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Abstract. We present a new model for self-organizing networks
such as the web graph, and analyze its limit behaviour. In the
model, new vertices are introduced over time that copy the neigh-
bourhood structure of existing vertices, and a certain number of
extra edges may be added to the new vertex that randomly join to
any of the existing vertices. A function ρ parameterizes the num-
ber of extra edges. We study the model by considering the infinite
limit graphs it generates. The limit graphs satisfy with high prob-
ability certain adjacency properties similar to but not as strong as
the ones satisfied by the infinite random graph. We prove that the
strength of the adjacency properties satisfied by the limit are gov-
erned by the choice of ρ. We describe certain infinite deterministic
graphs which arise naturally from our model, and that embed in
all graphs generated by the model.

1. Introduction

Many of the real-world networks that are the focus of study today,
such as the web graph or the network of protein-protein interactions in
a living cell, are self-organizing. In self-organizing networks, each ver-
tex acts as an independent agent, which will base its decision on how
to link to the existing network on local knowledge. As a result, the
neighbourhood of a new vertex will often be an imperfect copy of the
neighbourhood of an existing vertex. Both the copying models [1, 17]
of the web graph, and the duplication model [10] of biological networks
incorporate this notion of copying in their definitions. The graphs gen-
erated by these models, although different, share some similar proper-
ties like power law degree distributions. For additional information on
self-organizing networks, the reader is directed to the book [11].

We introduce a new model which in a certain sense generalizes and
unifies the copying and duplication models. The three parameters of
the model Copy(p, ρ,H) are a copying probability p ∈ [0, 1], an extra
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edge function ρ : N → N, and a finite initial graph H. The model
describes a random graph process over a countable sequence of discrete
time-steps indexed by t ∈ N. Let t0 = |V (H)|.

(1) At t = t0, set Gt0 = H.
(2) For a fixed t > t0, assume that Gt−1 has been defined, is finite,

and contains Gt0 as an induced subgraph. To form Gt, add a
vertex vt to Gt−1 and choose its neighbours as follows.
(a) Choose an existing vertex ut from Gt−1 uniformly at ran-

dom (u.a.r.). The vertex ut is called the copy vertex.
(i) For each neighbour w of ut, independently add an

edge from vt to w with probability p. These are called
copy edges.

(ii) Choose a set of ρ(t) vertices from V (Gt−1) u.a.r., and
add edges from vt to each of these vertices. The latter
edges are called extra edges.

(b) Make Gt simple by deleting any multiple edges.

If ρ(t) = 0, then the graphs Gt generated by the model Copy(p, ρ,H)
correspond exactly to the graphs generated by the duplication model.
If ρ(t) is constant and p > 0, then the graphs Gt are undirected ana-
logues of graphs generated by the copying model. Note that for all
t ∈ N, |V (Gt)| = t. To simplify the discussion, we require that ρ(t) is
an integer-valued, non-decreasing function such that, for some α < 1,
ρ(t) ≤ αt for all t ≥ t0. Moreover, unless otherwise stated we assume
that ρ(t) = Θ(ts) for some s ∈ [0, 1].

We study the infinite limits generated by this model; that is, the in-
finite graphs that result when time goes to infinity. Analyzing models
by considering the infinite limit is a common technique in the nat-
ural sciences. Limit behaviour can highlight certain properties of the
model, and point to significant differences and similarities between var-
ious models. In particular, the existence of a unique limit indicates
coherent behaviour of the model, while many distinct limits suggest a
sensitivity to initial conditions that is an indicator of chaos. The use
of infinite limits to study random graph processes was first proposed
by the authors in [4], and was studied in the context of the preferential
attachment model in [16].

In [4] the authors proved that limits of a deterministic version of
the copying model satisfy a local version of the so-called n-existentially
closed (n-e.c.) adjacency properties. A graph G is n-e.c. if for each
pair of disjoint sets of vertices A and B so that |A ∪B| = n (with one
of A or B possibly empty), there is a vertex z not in A ∪ B joined
to the vertices of A and not to the vertices of B. In other words, all
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extensions of n-element sets of vertices exist in the graph. We say that z
is correctly joined or c.j. to A and B. The n-e.c. adjacency property and
its variants have since been studied by many authors; see the survey
[3]. The unique isomorphism type of graph that is n-e.c. for all finite
n is called the infinite random graph or Rado graph, and is written R.

