
Numerical Solutions of Boundary Value Problems

In these note we will consider the solution to boundary value problems of the form

y′′ = f(x, y, y′) , a < x < b , (1)

y(a) = A , (2)

y(b) = B . (3)

We will consider two common methods, shooting and finite differences. In the shooting method, we consider the
boundary value problem as an initial value problem and try to determine the value y′(a) which results in y(b) = B.
Finite differences converts the continuous problem to a discrete problem using approximations of the derivative. As
in class I will apply these methods to the problem

y′′ = −
(y′)2

y
, y(0) = 1 , y(1) = 2 .

The exact solution is given by y =
√
3x+ 1.

1 Shooting - Secant Method

For the shooting method, we consider the problem

y′′ = f(x, y, y′) , (4)

y(a) = A , (5)

y′(a) = t , (6)

We let
m(t) = f(b; t)−B

where f(b; t) is the solution to (4) using the value t. We wish to find a zero of m(t) to solve the boundary value
problem. In this case we use the secant method to locate the zero. Recall, to solve f(x) = 0 using the secant method
we make successive approximations using the iteration

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)
f(xn) .

We need two guess to start the process, then we just proceed until the iterations converge. Here is the code I used
to approximate the solution to (1) using the shooting secant method:

function [x,y]=bvpsec(t1,t2)

[x1,y1]=ode45(@odes,[0,1],[1,t1]);

[x2,y2]=ode45(@odes,[0,1],[1,t2]);

i=1;

m1=y1(end,1)-2;

m2=y2(end,1)-2;

while(abs(t2-t1)>0.000001)

tmp=t2

t2=t1-(t1-t2)/(m1-m2)*m1;

t1=tmp;

[x1,y1]=ode45(@odes,[0,1],[1,t1]);

[x2,y2]=ode45(@odes,[0,1],[1,t2]);

m1=y1(end,1)-2;

m2=y2(end,1)-2;

i=i+1;

end

i

x=x2;

y=y2;
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end

function yp=odes(t,y)

yp=zeros(2,1);

yp(1)=y(2);

yp(2)=-y(2)^2/y(1);

end

If we run the code with input parameters 1 and 2, it takes 6 iterations to get the solution shown in figure 1
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Figure 1: Approximation to the solution of (1) using the shooting method in combination with the secant method.
The plot includes y(x) as well as y′(x).

2 Shooting Method - Newton’s Method

Newton’s root finding method is much faster and can produce more accurate results then the secant method. The
iteration used to find a solution to f(x) = 0 is given by

xn+1 = xn −
f(xn)

f ′(xn)
.

However to apply this method to find a root of m(t), we must know m′(t). Here m(t) is defined in terms of the
solution to differential equation evaluated at a point b. In general, we can’t solve the differential equation or we
wouldn’t need the numerical approximation. So we must find a method of approximating m′(t).

We first note that
m(t) = f(b; t)−B

so that

m′(t) =
∂f(x; t)

∂t

∣

∣

∣

∣

x=b

.

Now we will consider f as a function of the three variables x, y and y′, for the moment ignoring the relationship
between y and y′. We can then differentiate the following relation by t

y′′ = f(x, y, y′)

to get
∂y′′

∂t
=

∂f

∂y

∂y

∂t
+

∂f

∂y′
∂y′

∂t
.

We can let z(x, t) = ∂
∂t
f(x, t). Now z satisfies the boundary value problem

z′′ =
∂f

∂y
z +

∂f

∂y′
z′ , z(0) = 0 , z′(0) = 1 .
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Now m′(t) = z(b). So if we wish to apply this method to our sample problem (1), we must solve the system

y′ = u ,

u′ = −
u2

y
,

z′ = v ,

v′ =
u2

y2
v − 2

u

y
v ,

y(0) = 1 ,

u(0) = t ,

z(0) = 0 ,

v(0) = 1 .

