
INFINITE RANDOM GEOMETRIC GRAPHS
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Abstract. We introduce a new class of countably infinite random geometric graphs,
whose vertices V are points in a metric space, and vertices are adjacent independently
with probability p ∈ (0, 1) if the metric distance between the vertices is below a given
threshold. If V is a countable dense set in Rn equipped with the metric derived from
the L∞-norm, then it is shown that with probability 1 such infinite random geometric
graphs have a unique isomorphism type. The isomorphism type, which we call GRn, is
characterized by a geometric analogue of the existentially closed adjacency property, and
we give a deterministic construction of GRn. In contrast, we show that infinite random
geometric graphs in R2 with the Euclidean metric are not necessarily isomorphic.

1. Introduction

The last decade has seen the emergence of the study of large-scale complex networks
such as the web graph consisting of web pages and the links between them, the friendship
network on Facebook, and networks of interacting proteins in a cell. Several new random
graph models were proposed for such networks, and existing models were modified in order
to fit the data gathered from these real-life networks. See the books [3, 8] for surveys
of such models. A recent trend in stochastic graph modelling is the study of geometric
graph models. In geometric graph models, vertices are embedded in a metric space, and
the formation of edges is influenced by the relative position of the vertices in this space.
Geometric graph models have found applications in modelling wireless networks (see [12,
13]), and in modelling the web graph and other complex networks ([1, 11]). In real-world
networks, the underlying metric space is a representation of the “hidden reality” that leads
to the formation of edges. Thus, for the World Wide Web, web pages are embedded in a
high dimensional topic space, where pages that are positioned close together in the space
contain similar content.

The graph model we study is a variation on the random geometric graph, where vertices
are chosen at random according to a given probability distribution from a given metric
space, and two vertices are adjacent if the distance between the two vertices is no larger
than some fixed real number. Random geometric graphs have been studied extensively in
their own right (see, for example, [2, 9] and the book [15]).

Analysis of stochastic graph models usually focusses on asymptotic results, which hold for
cases where the number of vertices is sufficiently large. An alternative approach is to study
the infinite limit; that is, the infinite graph that results when the number of vertices reaches
infinity. Studying the infinite limit is a well-known tool for studying scientific models, and
it can help to recognize large-scale structure and long-term behaviour (see [4, 14]). In this
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paper, we study the infinite limit of a geometric graph model that is a geometric extension
of the classic random graph model G(N, p).

One of the most studied examples of an infinite limit graph arising from a stochastic model
is the infinite random graph. The probability space G(N, p) consists of graphs with vertices
N, so that each distinct pair of integers is adjacent independently with a fixed probability
p ∈ (0, 1). Erdős and Rényi [10] discovered that with probability 1, all G ∈ G(N, p) are
isomorphic. A graph G is existentially closed (or e.c.) if for all finite disjoint sets of vertices
A and B (one of which may be empty), there is a vertex z /∈ A∪B adjacent to all vertices
of A and to no vertex of B. We say that z is correctly joined to A and B. The unique
isomorphism type of countably infinite e.c. graph is named the infinite random graph, or
the Rado graph, and is written R. See the surveys [6, 7] for additional background on R.

We now introduce the geometric graph model on which this paper is based. Consider a
metric space S with distance function

d : S × S → R,

δ ∈ R+, a countable subset V of S, and p ∈ (0, 1). The Local Area Random Graph
LARG(V, δ, p) has vertices V, and for each pair of vertices u and v with d(u, v) < δ, an edge
is added independently with probability p. Note that V may be either finite or infinite.
The LARG model generalizes well-known classes of random graphs. For example, special
cases of the LARG model include the random geometric graphs (where p = 1), and the
binomial random graph G(n, p) (where S has finite diameter d, and δ ≥ d).

In the case V is infinite, our goals are to investigate what adjacency properties are
satisfied by graphs generated by the LARG model, and determine when the model generates
a unique isomorphism type of countable graph. We prove that with probability 1, graphs
in LARG(V, δ, p) satisfy a certain adjacency property which is a metric analogue of the
e.c. property; see Theorem 1. The so-called geometric e.c. property requires that vertices z
correctly joined to A and B may be found as close as we like to points in V. Explicit examples
of graphs with the geometric e.c. property are given in Theorem 2. For metric spaces such as
Rn with the L∞-metric, the geometric e.c. property gives rise to a unique isomorphism type
of graph; see Theorems 6, 9, and 10. The main tool here is a generalization of isometry
called a step-isometry. Our results are sensitive to the metric used. Non-isomorphism
results for other metrics are given in Section 4. In particular, we show in Theorem 15 that
in R2 with the Euclidean metric, there exist non-isomorphic geometric e.c. graphs.

All graphs considered are simple, undirected, and countable unless otherwise stated. If S
is a set of vertices in G, then we use the notation G[S] for the subgraph of G induced by S.
We use the notation G ≤ H if G is an induced subgraph of H. We refer to an isomorphism
type as isotype, and denote isomorphic graphs by G ∼= H. Given a metric space S with
distance function d, define the (open) ball of radius δ around x by

Bδ(x) = {u ∈ S : d(u, x) < δ}.

We will sometimes just refer to Bδ(x) as a ball. A subset V is dense in S if for every point
x ∈ S, every ball around x contains at least one point from V . We refer to u ∈ S as points
or vertices, depending on the context. Throughout, let N denote the non-negative natural
numbers, and N+ denote the positive natural numbers. For a reference on graph theory the
reader is directed to [16], while [5] is a reference on metric spaces.
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2. Geometrically e.c. graphs

As noted in the introduction, the unique isotype of the infinite random graph R is charac-
terized by the e.c. property. In this section we define a geometric analogue of this property.
As will be demonstrated in Section 3, this property characterizes the unique isotype of
graphs obtained from countable dense sets in Rn, provided we consider a particular metric.