The goal of the current paper is to study the generalized copy model
Copy(p, ρ,H) via its infinite limit. Our main tool are the n-e.c. ad-
jacency properties, which measure in a certain sense how random an
infinite graph is. One of our main results gives a “threshold” for the
value of n for which the limit almost surely satisfies the n-e.c. property.
This value depends both on the copy probability p, and on the order
of the extra edge function, and suggests a subtle balance between the
random behaviour of the extra edges, and the locally structured copy
behaviour. We also define a new type of infinite graph, RH , which is
the unique limit of Copy(p, 0, H), when there are no extra edges. In
addition, we define another class of infinite graphs which are almost
surely contained in the limit of Copy(p, ρ,H) for any choice of p and
ρ. While our results are of mathematical interest in their own right,
we think they serve as another step towards the use of infinite limits
as tools for the study of models of self-organizing networks.

The main results, Theorems 2 and 3, are stated and proved in the
next section. The proofs of these theorems follow from Lemmas 4 and
5, which gives order bounds on the number of common neighbours
of a set of given size. The lemmas are stated in the next section,
while their rather technical proofs are deferred Section 4. In Theorem
2, we prove that graphs generated by Copy(p, ρ,H) are n-e.c. with
probability 1, with n depending on the choice of ρ. In Theorem 3, we
prove that with positive probability, our limit graphs may not be n-e.c.
for a suitable n. This result leads directly to Corollary 6, which proves
that the limits may not be isomorphic depending on ρ. In Section 3, we
study deterministic limit graphs that always embed in limits of graphs
generated by our model. Every finite graph H gives rise to a limit RH

satisfying interesting properties. As discussed in Section 3, the study
of RH is connected to the theory of graph homomorphisms.

All the graphs we consider are countable, undirected, and simple.
We use the notation G ≤ H if G is an induced subgraph of H. For an
event A in a probability space, we denote the probability of A by P(A);
the negation of A is written A. If X is a random variable, then E(X)
is its expectation.
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2. Main results: adjacency and isomorphism properties of
the limits

If (Gt : t ≥ t0) is a sequence of graphs with Gt ≤ Gt+1, then define
the limit of the Gt, written G = limt→∞Gt, by

V (G) =
⋃

t∈N
V (Gt), E(G) =

⋃

t∈N
E(Gt).

We say that a vertex x ∈ V (G) is born at time t if x ∈ V (Gt)\V (Gt−1)
if t > 0, or x ∈ V (Gt0) if t = t0. A finite set X ⊆ V (G) of vertices of G
is born at time t if all vertices of X were born at time t or earlier, and
some vertex of X is born at time t. If y is a vertex of a graph G, then
N(y) = {z ∈ V (G) : yz ∈ E(G)} is the neighbour set of y in G. In the
context of a graph sequence {G : t ≥ t0}, we will use Nt(y) to denote
the neighbour set of y in the graph Gt.

Fix a real number p ∈ (0, 1). If we generate a countable infinite ran-
dom graph G as a limit of a random graph process where new vertices
are joined to existing ones independently and with fixed probability p,
then with probability 1, the graph G will be isomorphic to the infinite
random graph R. The deterministic graph R is the unique isomorphism
type of countable graph satisfying the e.c. adjacency property, which
is the logical conjunction of all the n-e.c. properties.

A new adjacency property introduced in the context of limits of
copying models graphs in [4] is locally e.c. (In [4], locally e.c. is referred
to as the less descriptive property (B).) A graph G is locally e.c. if for
each vertex y ofG, for each finiteX ⊆ N(y), and each finite Y ⊆ V (G)\
X, there exists a vertex z 6= y which is c.j. to X and Y. The locally
e.c. property is a variant of the e.c. property that applies only to sets
contained in the neighbour set of a vertex. Further, it plays a critical
role for the model Copy(p, ρ,H). For example, as the next theorem
demonstrates, the model Copy(p, ρ,H) almost surely generates limits
satisfying the locally e.c. property.

