARTIAL GENERALIZED ADDITIVE MODELS

As we have just argued above, when the covariates are not independent, sequentially
constructing the terms in η(x) to approach the terms in (2.5), as in the first pass of the
backfitting algorithm, does not lead to the optimal result and iteration is needed. Partial
generalized additive models (pGAM) are based on an alternative way to approximate the
terms in (2.5). Instead of a recursive application of (2.6), pGAM is based on the recursive
application of the following:

MI(Y ;X1, . . . ,Xp) = MI(Y ;X1) + MI(Y ;X2, . . . ,Xp|X1). (2.13)

Again, suppose Y = f1(X1) + Z, where Z is independent of X1. But now, suppose
Xj = gj1(X1) + X(j) for j = 2, . . . , p, where X1 and (X(2), . . . ,X(p)) are independent
and also conditionally independent given Z. Then, instead of (2.7)–(2.11), we have

MI(Y ;X2, . . . ,Xp|X1)

= H(X2, . . . ,Xp|X1) − H(X2, . . . ,Xp|Y,X1)

= H
((

gj1(X1) + X(j)
)
j=2,...,p

|X1
) − H

((
gj1(X1) + X(j)

)
j=2,...,p

|f1(X1) + Z,X1
)

= H
(
X(2), . . . ,X(p)|X1

) − H
(
X(2), . . . ,X(p)|Z,X1

)
= H

(
X(2), . . . ,X(p)

) − H
(
X(2), . . . ,X(p)|Z)

= MI
(
Z;X(2), . . . ,X(p)

)
. (2.14)

This suggests a different procedure: first, estimate f1(X1) by fitting a (univariate) GAM
of Y onto X1; next, estimate g21, . . . , gp1 by smoothing X2, . . . ,Xp onto X1; then, recur-
sively fit Z onto the adjusted variables, (X(2), . . . ,X(p)), which are independent of X1.
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We refer to the functions gji as “partial effects,” which is also where the name “pGAM”
comes from.

In practice, we adopt a slightly modified procedure. Since Y − Z = f1(X1) is inde-
pendent of (X(2), . . . ,X(p)), we observe that the same function η will maximize both
MI(Y ;η(X(2), . . . ,X(p))) and MI(Z;η(X(2), . . . ,X(p))). Therefore, instead of using Z,
we can keep using the original response, Y , when fitting X(2), . . . ,X(p). For simple addi-
tive models, it is equally convenient whether we use Y or Z but, for generalized additive
models (GAMs), it is much more convenient to use the original response, Y , due to the
presence of a nonlinear link function h(·)—see equation (1.1). In this case, the equations
above are only an approximation, but we can still fit a GAM on the transformed variables,
which are independent, and avoid concurvity. Notice that back-fitting iterations are not
necessary for pGAM.

2.3.1 Variable Selection

When fitting a pGAM, the order in which we fit the variables makes a difference to the
space of possible models, and thus to the final model chosen. We choose to fit the variables
in order of decreasing mutual information with Y , so the variables with the highest mutual
information are included first. If, in some applications, a number of covariates are deemed
important a priori, we can start by fitting on these variables first. We incorporate a variable
selection procedure by only including in the final model those variables which significantly
improve the previous model.

A similar variable selection procedure based on the sequential maximization of MI (see
Section 2.2) can be derived for classic additive models; we refer to this as “stepwise addi-
tive model” or simply Stepwise AM. At each step, we enter the covariate having the largest
MI with the residual Z, and the procedure stops when the MI between Z and the remaining
covariates becomes insignificant. This is different from pGAM in that with pGAM we esti-
mate the MI between the original response variable and the transformed predictor, while in
Stepwise AM, we estimate the MI of the residual with the original predictor. As mentioned
before (Section 2.2), due to the additive approximation of the function ηk(X1, . . . ,Xk)

at each step, the residual Z is not necessarily independent of the variables already chosen.
Thus Stepwise AM is theoretically unsound when there is concurvity among the covariates.
It tends to include more covariates which have concurvity with the ones already included,
as we shall see later in simulations. We explain the problem with Stepwise AM in more
detail in the appendix, and give a simple simulation to confirm that this problem can cause
Stepwise AM to select the wrong variables.