Let G = (V,E) be a graph whose vertices are points in the metric space S with metric
d. The graph G is geometrically e.c. at level δ (or δ-g.e.c.) if for all δ′ so that 0 < δ′ < δ,
for all x ∈ V , and for all disjoint finite sets A and B so that A ∪B ∈ Bδ(x), there exists a
vertex z 6∈ A ∪B ∪ {x} so that

(i) z is correctly joined to A and B,
(ii) for all u ∈ A ∪B, d(u, z) < δ, and

(iii) d(x, z) < δ′.
This definition implies that V is dense in itself. Also, if G is δ-e.c., then G is δ′-e.c. for any
δ′ < δ.

The geometrically e.c. property bears clear similarities with the e.c. property. The im-
portant differences are that a correctly joined vertex must exist only for sets A and B which
are contained in an open ball with radius δ and centre x, and it must be possible to choose
the vertex z correctly joined to A and B arbitrarily close to x. See Figure 1.

d
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Figure 1. The δ-g.e.c. property.

Theorem 1. Let (S, d) be a metric space and V a countable subset of S which is dense in
itself. If δ > 0 and p ∈ (0, 1), then with probability 1, LARG(V, δ, p) is δ-e.c.

Proof. Fix x ∈ V , disjoint finite subsets A and B in Bδ(x)∩ (V \ {x}), and 0 < δ′ < δ. Let

β = max{d(x, v) : v ∈ A ∩B}.
Then β < δ. Let ε = min{δ− β, δ′}. Consider the set Z = Bε(x)∩ V. Note that ε is chosen
so that for any z ∈ Z, d(z, x) < δ′, and for all u ∈ A ∪B,

d(u, z) < d(u, x) + d(x, z) < β + ε ≤ δ.
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For any graph G in LARG(V, δ, p), the probability that any vertex z ∈ Z is correctly
joined to A and B equals p|A|(1 − p)|B|. The probability that no vertex in Z is correctly
joined to A and B equals

P =
∏
z∈Z

1− (
p|A|(1− p)|B|

)
.

Since V is dense in itself, Z contains infinitely many points; hence, P = 0. As there are
only countably many choices for x, A, and B, and a countable union of measure 0 sets is
measure 0, the proof follows. ¤

A graph G = (V, E) whose vertices are points in the metric space (S, d) has threshold
δ if for all edges uv ∈ E, d(u, v) < δ. A graph that is geometrically g.e.c. at level δ and
has threshold δ is called a geometric δ-graph. By definition, a graph G generated by
LARG(V, δ, p) has threshold δ, and, if V is countable and dense in itself, G is a geometric
δ-graph. Thus, this random graph model generates geometric δ-graphs.

We construct geometric δ-graphs deterministically as follows. Given δ > 0, a countable
set V which is dense in itself, and a linear ordering σ : N→ V of V , define GR(V, δ, σ) as
the limit of a chain of finite graphs Rt, where Rt ≤ Rt+1 for any t > 1, and {σ(i) : 1 ≤ i ≤
t} ⊆ V (Rt). Let R1 be the trivial graph with vertex set σ(1). Assume that Rt is defined
and {σ(i) : 1 ≤ i ≤ t} ⊆ V (Rt).

We now define Rt+1. Enumerate all pairs (A, x) so that A ⊆ V (Rt) and x ∈ V (Rt) \ A
so that A ⊆ Bδ(x), via a lexicographic ordering based on σ. For each pair (A, x), in order,
choose z = zA,x to be the least index point in V (according to σ) such that z has not been
chosen for any previous pairs (A, x),

Bδ(z) ∩ V (Rt) = Bδ(x) ∩ V (Rt), (2.1)

and

d(z, x) < min{1/t, δ}.
Note that such a vertex exists as V is dense and Rt is finite. Join z to all vertices in A and
to no other vertices of Rt. If necessary, add σ(t+1) as an isolated vertex to form the graph
Rt+1. Observe that by (2.1), GR(V, δ, σ) is a δ-threshold graph.

Theorem 2. The graph GR(V, δ, σ) is δ-g.e.c.

Proof. To show that GR(V, δ, σ) = (V, E) is δ-g.e.c., choose 0 < δ′ < δ, a vertex x ∈ V,
and disjoint sets A,B ⊆ V \ {x} so that A ∪ B ⊆ Bδ(x). Let t > 0 be chosen so that
A ∪ B ∪ {x} ⊆ V (Rt) and 1/t < δ′. Let z = zA,x be the vertex in Rt+1 added to Rt to
extend (A, x). Then z is correctly joined to A and B and d(x, z) < δ′. ¤

It should be emphasized that we do not claim that the graphs GR(V, δ, σ) are the unique
isotypes of δ-g.e.c. graphs with vertex set V. The theme of when two δ-g.e.c. graphs are
isomorphic will be explored in the next two sections.

Balls with radius δ in δ-g.e.c. graphs contain copies of R, and hence, contain isomorphic
copies of all countable graphs.

Theorem 3. Let U ⊆ S be so that U ⊆ Bδ(x) for some x ∈ U. Then a δ-g.e.c. graph with
vertex set U is e.c., and so is isomorphic to R.

Proof. Let G be a graph with vertex set U , where U is as stated. Assume that G is δ-g.e.c.
Let A and B be any pair of disjoint, finite subsets of U ⊆ Bδ(x), and let 0 < δ′ < δ. Then
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by the δ-g.e.c. condition there exists a vertex z ∈ Bδ′(x) ∩ U so that z is correctly joined
to A and B. ¤

The converse of Theorem 3 is false, in general. For example, consider the metric space
(R, d), where d is the Euclidean metric, and let δ = 1. Fix U an infinite clique in R, and
let U ′ = V (R) \ U . Embed the vertices of U in R so that they form a set that is dense in
B1/2(0). Embed the vertices of U ′ so that they form a set that is dense in B1(0) \B1/2(0).
Now choose y ∈ U so that d(0, y) < 1/4, and let A = ∅, and B = {b}, where b ∈ U \ {y}.
Let δ′ = 1/4. Note that A ∩ B ⊆ B1(y). The embedding of the vertices of R is such that
all vertices in Bδ′(y) are in U , so they are all adjacent to b. Thus, Bδ′(y) does not contain
any vertex correctly joined to A and B, and thus, this embedding of R is not δ-g.e.c.