We first define a useful function pρ(i, j, t), which is exactly the prob-
ability that a new vertex vt is joined by extra edges to each vertex
of an existing set X of cardinality i and no vertices from a set Y of
cardinality j. For all non-negative integers i, j, t, define

pρ(i, j, t) =

(
t−1−i−j
ρ(t)−i

)
(
t−1
ρ(t)

) . (2.1)
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If ρ(t) ≥ 1, then by estimating (2.1), we have that

(
1− ρ(t)

t− j
)j (

ρ(t)− i+ 1

t− i+ 1

)i
≤ pρ(i, j, t) ≤

(
ρ(t)

t− 1

)i
. (2.2)

If i and j are constants, then (2.2) implies the useful fact that

pρ(i, j, t) = Θ(ρ(t)it−i).

Note also that pρ(0, j, t) is increasing in t.

Theorem 1. Fix p ∈ (0, 1), H a finite graph, and let ρ(t) = Θ(ts)
for s ∈ [0, 1]. With probability 1, the limit G = limt→∞Gt of graphs
generated by the model Copy(p, ρ,H) is locally e.c.

Proof. Since a countable union of measure 0 subsets has measure 0,
it suffices to show that for a fixed y ∈ V (G), and finite disjoint X ⊆
N(y), Y ⊆ V (G), the probability that there is no vertex correctly joined
to all of X, Y is 0 (since there are only countably many choices for y
and X,Y in G). Fix a vertex y and disjoint finite sets X ⊆ N(y) and
Y in V (G), and let t1 be the time that X ∪ Y ∪ {y} is born. Let
Y1 = Y ∩Nt1(y). Let |X| = k, |Y | = j, and |Y1| = j1.

We will show that the probability that none of the new nodes {vt :
t > t1} is c.j. to X and Y in the limit equals zero. Let BX,Y (t) be the
event that vt is c.j. to X and Y . Let B′X,Y (t) be the event that all of
the following occur.

(1) The copy node ut in time-step t equals y.
(2) Every edge from y to vertices in X is copied.
(3) None of the edges from y to vertices in Y1 are copied.
(4) No vertex in Y receives an extra edge in time-step t.

Note that B′X,Y (t) contains BX,Y (t). Also, the events B′X,Y (t) for
different values of t are independent.

If t > 0, then the probability that ut equals y is 1
t−1

, since ut is chosen
u.a.r. from Gt−1. The probability that all edges to X and no edges to
Y are copied, given that ut = y, equals pk(1 − p)j1 . For all t > 0 so
that j < t − ρ(t), the probability that no vertex in Y receives a extra
edge equals

pρ(0, j, t) = Θ(1). (2.3)

Hence,

P(B′X,Y (t)) ≥ d

t
,
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where d ∈ (0, 1) does not depend on t. Then

P(no vertex of G is c.j. to X, Y ) ≤ P

(⋂
t≥t2

B′X,Y (t)

)

≤
∏
t≥t2

(
1− d

t

)
= 0,

where the last inequality follows by elementary properties of infinite
products. �

The problem of determining whether the limits of graphs generated
by copying models converge to R was left open in [4]. In the following
two theorems we address this question by studying the following adja-
cency property. For a non-negative integer n, a graph is strongly n-e.c.
if for each pair of disjoint, finite sets of vertices A and B with |A| = n,
there is a vertex z not in A∪B c.j. to A and B. Hence, no restriction is
put on |B| in terms of n. Note that a graph G is strongly 0-e.c. if and
only if for each finite set B ⊆ V (G), there is a vertex not in B that is
not joined to any vertex of B. For notational consistency, we say that
a graph is strongly ∞-e.c. if it is e.c.

We will establish a sharp threshold for the values of n for which an
infinite limit generated by Copy(p, ρ,H) has the strongly n-e.c. prop-
erty. In particular, for an extra edge function ρ(t) = Θ(ts), we define
a value np,s below and show that any limit of Copy(p, ρ,H) is strongly
n-e.c. if n ≤ np,s, but, with positive probability, not n-e.c. if n > np,s.