2.3.2 Indirect Estimation of MI

Direct estimation of MI is not a trivial problem. Instead of directly estimating MI, we
work with a “proxy” of MI(Y ;X) based on (2.3) and (2.2):

̂MI(Y ;X) = max
η

MI(Y ;η(X)) = max
η

E
(
l(η(X),Y )

) − E logfY (Y ). (2.15)
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Use of this proxy can be justified by the fact that, if η(X) is a sufficient statistic for Y ,
then MI(Y ;η(X)) = MI(Y ;X) (Cover and Thomas 1991, section 2.10). For the purpose of
variable selection, we only need to compare the MIs of the covariates with Y . We therefore
only need to calculate the maximum value of the conditional log-likelihood. To do this, at
each step, we simply fit a univariate GAM of Y onto each remaining covariate and choose
the covariate with the largest log-likelihood (or the smallest deviance).

2.3.3 The pGAM Algorithm

The entire pGAM algorithm is laid out in Table 1. The procedure is similar in spirit
to the Gram–Schmidt method for linear least squares. At each step, pGAM first chooses
the best variable to enter the model. It then tests whether entering this variable into the
model provides a significant improvement to the current model. If it does, then pGAM
removes any functional effects of this variable from the remaining variables. As a result,
we obtain Xw , a group of variables that are approximately independent of this variable, as
candidates to enter the model at the next stage. If it does not, then pGAM moves on to the
next variable, and so on until all variables have been tried.

Table 1. The pGAM algorithm.

1. Initialization:
(a) Start with a null model m0 by fitting a GAM of Y onto a constant; let D0 be the deviance of m0.

(b) Center all Xj ’s to have mean zero; let

Xw = {
X(j) = Xj ; j = 1,2, . . . , p

}
be the initial set of “working variables.”

(c) Set D = D0 and m = m0.

2. Main procedure:
(a) For each working variable X(j) in Xw , fit a (univariate) GAM of Y onto X(j). Record the deviance, dj ,

as well as the degree of freedom for X(j), dfj. Collect di into a vector d.

(b) Choose i such that di is the smallest element of d. Remove di from d and X(i) from Xw . Form a new
model mnew by adding X(i) (with dfi degrees of freedom) into m; let Dnew be the deviance of mnew.

(c) Test whether Dnew is a significant improvement over D.

(d) If test 2(c) is not significant:

• If Xw is not empty, then go to step 2(b).

(e) If test 2(c) is significant:

• For every X(j) ∈ Xw (j �= i), fit X(j) = gji (X
(i)) + εj by smoothing X(j) onto X(i); record the fitted

functions gji ; and replace each X(j) with X(j) − gji (X
(i)) in Xw .

• Let D = Dnew; m = mnew.

• If Xw is not empty, then go to step 2(a).

3. Output: the model m and the gji ’s.
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In theory, the set Xw contains variables that are independent of the ones already in
the model, so the variable we select should be the best variable for improving our model.
Thus, we should be able to stop after the first rejected variable: that is, if test 2(c) is not
significant. However, since step 2(e)—the step that updates the set Xw—is not perfect in
practice, we might have selected the first variable to attempt because of some concurvity
that was not fully partialled out in step 2(e). Therefore, we might have selected a variable
that should not be in the model in preference to a variable that should be in the model.
Thus, we continue to check for additional variables to add in step 2(d).

Notice that the X(j)’s are generally not the same as the original covariates. Thus the final
model is no longer additive in terms of the original covariates. In order to fully interpret the
resulting model, pairwise plots of the functions gji can be used to give us a more complete
picture of the relationships among the covariates themselves.

2.3.4 Some Implementation Details

It does not matter which software we use to fit the GAMs. We use Simon Wood’s mgcv
package in R because of its efficiency in automatically choosing the smoothing parameters
or the degrees of freedom. Also, its ability to deal with numerical rank deficiency (a prob-
lem related to concurvity) makes it more suitable for us to compare with our procedure,
pGAM.

Section 2.3 suggests that, to add X(i) in step 2(b), we can simply insert into m the term
from the corresponding univariate GAM obtained in step 2(a). But since step 2(e)—the
“concurvity removal” step—is not perfect in practice, we implement step 2(b) by fitting a
multivariate GAM onto the existing covariates in m plus the newly added term, X(i), using
fixed degrees of freedom for all terms.