We finish with the following theorem which shows that there exists a close relationship
between graph distance and metric distance in any graph that is δ-g.e.c. We denote the
closure of set V in S by V . The set W is convex if for every pair of points x and y in W,
there exists a point z such that

d(x, z) + d(z, y) = d(x, z).

Theorem 4. Let G = (V,E) be geometric δ-graph, and let V be convex. Let u, v ∈ V so
that d(u, v) > δ. Then the graph distance between u and v in G equals bd(u, v)/δc+ 1.

Theorem 4 directly leads to the following corollary, which supplies motivation for proofs of
the isomorphism results in the next section, and will be used to prove the non-isomorphism
results of the final section.

Corollary 5. If V and W are convex, and there is a δ-g.e.c. graph with vertices V and a
γ-g.e.c. graph with vertex set W which are isomorphic via f , then for every pair of vertices
u, v ∈ V ,

bd(u, v)/δc = bd(f(u), f(v))/γc.

We supply a generalization of isometry, motivated by Theorem 4 and Corollary 5. Given
metric spaces (S, dS) and (T, dT ), sets V ⊆ S and W ⊆ T , and positive real numbers δ and
γ, a step-isometry at level (δ, γ) from V to W is a surjective map f : V → W with the
property that for every pair of vertices u, v ∈ V,

bdS(u, v)/δc = bdW (f(u), f(v))/γc.

Every isometry is a step-isometry, but the converse is false, in general. For example, consider
R with the Euclidean metric, let δ = γ = 1, and let V = [0, 1) and W = [0, 0.5). Then
f : V → W given by f(x) = x/2 is a step-isometry, but is not an isometry.

Proof of Theorem 4. Let u, v ∈ V . Let k = bd(u, v)/δc + 1. By assumption, k ≥ 2. Note
that the choice of k supplies that

(k − 1)δ ≤ d(u, v) < kδ.

Let ` be the graph distance of u and v, and note that ` > 1 since G is a δ-threshold graph.
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To show that ` ≥ k, let v0v1 · · · v`, where v0 = u, v` = v, be a shortest path in G from u
to v. Since G has threshold δ, d(vi−1, vi) < δ for i = 1, . . . , `. Therefore,

(k − 1)δ ≤ d(u, v)

≤
∑̀
i=1

d(vi−1, vi)

< `δ,

and so ` ≥ k.
Next, we show how to construct a path of length k from u to v in G, which will prove

that ` ≤ k. Let ε = (kδ − d(u, v))/k, so d(u, v) = k(δ − ε).
The set V is convex, so for every pair of vertices x, y, there exists a point z ∈ V so that

d(x, z) + d(z, y) = d(x, y). Using this property, we can obtain a sequence of points in V
between u and v whose successive distances add up to d(u, v), and which are at most ε/4
apart. We can then choose vertices x1, . . . , xk−1 from this sequence so that d(xi, xi+1) <
δ − 3ε/4 for i = 0, . . . , k − 1, where x0 = u and xk = v. For 1 ≤ i < k, we may then find
wi ∈ V so that d(wi, xi) < ε/8. Letting w0 = u and wk = v, we have that for i = 0, . . . , k−1,

d(wi, wi+1) ≤ d(wi, xi) + d(xi, xi+1) + d(xi+1, wi+1)

< δ − 3ε/4 + 2ε/8

< δ − ε/2. (2.2)

Let v0 = w0 = u. Now we successively apply the δ-e.c. property to choose vi ∈ V so that

(i) d(vi, wi) < ε/2, and
(ii) vi is adjacent to vi−1 in G.

It then follows that v0v1 · · · vk is the desired path of length k. More precisely, fix i, 1 ≤ i <
k − 1, and assume vi−1 exists so that item (i) holds. Note that (i) and (2.2) implies that

d(wi, vi−1) ≤ d(wi−1, wi) + d(wi−1, vi−1) < δ.

Therefore, vi−1 ∈ Bδ(wi), and so we can find a vertex vi in Bε/2(wi) which is adjacent
to vi−1. To choose the vertex vk−1, let vk = wk = v. By the same argument as before,
d(wk−1, vk−2) < δ. Since wk = vk, d(wk−1, vk) < δ. So {vk−2, vk} ⊆ Bδ(wk−1). Therefore,
there exist a vertex vk−1 which is adjacent to vk−2 and vk = v. ¤

3. Isomorphism results

In this section we consider metric spaces where the geometric e.c. property gives a unique
isotype of graph. We work in the space R with the usual metric defined by d(x, y) = |x−y|.
(We will not mention this explicitly unless there is room for confusion.) The first result of
the section—which serves as the template for more general results—is the following.

Theorem 6. Let V and W be two countable dense subsets of R, and let δ, γ > 0. If G is a
geometric δ-graph with vertex set V and H is a geometric γ-graph with vertex set W, then
G ∼= H.

The proof of the theorem (and others analogous to it in this section) build up an isomor-
phism as a step-isometry. In the proofs we use the following alternative characterization of
step-isometries. Fix δ > 0 and v0 ∈ R. Each v ∈ R may be uniquely represented as

v = v0 + q(v)δ + r(v),
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where q(v) = b(v − v0)/δc and 0 ≤ r(v) < δ. In this representation, we will refer to δ as
the offset, and to v0 as the anchor. We will omit to state the anchor and offset explicitly
wherever it is clear from the context. The term r(v) is called the representative of v and
q(v) the quotient.