Then we can approximate m′(t) by z(1) and use Newton’s formula to update the solution. The code is given below:

function [x,y]=bvpnewt(t1)

[x,y]=ode45(@odes,[0,1],[1,t1,0,1]);

i=1;

m=y(end,1)-2;

t2=t1-m/y(end,3);

while(abs(t2-t1)>0.000001)

t1=t2;

[x,y]=ode45(@odes,[0,1],[1,t1,0,1]);

m=y(end,1)-2;

t2=t1-m/y(end,3);

i=i+1;

end

y=y(:,1:2);

i

end

function yp=odes(t,y)

yp=zeros(4,1);

yp(1)=y(2);

yp(2)=-y(2)^2/y(1);

yp(3)=y(4);

yp(4)=y(2)^2/y(1)^2*y(3)-2*y(2)/y(1)*y(4);

end

Running this code with an initial t = 1 takes 4 iterations to get to the same accuracy as the secant method. This
method must solve a larger system, so each iteration is more work. However fewer iterations are required. The
output is almost identical to the shooting method, so there is no need provide a graph.

3 Finite Difference Method

For the finite difference method, we pick N + 1 discrete points in the interval [a, b] by

xi = a+ i∆x , i = 0 . . . N , ∆x =
b− a

N
.

and we let yi be our approximation of y(xi). In the solution to the heat equation notes we show that

y′′(xi) ∼
yi+1 − 2yi + yi−1

∆x2
, (7)

y′(xi) ∼
yi+1 − yi−1

2∆x
. (8)
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Using the boundary conditions y0 = A and yN = B together with (7), we get N + 1 equations in N + 1 unknowns.
The equations are nonlinear and we must use Newton’s method to find a solution. Recall Newton’s method for
systems is given by

~xn+1 = ~xn −D~f( ~xn)
−1 ~f( ~xn) .

We can now apply the finite difference approximation to (1).

~F =



















y0 − 1
...

yi+1−2yi+yi−1

∆x2 +

(

yi+1−yi−1
2∆x

)2

yi

...
yN − 2



















The nonzero entries of the Jacobian are then

Ji,i−1 =
1

∆x2

(

1−
2(yi+1 − yi−1

4yi

)

,

Ji,i = −
2

∆x2
,

Ji,i+1 =
1

∆x2

(

1 +
2(yi+1 − yi−1

4yi

)

,

for i = 1, . . . , N − 1. Here is the code used to implement the method:

function [x,y]=findiff(n)

x=linspace(0,1,n);

y=zeros(n,1);

for i=1:n

y(i)=x(i)+1;

end

dy=-J(y)\f(y);

while(norm(dy,2)>0.001)

y=y+dy;

dy=-J(y)\f(y);

end

end

function y1=f(y)

n=length(y);

h=1/n;

y1=zeros(n,1);

y1(1)=y(1)-1;

for i=2:n-1

y1(i)=(y(i-1)-2*y(i)+y(i+1))/h^2+(y(i+1)-y(i-1))^2/y(i)/4/h^2;

end

y1(n)=y(n)-2;

end

function J1=J(y)

n=length(y);

h=1/n;

J1=zeros(n,n);

J1(1,1)=1;

for i=2:n-1

4



J1(i,i+1)=1/h^2*(1+(y(i+1)-y(i-1))/2/y(i));

J1(i,i)=1/h^2*(-2-(y(i+1)-y(i-1))^2/4/y(i)^2);

J1(i,i-1)=1/h^2*(1-(y(i+1)-y(i-1))/2/y(i));

end

J1(n,n)=1;

end

The resulting approximation is very close to those obtained with the shooting method. We will consider the error.
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Figure 2: Error in shooting code. We note that the solution vector contains 13 points
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Figure 3: Error for finite difference code using 50 points.

We can see that we get much better results from the shooting code with much fewer points.

4 Difficult Boundary Value Problem

We will now consider a more difficult problem

y′′ − y + y2 = 0 , y′(0) = 0 , y → 0 as x → ∞ , y > 0 . (9)

This problem has the unique solution y = 3

2
sech2(x/2). Without the last restriction we also have the zero solution.