We use thin plate regression splines to fit each function. This ensures that m is nested
within mnew (Wood 2003) and makes it possible for us to use conventional hypothesis
testing in step 2(c), e.g., an F -test if Y is Gaussian and a χ2-test if Y is binomial or
Poisson. When fitting the functions gji in step 2(e), we use the same degree of freedom
for X(i) as when it entered the model mnew in step 2(b), because we found this produced
better results.

The entire pGAM algorithm involves fitting O(p2) univariate GAMs and O(p) mul-
tivariate GAMs. Univariate GAMs are cheap to fit. The exact complexity depends on the
particular method used. The O(p) multivariate GAMs are all of relatively low complexity,
since the covariates are made independent, or at least approximately independent, and the
degree of freedom for each covariate is pre-specified (see step 2(b)), so these fits are ex-
pected to converge quickly. Since pGAM tends to select parsimonious models, there will
often not be too many variables in these multivariate GAMs.

For the test in 2(c), we used a fixed significance level α, that we allow the users to
specify as a control parameter in the program. Since pGAM involves multiple testing, it
may be more appropriate to use a sequence of different significance levels, but we do
not expect this to significantly influence the simulation results below. We experimented a
little with different values of α in simulation 1, and we use these experiments to suggest
reasonable values to set for α in practice.
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3. SIMULATION STUDIES

In this section, we present two simulation experiments to illustrate the variable selection
effect of pGAM and compare it with Stepwise AM (see Section 2.3.1). We also compare the
predictive accuracy of pGAM with that of regular GAM (not Stepwise AM) using Simon
Wood’s mgcv package in R. For both simulations, the sample size is fixed at n = 500 for
both training and test data sets. The control parameter α for pGAM is set to be 0.001 in
both experiments.

3.1 SIMULATION 1

The first simulation is based on the illustrative example in Section 1.1. We use the
parameter σ1 in equation (1.2) to control the degree of concurvity between X1 and X5, and
consider three levels: strong concurvity (σ1 = 0.01), medium concurvity (σ1 = 0.5) and
weak concurvity (σ1 = 0.9). The response variable is generated by equation (1.3). That is,
the true model contains only X1 and X3, and the parameter σ2 controls the overall signal-
to-noise ratio (SNR). We also consider three levels: high SNR (σ2 = 0.1), medium SNR
(σ2 = 0.5) and low SNR (σ2 = 1.0).

Table 2 lists the number of times (out of 500 repetitions) various variable combinations
are selected by pGAM and by Stepwise AM. It can be seen that pGAM is effective at
selecting the correct variables in general. The only case where it had any difficulty was the
case of high concurvity and low SNR, where there is a good chance of selecting X5 instead
of X1. In the high concurvity case, X5 can be considered as a surrogate of X1, so this is
not a serious mistake.

Perhaps a somewhat counter-intuitive phenomenon is that Stepwise AM is more likely
to make the mistake of including X5 in addition to X1 when SNR is high. We explain this
in the Appendix.

Table 3 compares the predictive accuracy of pGAM and regular GAM (using the mgcv
package in R) in terms of their root mean squared errors (RMSE), and root prediction
squared errors (RPSE) on an independently generated test set. In general, pGAM performs

Table 2. Simulation study 1. Number of times different variable combinations are selected by pGAM (and by
Stepwise AM in brackets), out of 500 simulations. The notation “1/5” means either X1 or X5. A plus
(+) means one of the noise variables from {X2,X4}.

σ1 σ2 (1, 3) (1, 3, 5) (1/5, 3, +) (1) (5) (5, 3) (1, 3, 5, +)

0.01 0.1 497 (140) 2 (359) 1 (0) 0 (0) 0 (0) 0 (0) 0 (1)
0.5 497 (498) 1 (1) 1 (1) 0 (0) 0 (0) 1 (0) 0 (0)
1.0 425 (426) 0 (0) 2 (1) 1 (1) 0 (0) 72 (72) 0 (0)

0.50 0.1 498 (406) 1 (93) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0)
0.5 498 (499) 1 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0)
1.0 496 (498) 1 (0) 2 (1) 1 (1) 0 (0) 0 (0) 0 (0)

0.90 0.1 498 (472) 1 (27) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0)
0.5 498 (499) 1 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0)
1.0 496 (498) 1 (0) 2 (1) 1 (1) 0 (0) 0 (0) 0 (0)
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Table 3. Simulation study 1. Differences between GAM and pGAM in terms of root mean squared error (RMSE)
and root prediction squared error (RPSE) on independent test sets. “DIFF-RMSE” = RMSE(GAM) −
RMSE(pGAM) and likewise for “DIFF-RPSE,” so positive differences indicate that pGAM performed
better than GAM.