Lemma 7. Let V and W be subsets of R, and let δ and γ be two non-negative real numbers.
A surjective function f : V → W is a step-isometry at level (δ, γ) if and only if the following
two conditions hold.

(1) For every u, v ∈ V , r(u) ≤ r(v) if and only if r(f(u)) ≤ r(f(v)).
(2) For every u ∈ V , q(u) = q(f(u)),

where the representation of elements of V has offset δ and that of W has offset γ, and the
anchor of the representation of W is the image of the anchor of the representation of V
under f .

Proof. Assume first that items (1) and (2) hold, and fix u, v ∈ V . Let u′ = f(u) and
v′ = f(v). Assume without loss of generality that v > u; by hypothesis, this implies that
v′ > u′. Then d(u, v) = v − u = (v − v0)− (u− v0), and so

d(u, v) = (v − v0)− (u− u0) = (q(v)− q(u))δ + (r(v)− r(u)).

Hence,

bd(u, v)/δc = q(v)− q(u)− s,

where s = 0 if r(v) ≥ r(u), and s = 1 otherwise. Similarly,

bd(u′, v′)/γc = q(v′)− q(u′)− s′,

where s′ = 0 if r(v′) ≥ r(u′), and s′ = 1 otherwise. By hypothesis, we have that s = s′ and
q(v)− q(u) = q(v′)− q(u′). It follows that f is a step-isometry at level (δ, γ).

Now assume that f is a step-isometry at level (δ, γ). Let v0 ∈ V and w0 ∈ W be so that
f(v0) = w0 and consider the representations of elements of V and W with offsets δ and γ,
and anchors v0 and w0, respectively.

Condition (2) follows immediately from the definition of step-isometry. For the proof of
(1), fix any u, v ∈ V , and let u′ = f(u) and v′ = f(v). Then

bd(u, v)/δc = bq(v)− q(u) + (r(v)− r(u))/δc = q(v)− q(u)− s,

where s = −b(r(v) − r(u))/δc ; similarly, bd(u′, v′)/γc = q(v′) − q(u′) − s′, where s′ =
−b(r(v′)−r(u′))/δc. Since f is a step-isometry, s = s′. If s = s′ = 0, then both r(v) ≥ r(u)
and r(v′) ≥ r(u′); if s = s′ = 1, then r(v) < r(u) and r(v′) < r(u′). Thus item (1)
holds. ¤
Proof of Theorem 6. The proof follows using a variant of the back-and-forth method (used
to show that R is the unique isotype of e.c. graph). Let V = {vi : i ≥ 0} and W =
{wi : i ≥ 0}. For i ≥ 0, we inductively construct a sequence of pairs of sets (Vi,Wi) and
isomorphisms fi : G[Vi] → H[Wi], so that for all i ≥ 1, vi ∈ Vi, wi ∈ Wi, Vi ⊆ Vi+1 and
Wi ⊆ Wi+1, and fi+1 extends fi. It follows that

⋃

i∈N
fi : G → H

is an isomorphism. As an additional induction hypothesis we require that fi is a step-
isometry from Vi to Wi at level (δ, γ). Specifically, we maintain conditions in items (1) and
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(2) from Lemma 7, where the representation of elements of V has offset δ and anchor v0,
and the representation of elements of W has offset γ and anchor w0.

Let V0 = {v0}, W0 = {w0}, and define f0 by f0(v0) = w0. Then q(v0) = q(w0) = 0 and
r(v0) = r(v′0) = 0, so the base case of the induction follows. For the induction step, fix
i ≥ 0. To construct fi+1 from fi we first go forth by finding an image of vi+1. In the
following, f refers to fi and v = vi+1.

Define

a = max{r(f(u)) : u ∈ Vi and r(u) ≤ r(v)},
b = min{r(f(u)) : u ∈ Vi and r(u) > r(v)}.

We claim that a < b. Namely, let ua and ub be the elements in Vi for which the maximum
and minimum that define a and b are attained, respectively. Thus, r(f(ua)) = a and
r(f(ub)) = b. By definition, r(ua) ≤ r(v) < r(ub). By the induction hypothesis (specifically,
item (1) from Lemma 7), this implies that a = r(f(ua)) < r(f(ub)) = b.

In order to maintain the induction hypothesis, r(f(v)) must lie in [a, b), and q(f(v)) must
equal to q(v). Let k = q(v), and consider the interval

I = (kγ + a, kγ + b).

Any vertex in I will qualify as a candidate for f(v), so that fi+1 is a step-isometry at level
(δ, γ). We must then find a vertex in I that will also guarantee that f is an isomorphism,
by making sure it has the correct neighbours. For this, we apply the γ-g.e.c. condition of
H.

In order to apply the γ-g.e.c. condition, we need to ensure that the images of all neigh-
bours of v in Vi lie in a γ-ball. Since G has threshold δ, we consider all vertices of Vi that
lie in a δ-ball around v. Let Y = Bδ(v) ∩ Vi, and fix x ∈ I ∩W . Such a vertex x exists
since W is dense in R. By definition of I, q(x) = k. We claim that

f(Y ) ⊆ Bγ(x). (3.1)

To prove this, let u ∈ Y. Since q(v) = k and d(u, v) < δ, it follows that |q(u) − k| ≤ 1.
Hence, q(u) is one of k, k − 1, or k + 1.

If q(u) = k, then q(f(u)) = k by induction hypothesis, so d(f(u), x) < γ. If q(u) = k−1,
then r(u) > r(v), so r(f(u)) > b by definition of b. Hence,

d(f(u), x) = x− f(u)

< kγ + b− (k − 1)γ − r(f(u))

< γ.

The final case is when q(u) = k + 1. Then r(f(u)) ≤ a, so we have that

d(f(u), x) = f(u)− x

< (k + 1)γ + r(f(u))− kγ − a

≤ γ.