For p, s ∈ (0, 1), define the integer

np,s = max

(⌊
1

1− s
⌋
, blogp(1− s)c+ 1

)
.

For all s ∈ (0, 1), we define n0,s = b 1
1−sc, and for all p ∈ (0, 1), np,1 =∞.

Note that np,s is the maximum of two quantities, one of which depends
only on s, while the other depends on p and s. If the maximum is
attained by b 1

1−sc, the limit is primarily determined by the randomly
chosen extra edges (such as when s > 1 − p.) In the other case (for
example when s < 1/2) there is a subtle interplay between copy edges
and extra edges.

Theorem 2. Let p ∈ [0, 1), ρ(t) = Θ(ts) for some s ∈ [0, 1], and H be
a finite graph. Let G = limt→∞Gt be generated by Copy(p, ρ,H).

(1) If s = 0, then with probability 1, G is strongly 1-e.c.
(2) If s ∈ (0, 1], then with probability 1, G is strongly (np,s)-e.c. In

particular, if s = 1, then G is isomorphic to R.
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In the case p = 0, no copying occurs and only ρ(t) extra edges are
added to the new vertex in each time step. This includes the growing
m-out model (see [2]) where p = 0 and ρ(t) = m. In the case that
p = 0, we have a sharp threshold for the strongly n-e.c. property at
n0,s = b 1

1−sc. For values of p > 0 and s so that np,s = b 1
1−sc the infinite

limit behaves similar to the case where p = 0. This provides additional
evidence that in this case the copy behaviour plays a secondary role in
the generating process.

On the other hand, we have the following theorem.

Theorem 3. Let p ∈ [0, 1), ρ(t) = Θ(ts) for some s ∈ [0, 1), and H be
a finite graph. Let G = limt→∞Gt be generated by Copy(p, ρ,H).

(1) If ρ(t) = 0, then with positive probability, G is not 1-e.c.
(2) If s = 0, where m is a positive integer, then with positive prob-

ability, G is not 2-e.c.
(3) If s ∈ (0, 1), then with positive probability, G is not (np,s + 1)-

e.c.

To prove these theorems, we need strict bounds on the number of
nodes joined to a set of a specified cardinality. Namely, the probability
that a set X of size n will obtain its first common neighbour in the next
time-step is largely determined by the number of common neighbours
of each of its subsets. If any subset A ⊆ X of size n−1 has a significant
number of common neighbours, then this probability is relatively high:
X will receive a common neighbour if any of the common neighbours
of A is chosen as the copy vertex, all links to A are copied, and the sole
vertex in X \ A receives one of the extra edges. On the other hand,
if none of the subsets of X has a common neighbour, then a common
neighbour of X can only come about if all vertices in X are chosen as
the endpoint of extra edges, an event of vanishingly low probability if
ρ(t) is sublinear.

Assume that we are given a graph sequence (Gt : t ∈ N) generated
by Copy(p, ρ(t), H) with infinite limit G, where ρ(t) = Θ(ts), s ∈ (0, 1),
and p ∈ [0, 1). For a fixed finite set X, let BX(t) be the event that vt
is joined to all of X.

P(BX(t)) =
∑
A⊆X

P(BX(t) |Nt−1(ut) ∩X = A) P(Nt−1(ut) ∩X = A)

(2.4)
Since ut is chosen u.a.r., P(Nt−1(ut)∩X = A) is proportional to the

number of vertices in Gt−1 that are joined to all vertices in A and none
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in X\A. In particular, to obtain a good estimate of P(BX(t)), we need
good bounds on the number of common neighbours of all subsets of X.