DIFF-RMSE DIFF-RPSE

Concurvity SNR mean (stdev) mean (stdev)

Strong High (σ2 = 0.1) 0.0033 (0.0036) 0.0005 (0.0010)
(σ1 = 0.01) Medium (σ2 = 0.5) 0.0072 (0.0189) 0.0008 (0.0040)

Low (σ2 = 1.0) −0.0018 (0.0486) −0.0011 (0.0098)

Medium High (σ2 = 0.1) 0.0022 (0.0037) 0.0004 (0.0009)
(σ1 = 0.50) Medium (σ2 = 0.5) 0.0142 (0.0199) 0.0021 (0.0043)

Low (σ2 = 1.0) 0.0274 (0.0400) 0.0038 (0.0083)

Weak High (σ2 = 0.1) 0.0021 (0.0036) 0.0003 (0.0009)
(σ1 = 0.90) Medium (σ2 = 0.5) 0.0134 (0.0192) 0.0019 (0.0041)

Low (σ2 = 1.0) 0.0264 (0.0397) 0.0036 (0.0082)

slightly better than GAM, but the differences are not significant. While concurvity greatly
affects GAM’s ability to estimate the functional effect of each component (see lower panels
in Figure 3), we do not in general expect it to significantly affect GAM’s ability to make
predictions. This is analogous to the effects of collinearity on parameter estimation versus
prediction in linear regression. The results here serve mostly as a reassurance that pGAM’s

Figure 3. Simulation study 1, strong concurvity (σ1 = 0.01) and medium SNR (σ2 = 0.5) case. Functional
effects as estimated by pGAM (upper panels) and by GAM (lower panels). Pointwise means together with 5th
and 95th percentiles (497 out of 500 simulations for pGAM and 500 simulations for GAM).
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improved ability at estimating the underlying functional effects does not come at a cost to
predictive capability.

Figure 3 provides a graphic illustration of how well pGAM and GAM estimate the
underlying functional effects in the “strong concurvity, medium SNR” case (σ1 = 0.01,
σ2 = 0.5). Table 2 shows that, in this case, pGAM picks the right variable combination
(X1,X3) 497 times (out of 500 simulations). Conditional on pGAM picking the right vari-
able combination, the upper panels in Figure 3 show the functional effects of X1 and X3

as estimated by pGAM. The lower panels in Figure 3 show the similar pictures for GAM
(from all 500 simulations) on X1,X3 and X5—the estimated effects of X2 and X4 are ba-
sically 0 and not shown. Here, we can clearly see that GAM is significantly affected by the
concurvity between X1 and X5.

We also experimented a little with different significance levels. We chose α = 0.001
because that worked well—only producing at most 1/500 false negatives. We also tried
setting α = 0.0001, and found that (on the same data set) this increased the false negative
rate of all three low SNR cases to 17/500. Therefore, we do not recommend setting α to
be smaller than 0.001 unless there is reason to believe that SNR is high.

3.2 SIMULATION 2

The second simulation is designed to study a more complicated situation. First, six iid
covariates Xj (j = 1, . . . ,6) are generated uniformly on the interval [0,1]. Then, three
more covariates are generated to have various degrees of concurvity with the first six, as
follows:

X7 = X3
6 + N(0, σ 2

1 ),

X8 = X2
1 + N(0, σ 2

1 ),

X9 = X2X3 + N(0, σ 2
1 ).

The response variable Y is generated by

Y = 2X3
1 + 2 sinX3 + exp(X4) + X2

8 + N(0, σ 2
2 ).