In all cases, f(u) ∈ Bγ(x), and (3.1) follows.
Since G has threshold δ, N(v) ∩ Vi ⊆ Y . Now let A = f(N(v) ∩ Vi) and B = (Wi ∩

Bδ(x)) \A. Then A ∩B ⊆ Bγ(x) ∩Wi. Let ε > 0 be chosen such that Bε(x) ⊆ I. We now
use the γ-e.c. property of H to find a point z ∈ Bε(x) which is adjacent to all vertices in
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A and no other vertices of (the finite set) Wi. Thus, we can add z to Wi to form Wi+1 and
add v to Vi to form Vi+1, and set fi+1(v) = z. Observe that fi+1 is an isomorphism.

To finish the induction step, if wi+1 6∈ Wi+1 then we may go back, by finding an image
z = f−1

i+1(wi+1) in an analogous fashion. We then add z to Vi+1, and maintain that fi+1 is
an isomorphism. ¤

The proof of the following corollary is now immediate.

Corollary 8. For all countable dense subsets V of R, δ > 0, and p ∈ (0, 1), with probability
1, there is a unique isotype of graph, written GR1, in LARG(V, δ, p).

The isomorphism type of GR1 does not depend on the choices of V , δ or p; moreover, the
same result holds for any 1-dimensional normed vector space with the metric derived from
the norm. For this reason, we name GR1 the infinite random geometric graph of dimension
1. Note that GR1 has infinite diameter (unlike R, which has diameter 2). Note that, for any
countable set V ⊆ R, any ordering σ of v, and any real δ > 0, the deterministic construction
process R(V, σ, δ) described in the previous section gives explicit representations of GR1.

We may extend Theorem 6 to sets that are not necessarily dense in all R. The only
additional condition required is that there exists a step-isometry between the two sets. For
example, consider the rational intervals V = [a, b) and W = [a′, b′), where b(b − a)/δc =
b(b′ − a′)γc. Consider the bijective map f : V → W defined by

f(x) =

{
a′ + q(x)γ + r(b′)r(x)/r(b) if r(x) ≤ r(b)
a′ + (q(x) + 1)γ + (γ − r(b′))(δ − r(x))/(δ − r(b)) if r(x) > r(b),

where q(x), r(x) and r(b) refer to the representation of elements V with offset δ and anchor
a, and r(b′) refers to the representation of elements W with offset γ and anchor a′. In other
words, f is a convex mapping of the intervals [a+kδ, a+kδ+r(b)), k = 0, 1, . . . , q(b), to the
intervals [a′+kγ, a′+kγ+r(b′)), respectively, and of the intervals [a+r(b)+kδ, a+(k+1)δ)
to the intervals [a′ + r(b′) + kγ, a′ + (k + 1)γ). It is straightforward to verify that f is a
step-isometry at level (δ, γ), so any geometric δ-graph and geometric γ graph with vertex
sets V and W , respectively, are isomorphic. Another setting we consider is where V and
W are disjoint unions of rational intervals for which there exists a step-isometry between
the endpoints of the intervals of V to the endpoints of the intervals of W .

Theorem 9. Let V and W be two countable subsets of R, and let δ, γ > 0. Let F be a
bijective step-isometry from V to W at level (δ, γ). If G is a geometric δ-graph with vertex
set V and H is a geometric γ-graph with vertex set W, then G ∼= H.

Proof. Let V = {vi : i ≥ 0} and W = {wi : i ≥ 0}, where wi = F (vi). As in the proof
of Theorem 6, we inductively construct a sequence of pairs of sets (Vi,Wi) (i ≥ 0) and
isomorphisms fi : G[Vi] → H[Wi], so that for all i ≥ 1, vi ∈ Vi, wi ∈ Wi, Vi ⊆ Vi+1 and
Wi ⊆ Wi+1, and fi+1 extends fi. As an additional part of the induction hypothesis, we
require that fi satisfies the following three conditions.

(1) For every u, v ∈ V , r(u) ≤ r(v) if and only if r(f(u)) ≤ r(f(v)).
(2) For every u, v ∈ V , r(u) ≤ r(v) if and only if r(f(u)) ≤ r(F (v)).
(3) For every u ∈ V , q(u) = q(f(u)).

The first two conditions are those stated in Lemma 7, so this implies that fi is a step-
isometry at level (δ, γ). We can also conclude from this lemma that for all u, v ∈ V ,
r(u) ≤ r(v) if and only if r(F (u)) ≤ r(F (v)).
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Let V0 = {v0} and W0 = {w0}, and set f0(v0) = w0. Conditions (1) and (3) follow as in
the proof of Theorem 6. Condition (2) follows from the fact that w0 = F (v0 = f(v0). For
the induction step, fix i ≥ 0. we construct fi+1 from fi by first finding an image of vi+1. In
the following, f refers to fi, and v = vi+1.

Let

Ma = {u : u ∈ Vi and r(F (u)) ≤ r(F (v))},
Mb = {u : u ∈ Vi and r(F (u)) > r(F (v))},

and

a = max{x : x = r(f(u)) or x = r(F (u)) where u ∈ Ma},
b = min{x : x = r(f(u)) or x = r(F (u)) where u ∈ Mb}.

We have that a < b, since the order of the representatives of vertices in Vi is preserved
under f and under F . (See the similar argument in the proof of Theorem 6.)

In order to maintain conditions (1) and (2) of the induction hypothesis, r(f(v)) should lie
in [a, b), and because of condition (3), q(f(v)) must equal q(v). Let k = q(v), and consider
the interval I = (kγ + a, kγ + b). From the definition of a and b it follows that F (v) ∈ I.