So we must somehow deal with the non-uniqueness. The other problem we face is the boundary condition at infinity.
The methods considered so far don’t allow for a condition at ∞. If we try to enforce y(R) = 0 for some large R, we
will find the solution is very sensitive to the choice or R and we will fail. Instead we note that if the solution decays,
at x = R ≫ 1, y2 ≪ y. So at R, the equation is approximately y′′ − y = 0 and y = Ce−x. So at x = R, we will
impose the boundary condition

y′(R) = −y(R)

Here is the modified shooting method (secant version) code:
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function [x,y]=bvpsech(t1,t2)

[x1,y1]=ode2r(@odes,[0,5],[t1,0]);

[x2,y2]=ode2r(@odes,[0,5],[t2,0]);

i=1;

m1=y1(end,1)+y1(end,2);

m2=y2(end,1)+y2(end,2);

while(abs(t2-t1)>0.000001)

tmp=t2

t2=t1-(t1-t2)/(m1-m2)*m1;

t1=tmp;

[x1,y1]=ode2r(@odes,[0,5],[t1,0]);

[x2,y2]=ode2r(@odes,[0,5],[t2,0]);

m1=y1(end,1)+y2(end,2);

m2=y2(end,1)+y2(end,2);

i=i+1;

end

i

x=x2;

y=y2;

end

function yp=odes(t,y)

yp=zeros(2,1);

yp(1)=y(2);

yp(2)=y(1)-y(1)^2;

end

Notice the change to the initial conditions and the function m(t). Now we set the initial value of y to t and set
y′(0) = 0. We have defined m(t) = f(5) − f ′(5). The choice of x = 5 for our right endpoint is arbitrary, but if we
make it too large, we will have stability problems and if we make it too small, our approximation y′(x) = −y(x) will
not be valid. If we run this code with bad initial choices of t1 and t2 we will find it converges to the wrong solution.
Namely y ≡ 0 or y ≡ 1. We need a good approximation to y(0) to get the right solution. If we multiply (9) by y′

and perform the following manipulations,

y′y′′ − yy′ + y2y′ = 0 ,

d

dx

(

1

2
(y′)2 −

1

2
y2 +

1

3
y3
)

= 0 ,

1

2
(y′)2 −

1

2
y2 +

1

3
y3 = C Some constant C .

Since y(∞) = y′(∞) = 0, the constant for the orbit we are interested in is 0. Now when x = 0, we have y′(0) = 0 so,

−
1

2
y(0)2 +

1

3
y(0)3 = 0

so y(0) = 0 or y(0) = 3

2
. For a non-zero solution, we use y(0) = 1.5 In the code we try t1=1.4 and t2=1.6 and we

get a good approximation. It takes 113 iterations however. The finite difference code for solving (9) is given below:

function [x,y]=findiff2(n)

x=linspace(0,5,n);

y=zeros(n,1);

for i=1:n

y(i)=1.5/cosh(x(i)/2);

end
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Figure 4: Output from the shooting code for (9). The solid lines represent the codes output. The crosses are the
exact solution.

dy=-J(y)\f(y);

while(norm(dy,2)>0.001)

y=y+dy;

dy=-J(y)\f(y);

end

end

function y1=f(y)

n=length(y);

h=5/n;

y1=zeros(n,1);

y1(1)=2*(y(2)-y(1))/h^2-y(1)+y(1)^2;

for i=2:n-1

y1(i)=(y(i-1)-2*y(i)+y(i+1))/h^2-y(i)+y(i)^2;

end

y1(n)=(2*y(n-1)-2*h*y(n)-2*y(n))/h^2-y(n)+y(n)^2;

end

function J1=J(y)

n=length(y);

h=5/n;

J1=zeros(n,n);

J1(1,1)=-2/h^2-1+2*y(1);

J1(1,2)=2/h^2;

for i=2:n-1

J1(i,i+1)=1/h^2;

J1(i,i)=-2/h^2-1+2*y(i);

J1(i,i-1)=1/h^2;

end

J1(n,n-1)=2/h^2;

J1(n,n)=-2/h-2/h^2-1+2*y(n);

end

The code does work, however I have given it the exact solution as a guess. So far it hasn’t converged for any other
guess. This may be a bug or it may be that this problem is very sensitive.
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