That is, the true model contains only {X1,X3,X4,X8}, and there is concurvity among three
sets of variables: X6 and X7, neither of which is included in the true model; X1 and X8,
both of which are included in the true model; and finally, X2,X3 and X9, with only one of
them (X3) being included in the true model. The parameters σ1 and σ2 play the same roles
as in Simulation 1 and the same levels are considered.

Table 4 lists the number of times (out of 500 repetitions) different models are selected
by pGAM and by Stepwise AM. In cases of medium and weak concurvity, both procedures
perform well. In cases of strong concurvity (σ1 = 0.01), there is a much higher chance for
pGAM to include only one of X1 and X8, but this can hardly be called a mistake because,
when concurvity is strong, X1 and X8 are almost interchangeable, so either one is adequate.
On the other hand, in the case of strong concurvity and high SNR (σ1 = 0.01, σ2 = 0.1),
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Table 4. Simulation study 2. Number of times different variable combinations are selected by pGAM (and by
Stepwise AM in brackets), out of 500 simulations. The notation “1/8” means either X1 or X8. A plus
(+) means ≥1 noise variable from XN = {X2,X5,X6,X7}, and a star (∗) means ≥0 noise variables
from XN , e.g., 1348+ means models including X1,X3,X4,X8 and one or more variables from XN ,
while (1/8)349∗ includes models 1349, 8349, 1349+ and 8349+.

σ1 σ2 (1/8)34 (1/8)34+ (1/8)349∗ 1348 1348+ 13489∗ 489

0.01 0.1 428 (4) 2 (0) 0 (1) 70 (360) 0 (3) 0 (132) 0 (0)
0.5 498 (457) 2 (10) 0 (1) 0 (32) 0 (0) 0 (0) 0 (0)
1.0 492 (490) 3 (10) 4 (0) 0 (0) 0 (0) 0 (0) 1 (0)

0.50 0.1 0 (0) 0 (0) 0 (0) 496 (494) 4 (6) 0 (0) 0 (0)
0.5 0 (0) 0 (0) 0 (0) 498 (496) 2 (4) 0 (0) 0 (0)
1.0 0 (0) 0 (0) 0 (0) 496 (495) 4 (5) 0 (0) 0 (0)

0.90 0.1 0 (0) 0 (0) 0 (0) 495 (495) 5 (5) 0 (0) 0 (0)
0.5 0 (0) 0 (0) 0 (0) 500 (493) 0 (7) 0 (0) 0 (0)
1.0 0 (0) 0 (0) 0 (0) 497 (493) 2 (7) 1 (0) 0 (0)

there is a much inflated chance for Stepwise AM to include X9, which has some concurvity
with X3. This is a far more serious mistake, because X9 has much weaker concurvity with
X3 than the concurvity between X1 and X8, so X3 and X9 are not interchangeable.

Finally, Table 5 shows the differences between pGAM and regular GAM in terms of
their RMSEs, and RPSEs on an independently generated test set. Most differences are not
statistically significant, except in two cases, where pGAM has significantly lower RMSE
and RPSE than GAM.

4. REAL DATA EXAMPLES

We now illustrate the use of pGAM with two real-data examples. In the first example,
the response variable Y is Gaussian; in the second one, it is Poisson.

Table 5. Simulation study 2. Differences between GAM and pGAM in terms of root mean squared error (RMSE)
and root prediction squared error (RPSE) on independent test sets. “DIFF-RMSE” = RMSE(GAM) −
RMSE(pGAM) and likewise for “DIFF-RPSE,” so positive differences indicate that pGAM performed
better than GAM. A star (∗) in the last column indicates the differences are statistically significant.

DIFF-RMSE DIFF-RPSE

Concurvity SNR mean (stdev) mean (stdev) SIG

Strong High (σ2 = 0.1) 0.0085 (0.0056) 0.0024 (0.0022)
(σ1 = 0.01) Medium (σ2 = 0.5) −0.0241 (0.0213) −0.0045 (0.0055)

Low (σ2 = 1.0) −0.0435 (0.0434) −0.0076 (0.0101)

Medium High (σ2 = 0.1) 0.1584 (0.0391) 0.1101 (0.0360) ∗
(σ1 = 0.50) Medium (σ2 = 0.5) 0.0952 (0.0467) 0.0318 (0.0223)

Low (σ2 = 1.0) 0.0524 (0.0610) 0.0140 (0.0203)