We now introduce two important parameters. For a fixed finite ver-
tex set X ⊆ V (G), let

δ(X, t) (2.5)

be the number of vertices in Gt that are joined to all vertices in
X. Lemmas 4 and 5 below will show that, with high probability as t
gets large, δ(X, t) is of order tak±ε for any ε > 0, where ak is a constant
that depends only on the cardinality k of X. In Lemma 4, we obtain
the lower order bound for the number of vertices correctly joined to X
and Y , for any finite set Y disjoint from X. We denote this number by

δ(X,Y, t). (2.6)

The exponents ak are defined as follows. For p, s ∈ (0, 1), and for a
non-negative integer k, define

ak = max{pk, 1− (1− s)k}. (2.7)

Note that the ak are decreasing in k. The constant np,s from Theorem 3
is defined so that it is the smallest positive integer k with the property
that ak < 1 − s. It will become apparent in the proof of Theorem 3
why this condition is needed.

Consider the real-valued function f(x) = px − (1 − s)(k − x). This
function has one extreme value, which is a minimum. Hence, f achieves
its maximum over the interval [0, k] at x = 0 or x = k. It follows that

ak = max{px − (1− s)(k − x) : 0 ≤ x ≤ k}. (2.8)

As a consequence, for any two integers ` and k so that 0 ≤ ` < k ≤ np,s,

ak ≥ max{px − (1− s)(k − x) : 0 ≤ x ≤ `}
= max{px − (1− s)(`− x) : 0 ≤ x ≤ `} − (1− s)(k − `)
= a` − (1− s)(k − `). (2.9)

Observe that equality holds in the first displayed line precisely when
the maximum of f(x) over the interval [0, k] is achieved at x = 0; that
is, if pk ≤ 1− (1− s)k.

Let (At : t ∈ N) be a sequence of events. We say that At holds with
extreme probability (wep) in t if, for all t ∈ N, P(At) ≤ h(t), where h(t)
is a function that exponentially decreases to zero as t goes to infinity.
The proof of the following technical lemma is postponed until Section
4.

Lemma 4. Let (Gt : t ≥ t0) be a sequence of graphs generated by
Copy(p, ρ,H) with copy probability p ∈ (0, 1), extra edge function ρ(t) =
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Θ(ts) for some s ∈ [0, 1], and H a finite graph. Let X and Y be dis-
joint vertex sets born at time t1 > t0, of cardinality |X| = k ≤ np,s
and |Y | = `. Then for each ε > 0 and for each t2 ≥ t1, there exists a
constant c > 0 so that wep in t2, for all t ≥ t2

δ(X,Y, t) ≥ ctak−ε. (2.10)

Theorem 2 follows directly from this lemma.

Proof of Theorem 2. Let X and Y be a pair of disjoint, finite vertex
sets in G, born at time t1, and so that |X| ≤ np,s. For t > t1, let
AX,Y (t) be the event that for some τ ≥ t,

δ(X, Y, τ) < cτ ak−ε.

By Lemma 4, P(AX,Y (t)) = h(t), where h(t) is an exponentially de-
creasing function. Then for all t > t1

P(G contains no vertex c.j. to X and Y )

= P(For all τ ≥ t, δ(X,Y, τ) = 0)

≤ P(AX,Y (t))

= h(t).

Since the above holds for all t, we have that h(t) = o(1). As in the proof
of Theorem 1, the proof now follows since there are only countably
many choices for X and Y. �

For the proof of Theorem 3, we need the following technical lemma
whose proof is also given in Section 4.

Lemma 5. Let (Gt : t ≥ t0) be a sequence of graphs generated by
Copy(p, ρ,H) with copy probability p ∈ (0, 1), extra edge function ρ(t) =
Θ(ts) for some s ∈ [0, 1), and H a finite graph. Let X be a set born at
time t1 > t0, of cardinality |X| = k ≤ np.s.

(1) Then for each ε > 0 and for each t2 ≥ t1, there exists a constant
c > 0 so that, wep in t2 for all t ≥ t2

δ(X, t) ≤ ctak+ε. (2.11)

(2) Let BX(t) denote the event that the new vertex vt at time t
joins to all vertices of X. Then for any set X of size |X| = k =
np,s + 1 born at time t1, there exists t2 ≥ t1, so that

P

( ⋂
t≥t2+1

BX(t)|δ(X, t2) = 0

)
> 0. (2.12)

We now prove our second main result.
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Proof of Theorem 3. We show that there exists a set X which, with
positive probability, has no common neighbour in G. In the following,
always let X be a set of cardinality k = np,s + 1, born at time t1, and
so that the probability that X contains no common neighbour in Gt1 ,
written pX , is positive. Note that a set X for which pX > 0 always
exist: let t1 be so that ρ(t1 − 1) + ρ(t1) < t1, and choose X so that
it contains vt1−1 and vt1 . Then with positive probability, in time-steps
t1− 1 and t1 no links are copied, and no neighbours of vt1−1 are chosen
as endpoints of the extra edges in step t1. Therefore, vt1−1 and vt1 have
no common neighbour, so neither has X.