The remainder of the proof is now analogous to the proof of Theorem 6 and so is only
sketched here. Let x = F (v). We can show that f(Bδ(v) ∩ Vi) ⊆ Bγ(x). We can then
invoke the γ-g.e.c. condition of H to find a vertex z in I which is correctly joined to the
vertices in Wi so that an isomorphism is maintained if we set f(v) = w. Finally, we finish
the induction step by going back and finding a suitable image f−1(wi+1). ¤

Theorem 6 extends to Rn with n > 1, provided we use the product metric; that is, the
metric derived from the L∞ norm, defined by:

d(u, v) = max{|vi − ui| : 1 ≤ i ≤ n},
where ui denotes the i-th component of u. Hence, we obtain unique isotypes of infinite
random geometric graphs in all finite dimensions. For the remainder of the section, n is a
positive integer, and d is assumed to be the metric defined above.

Theorem 10. Consider the metric space (Rn, d), where d is the product metric defined
above. Let V and W be two countable sets dense in Rn, and let δ, γ > 0. If G is a
geometric δ-graph with vertex set V and H is a geometric γ-graph with vertex set W , then
G ∼= H. In particular, for all choices of V and δ, there is unique isomorphism type of
geometric δ-graphs in (Rn, d), written GRn.

Theorem 10 is sensitive to the choice of metric. In Section 4, we will show that the con-
clusion of Theorem 10 for d the Euclidean metric fails even for n = 2. The following provides
the key tool for our proof of Theorem 10. As the proof is straightforward generalization of
Lemma 7, it is omitted.

Lemma 11. Let V and W be subsets of Rn with the L∞-metric, let v0 ∈ V and w0 ∈ W ,
and let δ and γ be two non-negative real numbers.

Then a surjective function f : V → W is a step-isometry at level (δ, γ) if the following
two conditions hold for all u, v ∈ V and for all i, 1 ≤ i ≤ n:

(1) r(ui) ≤ r(vi) if and only if r(f(u)i) ≤ r(f(v)i).
(2) q(ui) = q(f(u)i),
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where the representation of the i-th coordinate of elements of V has offset δ and anchor
(v0)i the representation of the i-th coordinate of elements of W has offset γ and anchor
(w0)i,

Proof of Theorem 10. Let V = {vi : i ≥ 0} and W = {wi : i ≥ 0}. We inductively
construct a sequence of pairs of sets (Vi,Wi) (i ≥ 0) and isomorphisms fi : G[Vi] → H[Wi],
so that for all i ≥ 1, vi ∈ Vi, wi ∈ Wi, Vi ⊆ Vi+1 and Wi ⊆ Wi+1, and fi+1 extends fi. As
an additional induction hypothesis we require that fi satisfies conditions (1) and (2) from
Lemma 11.

As in the proof of Theorem 6, for the base case we take V0 = {v0}, W0 = {w0} and
f0(v0) = w0. For the induction step, fix i ≥ 0. we construct fi+1 from fi by first finding an
image of vi+1. In the following, f refers to fi, and v = vi+1.

For all j, 1 ≤ j ≤ n, define

aj = max{r(f(u)j) : u ∈ Vi and r(uj) ≤ r(vj)},
bj = min{r(f(u)j) : u ∈ Vi and r(uj) > r(vj)}.

In order to maintain the induction hypothesis, for all j, r(f(v))j should lie in interval
[aj, bj), and q(f(v)j) should be equal to q(vj). Let kj = q(vj), and consider the product set

I =
∏

1≤j≤n

(kjγ + aj, kjγ + bj).

Any vertex in I will qualify as a candidate for f(v) so that f satisfies conditions (1) and
(2) from Lemma 11. The remainder of the proof is analogous to that of Theorem 6, and so
is omitted. ¤

A step-isometric isomorphism is an isomorphism of graphs that is a step-isometry. In
the base step in the proof of Theorem 10, if we are given induced subgraphs V0 and W0

such that f0 : V0 → W0 is a step-isometric isomorphism, then the rest of the proof follows
as before. Hence, we have the following corollary, which shows that the graphs GRn act
transitively on step-isometric isomorphic induced subgraphs.

Corollary 12. Let G and H be finite induced subgraphs of GRn for some positive integer
n. A step-isometric isomorphism f : G → H extends to an automorphism of GRn.

Deleting a point from a dense set V in Rn gives another dense set. Hence, we have the
following inexhaustibility property.

Corollary 13. For all n > 0 and vertices x in GRn, GRn − x ∼= GRn.

We can combine Theorems 9 and 10 to obtain a result about isomorphisms between
graphs with vertex sets in Rn if there exist a special type of map between the sets. Given
a set V ⊆ Rn, denote the i-th component set of V as:

Vi = {xi : x ∈ V }.
Theorem 14. Consider the metric space (Rn, d), where d is the product metric defined
above. Let V and W be two countable sets in Rn, and let δ, γ > 0. Assume that for all
1 ≤ i ≤ n, there exists a step-isometry at level (δ, γ) from Vi to Wi. If G is a geometric
δ-graph with vertex set V and H is a a geometric γ graph with vertex set W, then G ∼= H.

The proof is a straightforward generalization of the proofs of Theorems 9 and 10, and is
therefore omitted.
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4. Non-isomorphism results for Euclidean space

The choice of metric plays an important role in our isomorphism results in Section 3. We
demonstrate that there are non-isomorphic geometrically e.c. graphs in the plane with the
usual Euclidean metric (denoted by d).

Theorem 15. Let V be a countable set dense in (R2, d), and let G and H be two graphs
generated by the model LARG(V, p), where 0 < p < 1. Then with probability 1, G � H.

We have the following corollary, which is the antithesis of the results in the previous
section.

Corollary 16. Let V be a countable set dense in R2 equipped with the Euclidean metric,
and δ > 0 fixed. Then there exist infinitely many pair-wise non-isomorphic δ-g.e.c. graphs
with vertex set V.

For the proof of Theorem 15, we rely on the following geometric lemma.

Lemma 17. Let V and W be dense subsets of R2 equipped with the Euclidean metric. Then
every step-isometry from V to W is an isometry.