Weak High (σ2 = 0.1) 0.1024 (0.0184) 0.0668 (0.0138) ∗
(σ1 = 0.90) Medium (σ2 = 0.5) 0.0438 (0.0250) 0.0130 (0.0103)

Low (σ2 = 1.0) 0.0049 (0.0440) 0.0014 (0.0151)
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4.1 OZONE DATA

We start by analyzing the ozone data set, a well-known and favorite data set widely used
as a benchmark in the nonparametric regression and GAM literature (e.g., Breiman and
Friedman 1985; Donnell, Buja, and Stuetzle 1994). The data set contains ozone concentra-
tion and eight other meteorological measurements for the Los Angeles area on 330 days
in 1976 (Table 6). We treat “ozone” as the response variable and all other variables as
covariates. We also standardize all variables to have mean zero and variance one before
conducting the analysis.

Regardless of whether the control parameter α is set to 0.1, 0.05, or 0.01, the same set
of covariates is selected by pGAM: “temp,” “ibh,” “humidity,” “doy,” “vis,” and “dpg,” in
this order. Figure 4 shows the estimated effects of these six variables estimated by pGAM
and by regular GAM; the estimated effects of the other three variables by regular GAM are
essentially linear and not shown.

To verify that pGAM is an appropriate method for these data, we performed a 10-fold
cross-validation, and got a mean squared prediction error (MSPE) of 0.265, with standard
deviation (SD) 0.021, for pGAM, compared to a MSPE of 0.206 with SD 0.018 for GAM.
It is not surprising, or overly disappointing that GAM is able to achieve better predictive
accuracy, since GAM-fitting algorithms were developped to maximize predictive accuracy,
while pGAM focusses on model simplification and variable selection. Therefore, the fact
that the predictive errors are comparable is satisfactory, and indicates to us that pGAM is a
suitable method for studying this data set. Nevertheless, we hope that future improvements
to pGAM-fitting algorithms might be able to match, or perhaps even surpass, GAM-fitting
methods for predictive accuracy.

The most significant differences between the estimated effects are: (i) the effect of
“temp” is much closer to a simple linear effect in pGAM; (ii) for GAM, “humidity” is
not a significant covariate (p-value = 0.06), whereas, for pGAM, after removing the par-
tial effects of “temp” and “ibh,” “humidity” becomes a significant covariate (p-value =
0.0003)—visually, we can also see that the effect of “humidity” is much less flat in pGAM;
(iii) the effects of “doy” and “dpg” as estimated by pGAM peak at different locations from
those estimated by GAM (more on this below).

Donnell, Buja, and Stuetzle (1994, pp. 1642–1646) analyzed this data set and found
the following concurvities: given “ibh,” there is a positive relationship between “temp”
and “ibt”; given “temp,” there is a negative relationship between “ibh” and “ibt”; and the

Table 6. Variables in the ozone data set.

Name Description Name Description

ozone Logarithm of ozone concentration humidity Humidity (%)
temp Sandburg Air Force Base temperature wind Wind speed (mph)
dpg Daggert pressure gradient ibh Inversion base height
ibt Inversion base temperature vis Visibility in miles
vh Vandenburg 500 millibar pressure height doy Day of the year
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Figure 4. Ozone data set. Effects of covariates estimated by pGAM (1st and 3rd rows) and by regular GAM
(2nd and 4th rows). The regular GAM also includes three other variables: “vh,” “wind,” and “ibt”; their estimated
effects are essentially linear and not shown.

covariates “temp” and “vh” tend to increase together. We can see that pGAM has success-

fully detected and removed these concurvities: the variables “temp” and “ibh” are included

whereas the variables “ibt” and “vh” are left out of the model. Donnell, Buja, and Stuet-

zle (1994) also found that there is a strong and complex (nonlinear) relationship involving
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“ozone,” “temp,” “dpg,” and “doy.” This suggests that “temp,” “dpg,” and “doy” are all
important covariates when “ozone” is treated as a response variable in a regression model.
Indeed, pGAM includes all of them.