Proof. Assume for a contradiction that there is a step-isometry f : V → W at level (δ, γ)
that is not an isometry. Without loss of generality, we assume that δ = γ = 1. For each
u ∈ V , let u′ = f(u) ∈ W . Since f is not an isometry, there must exist points x1 and x2 so
that d(x1, x2) 6= d(x′1, x

′
2). Since f is a bijection, we may assume, without loss of generality,

that d(x1, x2) < d(x′1, x
′
2).

The proof follows by the following two claims. Given x, y ∈ V , define the discrepancy of
x, y as

D(x, y) = |d(x, y)− d(x′, y′)|.
The discrepancy is a measure of the error in the distance between pairs of points and their
images under f . Since f is a step-isometry, we have that D(x, y) < 1 for all x, y ∈ V.

Claim 1. For every ε > 0, if there exist points x1, x2 ∈ V so that

D(x1, x2) = ε > 0

and d(x1, x2) > 40, then there exist points x3, x4 ∈ V so that

D(x3, x4) > 2ε.

Claim 2. If there exist points x1, x2 ∈ V so that

D(x1, x2) = ε > 0,

then there exist points x3, x4 ∈ V so that

D(x3, x4) > 3/4ε

and d(x3, x4) > 40.

To see how the lemma follows from the claims, note that by hypothesis, there are two
points of V with discrepancy ε > 0. By Claim 2, there are two points of V with discrepancy
at least 3/4ε, and with distance at least 40 apart. By Claim 1 there are points with
discrepancy at least 3/2ε apart. By induction, we obtain a sequence of pairs of points
{yi, zi} of V whose discrepancy equals (3/2)iε which tends to infinity in i. In particular,
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there are points y, z of V so that D(y, z) > 1, which contradicts the fact that f is a
step-isometry.

We now prove Claim 1. We first define some constants that will be useful in the proof.
Let

m = d(x1, x2)/2, and k = bmc+ 1.

Choose

0 < ξ < ε2/(2k).

Since V is dense in R2, we can find points x3 and x4 in V so that

k − ξ < d(xi, xj) < k for i = 1, 2 and j = 3, 4.

So x1, x3, x2, x4 are the vertices of a quadrilateral whose sides have length between k − ξ
and k. See Figure 4.

x

xx

x

1 2

3

4

r

m

Figure 2. The quadrilateral formed by x1, x3, x2, x4.

Let r = d(x3, x4)/2. The distance between x3 and x4 is smallest when all sides of the
quadrilateral equal k − ξ, so using the Pythagorean theorem we have that

r2 ≥ (k − ξ)2 −m2 ≥ k2 − 2kξ −m2 ≥ k2 − ε2 −m2, (4.1)

where the last step follows from the choice of ξ. (Note that the calculation above is only
valid if we use the Euclidean metric.)

On the other hand, x3 and x4 are furthest when all sides of the quadrilateral equal k.
Since k ≤ m + 2 and m > 20, we obtain that

r2 ≤ (m + 2)2 −m2 = 2m + 1 ≤ m2/4. (4.2)

Now consider the quadrilateral formed by the images x′1, x
′
2, x

′
3, and x′4. Let

m′ = d(x′1, x
′
2)/2 = m + ε/2, and r′ = d(x′3, x

′
4)/2.

See Figure 3.
Since f is a step-isometry,

d(x′i, x
′
j) < k for i = 1, 2 and j = 3, 4.
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x'

x'x'

x'

1 2

3

4

r'

m'

Figure 3. The quadrilateral formed by x′1, x
′
3, x

′
2, x

′
4.

Now d(x′3, x
′
4) is largest when the quadrilateral has all sides equal to k. It follows that

(r′)2 ≤ k2 − (m′)2

= k2 − (m + ε/2)2

≤ k2 −m2 −mε

≤ r2 −mε + ε2

≤ (r − ε)2

where the third inequality follows from (4.1), and the last inequality follows from (4.2). In
particular, r′ ≤ r − ε. As

d(x′3, x
′
4) = 2r′ ≤ 2r − 2ε = d(x3, x4) + 2ε,

the proof of Claim 1 follows.

We now prove Claim 2. Let m = d(x1, x2), and assume m < 40. Let k = 40. Choose
c > 0 so that

10c/3 + c2 ≤ kε/4 and c < (2−
√

3)ε/8. (4.3)

Further, choose points x3, x4, x5, x6 ∈ V so that

k < d(xi, xj) < k + c, for i, j equals 1, 3 or 1, 5, or 2, 4 or 4, 6, (4.4)

k − c < d(xi, xj) < k, for i, j equals 3, 5 or 4, 6, (4.5)

and
d(x3, x4) < d(x5, x6) < d(x3, x4) + c. (4.6)

The choice of such points is possible since V is dense. See Figure 4.

x

x

x

1 2

3 4

m

m

x5 x6

ss
y1

x

y2

Figure 4. The figure formed by xi, 1 ≤ i ≤ 6.
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Subject to the given constraints, the points x3 and x4 are furthest apart when the
distances achieve the upper bound of (4.4) and the lower bound from (4.5), and when
d(x3, x4) = d(x5, x6). Assume this to be the case. Then x3, x4, x5, x6 form a rectangle, and
the line segments x1x2, x3x4 and x5x6 are parallel.

For i = 1, 2, let yi be the orthogonal projection of xi on the line x3x4. Then d(y1, y2) =
d(x1, x2) = m, and d(x3, y1) = d(x4, y2); we will denote this distance by s. See Figure 4.

Hence, d(x3, x4) = 2s + m, and

s2 = (k + c)2 − 1/4(k − c)2 = 3/4(k2 + 10kc/3 + c2),

and so
d(x3, x4) =

√
3(k2 + (10/3)kc + c2) + m.