Breiman and Friedman (1985) analyzed this data set with their algorithm, ACE. There
is good agreement between the variables selected by pGAM and by ACE (see Breiman
and Friedman 1985, figure 5), except that ACE excluded the variable “humidity.” Breiman
and Friedman (1985, p. 587) also reported an extremely interesting finding: if “doy” was
used as the single covariate, then its nonlinear effect on ozone actually peaked in late
July and early August, whereas, in the ACE model together with other covariates, the
peak effect was shifted to the beginning of May (see their figure 5(f) and (g)). This was
“puzzling to [them], since the highest pollution days occur from July to September.” Our
analysis using pGAM suggests that their puzzle was caused by subtle concurvities among
the covariates. After removing these concurvities, we see (Figure 4) that the peak effect of
“doy” does in fact occur much later than May and somewhere in late July, which agrees
with common sense. This is a vivid real-life example showing how concurvity can “mess
up” the estimated functional effects in regular GAM and how pGAM can fix this problem.

4.2 AIR POLLUTION AND MORTALITY DATA

GAMs are widely used by environmental epidemiologists to study the relationship be-
tween mortality and air pollution (e.g., Ramsay, Burnett, and Krewski 2003). Typically, the
response variable, yt , is the number of deaths or incidents (e.g., pneumonia) in a given day,
which is modelled as Poisson(λt ) with

log(λt ) = f (t) +
d∑

j=1

gj (xjt ) + h(zt ), (4.1)

where xjt (j = 1,2, . . . , d) are daily measurements of d covariates, such as temperature
and humidity, and the term zt is the daily concentration of a particular type of air pollutant
that is of interest, such as carbon monoxide (CO), nitrogen dioxide (NO2) or particulate
matter. According to Ramsay, Burnett, and Krewski (2003), there often exists strong con-
curvity between the time component f (t) and the pollution component h(zt ).

The web site http://www.ihapss.jhsph.edu/data/NMMAPS/R/ contains daily mortality,
air pollution, and weather data originally assembled as part of the National Mortality, Mor-
bidity, and Air Pollution Study (NMMAPS). Here, we analyze a small subset of this data
to further illustrate our methodology. We use data for the city of Philadelphia between
1995 and 2000 and consider a simple model with four possible covariates. Table 7 lists our
variables using the notation of model (4.1).

To simplify matters even further, we also specify the degrees of freedom for all the non-
linear functions a priori: df (time) = 20,df (temp) = 3,df (dptp) = 3, and df (pollutant) =
2. These specifications are suggested to us by the principal author of Ramsay, Burnett, and
Krewski (2003) as being typical in the environmental epidemiology literature.

Again, we used 10-fold cross-validation to check the suitability of pGAM for this data
set. We found that pGAM had a MSPE of 8.93, with SD 0.19, compared to a MSPE of 8.90
and SD 0.19 for GAM. This is not a significant difference. This is particularly pleasing,

http://www.ihapss.jhsph.edu/data/NMMAPS/R/
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Table 7. Variables in the Philadelphia air pollution and mortality data set.

Variable Name Description

yt mortality Number of non-accidental deaths in age group 65–75
t time Measured in days, i.e., 1,2, . . . ,2191
zt pollutant Daily NO2 concentration
x1t temp Average daily temperature
x2t dptp Daily dewpoint temperature

because the theory behind pGAM is based on additive models (identity link function), so to
see it working well even for generalized additive models (nonlinear link function) is very
encouraging.

After fitting a regular GAM on this data set, we find that the most significant additive
components are f (t) and h(zt ), with p-values = 0.000 and 0.020, respectively; the com-
ponent g1(x1t ) is marginally significant (p-value = 0.030); and the component g2(x2t )

is statistically insignificant (p-value = 0.745). Not surprisingly, pGAM selects only two
components, f (t) and h(zt ), with p-values = 0.000 and 0.002, respectively. Notice that
the (nominal) significance level for the pollution component h(zt ) is ten times more dra-
matic in pGAM, as a result of having adjusted for various concurvity effects among the
covariates.

Figure 5 shows all the partial effects. It is perhaps not surprising that we should find
a strong nonlinear and periodic relationship between t (time) and x1t (temp) as well as
between t (time) and x2t (dptp). This suggests the nonlinear functions g1(x1t ) and g2(x2t )

are redundant given that the function f (t) is included in the model, which is why pGAM
excludes them. Figure 5 also shows the concurvity effect between t (time) and zt (pollu-
tant).

The final results from pGAM are displayed in Figure 6. Overall, our analysis suggests
that mortality was high in winter and low in summer, but it was slowly decreasing during
the period of 1995–2000. Most importantly, we find that, after adjusting for the strong
seasonal effects, nitrogen dioxide pollution still appears to significantly increase mortality
for the elderly population.

5. SUMMARY AND DISCUSSIONS

Using MI as a conceptual framework, we studied fitting GAMs when the covariates
exhibit concurvity. First, we explained that fitting a GAM is equivalent to maximizing
MI. Next, we explained how the back-fitting algorithm starts by attempting to do it se-
quentially. Then, we proposed an alternative fitting method, pGAM, which incorporates
a variable selection procedure and gives better estimates of the covariates’ functional ef-
fects when concurvity exists. The advantages of pGAM are illustrated and confirmed by
simulation experiments and real-data examples. These advantages are especially important
when the main purpose behind using GAMs is to find the most important covariates and
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to understand their functional effects. Since pGAM is essentially a forward stepwise al-
gorithm, we expect it to scale well to problems where the number of potential covariates
is large. From the experimentation with significance levels, for problems with up to about
100 variables, pGAM can be expected to have reasonably small false positive and false
negative rates. For larger problems, we expect pGAM to include a small number of noise
variables (a common problem shared by all variable selection procedures that are based on
hypothesis tests), but it is still useful as a first-step variable selection tool. Unlike other ex-
isting GAM fitting procedures which are mostly based on incorporating proper shrinkage
strategies to obtain better numeric stability and predictive accuracy, pGAM explicitly deals
with the problem of concurvity by transforming the covariates (to remove concurvity) and
selecting informative variables. The main focusses are on model simplification and inter-
pretation. Our simulations and real data examples also show that pGAM has comparable
predictive accuracy to the current best GAM fitting procedure.

Figure 5. Philadelphia air pollution and mortality data. Partial effects estimated by pGAM.

Figure 6. Philadelphia air pollution and mortality data. Effects of covariates estimated by pGAM. Only two
covariates, t (time) and zt (pollutant), are selected by pGAM.
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Accurately estimating the mutual information between two random variables X and Y

remains a difficult task. In this article, we made a useful observation that, if Y given X = x

has an exponential-family distribution with sufficient statistic being a smooth function of
x, then MI(Y ;X) can be estimated by first maximizing the conditional log-likelihood
of Y given X and then estimating the entropy of Y alone; see equation (2.15). Here,
a closely related procedure is Breiman and Friedman’s alternating conditional expecta-
tions (ACE; Breiman and Friedman 1985). Given two variables X and Y , ACE finds
transformations θ(Y ) and φ(X) to maximize the correlation between θ(Y ) and φ(X):
ρm ≡ maxθ,φ corr(φ(X), θ(Y )). Clearly, one can also use ρm as a measure of dependence
between X and Y .

We end by briefly discussing some possible further improvements to pGAM. Firstly, the
assumption that X2 = g21(X1) + X(2) where X(2) is independent of X1 may not always
hold. In this case, it may not be most appropriate to find the transformed variable X(2)

simply by fitting a univariate GAM of X2 onto X1 and taking the residual; more work can
be done on how to better obtain the transformed variable X(2).

Secondly, the approach of ordering candidate variables by their mutual information with
Y , while a natural heuristic, can sometimes lead us to include an inferior variable. There-
fore, it may be desirable to incorporate a method for deleting variables already in the model,
if it turns out that they can be replaced by the ones added later.

SUPPLEMENTAL MATERIALS

Appendix: A description of the theoretical problem with Stepwise AM and a simulation
demonstrating the problem. (Appendix.pdf)

Computer code: The R file “pGAMnew.R” contains the function for fitting pGAMs.
The R file “StepAM.R” contains the function for selecting variables using Stepwise
AM. The R files “PGAMsimu1.R” and “PGAMsimu2.R” contain the code for running
pGAM, and GAM using Simon Wood’s mgcv package, for Simulations 1 and 2, re-
spectively. The R files “simu1stepAM.R” and “simu2stepAM.R” contain the code for
variable selection using Stepwise AM, for Simulations 1 and 2, respectively. (code.zip)
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