The expression above is based on the case where x3 and x4 are furthest apart, and thus, it
gives an upper bound for the general case. Combining this upper bound with the condition
on c given by (4.3), and with the assumption (4.6) we have for i, j equals 3, 4 and 5, 6 that

d(xi, xj) ≤ m + c +
√

3(k2 + (10/3)kc + c2)

≤ m + c +
√

3(k2 + kε/4)

< m + c +
√

3(k + ε/8)

< m +
√

3k + ε/4,

where the first and last steps follow from (4.3).
We next consider the images of these points, and assume without loss of generality that

d(x′3, x
′
4) > d(x′5, x

′
6). Since f is a step-isometry, d(x′i, x

′
j) ≥ k for i, j equals 1, 3 or 1, 5

or 2, 4 or 2, 6, and d(x′i, x
′
j) ≤ k for i, j equals 3, 5 or 4, 6. Moreover, by assumption

d(x′1, x
′
2) = m + ε. Now x′3 and x′4 are closest together when d(x′3, x

′
4) = d(x′5, x

′
6) and

d(x′i, x
′
j) = k for all i, j for which |i− j| is even. As in the previous case, the line segments

x′5x
′
6, x′1x

′
2, and x′3x

′
4 are parallel, and x′5x

′
6x
′
4x
′
3 is a rectangle. Under these assumptions we

can compute d(x′3, x
′
4) similarly to the computation for d(x3, x4), and obtain that

d(x′3, x
′
4) = 2(k

√
3/2) + (m + ε).

Since our assumptions hold for the case where x′3 and x′4 are closest together, we have in
general, for i, j equal to 3, 4 and 5, 6, that

d(x′i, x
′
j) ≥ k

√
3 + m + ε ≥ d(xi, xj) + 3ε/4. ¤

A direct consequence of this lemma is the existence of many non-isomorphic g.e.c. graphs
with vertex sets dense in R2, equipped with the Euclidean metric. A set V in R2 is δ-free if
no pair of points in V are distance δ apart. For instance, one may consider δ = 1, V to be
the set of all rational points in R2 which are δ-free, and W = V ∪ {(21/4, 0)} (which is also
δ-free). It is straightforward to see there is no isometry from V onto W . Hence, a 1-g.e.c.
graph on V cannot be isomorphic to a 1-g.e.c. graph on W.

In the following proof, we use the notation P(A) for the probability of an event A.

Proof of Theorem 15. An enumeration {vi : i ∈ N+} of V is good if d(vi, vi+1) < δ for all
i ∈ N+ and {v1, v2, v3} are not collinear. We claim that a countable set V dense in R
has a good enumeration. For a positive integer n, we call {vi : 1 ≤ i ≤ n} a partial good
enumeration of V. We prove the claim by constructing a chain of partial good enumerations
by induction. Using the density of V, choose three points {v1, v2, v3} that are not collinear,
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so that each are within δ of each other. Let V1 = {v1, v2, v3}. Enumerate V \ {v1, v2, v3} as
{ui : i ≥ 2}. Starting from V1, we inductively construct a chain of partial good enumerations
Vn, n ≥ 1, so that for n ≥ 2, Vn contains {ui : 2 ≤ i ≤ n}.

We now want to form Vn+1 by adding u = un+1. If u ∈ Vn, then let Vn+1 = Vn. Assume
without loss of generality that u 6∈ Vn. Let N = |Vn|. If d(vN , u) < δ, then let vN+1 = u
and add it to Vn to form Vn+1. Otherwise, by the density of V, choose a shortest finite path
P = p0, . . . , p` of points of V \ Vn starting at vN = p0 and ending at u = p` so that two
consecutive points in the path are distance at most δ. Then add the vertices of P to Vn to
form Vn+1 and enumerate them so that vN+i = pi for i = 0, 1, . . . , `. Taking the limit of
this chain,

⋃
n≥1 Vn is a good enumeration of V , which proves the claim.

Let V = {vi : i ≥ 1} be a good enumeration of V, and for any n, let Vn = {vi : 1 ≤ i ≤ n}.
Let G and H be as stated. We say that two pairs {v, w} and {v′, w′} of vertices are
compatible if {v, w} are adjacent in G and {v′, w′} are adjacent in H or {v, w} are non-
adjacent in G and {v′, w′} are non-adjacent in H. For two pairs {v, w} and {v′, w′} such
that d(v, w) = d(v′, w′), the probability that they are compatible equals

p∗ =

{
p2 + (1− p)2 if d(v, w) < δ’ and
1 otherwise.

By Corollary 5 and Lemma 17, any isomorphism between subgraphs of G and H must be
an isometry. The images of three points in R2 that are not collinear determine the isometry.
Let An be the event that there exists a partial isomorphism f from G[Vn] into H so that
f({v1, v2, v3}) ⊆ Vn, and let

A∗
n =

⋂
ν≥n

Aν .

Note that A∗
n ⊆ A∗

n+1 for all n.
Next, we estimate the probability of A∗

n. Note first that P(A∗
n) ≤ P(Aν) for all ν ≥ n.

For any tuple (u1, u2, u3) of three distinct vertices in Vn, let Cn(u1, u2, u3) be the event that
there exists a partial isomorphism f from G[Vn] to H so that f(vi) = ui for i = 1, 2, 3. Since
the images of three points that are not collinear determine the isometry f , if Cn happens
then all pairs (vi, vi+1) and (f(vi), f(vi+1)) must be compatible, for 1 ≤ i < n. Thus,

P(Cn(u1, u2, u3)) ≤ (p∗)n−1.

Now

An =
⋃

u1,u2,u3∈Vn

Cn(u1, u2, u3),

so for n ≥ 3 we have that P(An) ≤ n3(p∗)n−1, and

P(A∗
n) ≤ inf{ν3(p∗)ν−1 : ν ≥ n} = 0.

If B is the event that G and H are isomorphic, then

B ⊆
⋃

n∈N+

A∗
n.

Since the union of countably many sets of measure zero has measure zero, we conclude that
P(B) = 0, and thus, with probability 1, G � H. ¤
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