For t ≥ t1, BX(t) is the event that vt is a common neighbour of X.
We consider now the case when p ∈ (0, 1) (the proof in the case p = 0
is analogous and so is omitted). Suppose first that ρ(t) = 0. If a vertex
vt does not receive any edges when it is born, then it is isolated in G.
This occurs when, in time-step t, no copying occurs, which happens
with positive probability since p < 1. This completes the proof of item
(1).

We now turn to the proof of items (2) and (3). Assume that s ∈ [0, 1),
and

k = np,s + 1.

Let s = 1−s. By (2.2), for all positive integers `, the function pρ(`, 0, t)
is a decreasing function of order t−s`. Let c > 0 be so that for all t > 0
and all integers 1 ≤ ` ≤ k

pρ(`, 0, t) ≤ ct−s`. (2.13)

Note that c does not depend on t1. Assume X is chosen so that it is
born a time t1 which is large enough so that

c(ts1 + 1)kt−s1 < 1. (2.14)

By Lemma 5, there is a t2 > t1 so that

P

( ⋂
t≥t2+1

BX(t)|δ(X, t2) = 0

)
> 0. (2.15)
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For t ≤ t2, we estimate P(BX(t + 1)|δ(X, t) = 0) by observing that
δ(A,t)
t
≤ 1 for all A ⊂ X, and thus, for all t ≥ t1,

P(BX(t+ 1)|δ(X, t) = 0)

≤ c
∑
A⊂X

t−s(|X−A|)

= ct−s
k∑

`=0

(
k

`

)
t−s(k−`)

≤ c(t−s + 1)kt−s, (2.16)

where the first inequality follows by (2.13), and the second inequality
follows by the binomial theorem.

Therefore,

P(δ(X, t2) = 0) = pX

t2−1∏
t=t1

P(BX(t+ 1)| δ(X, t) = 0)

≥ pX

t2−1∏
t=t1

(1− c(t−s + 1)kt−s) (2.17)

> 0, (2.18)

where the last inequality follows from (2.14) and since pX > 0.
Then

P(X has no common neighbour in G)

= P(δ(X, t2) = 0)P

( ⋂
t≥t2+1

BX(t)|δ(X, t2) = 0

)

> 0,

where the inequality follows from (2.15) and (2.17). Therefore, with
positive probability X has no common neighbour in G, which concludes
the proof. �

The strength of the n-e.c. properties satisfied by a limit can be used
to distinguish its isomorphism type when the parameter p varies. As a
corollary of Theorem 3, we obtain the following non-isomorphism result
for limits generated by our model.

Corollary 6. Let H a finite graph, and let p, p′, s, s′ ∈ (0, 1) so that
ρ(t) = Θ(ts) and ρ′(t) = Θ(ts

′
). If np,s < np′,s′, then with positive

probability a limit generated by Copy(p, ρ,H) is not isomorphic to a
limit generated by Copy(p′, ρ′, H).
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We do not know whether the hypothesis of Corollary 6 may be re-
laxed to simply s < s′.

3. Minimal graphs for the model

By Corollary 6, limits generated by the model Copy(p, ρ,H) for dif-
ferent choices of ρ and p need not be isomorphic. Contrary to the
situation for countable e.c. graphs (which are isomorphic to the infi-
nite random graph R), not all countable graphs that are either locally
e.c. or strongly n-e.c. for some n need be isomorphic. In fact, there are
2ℵ0 (that is, cardinality of R) many non-isomorphic countable locally
e.c. graphs; see [4].

We may define certain graphs that are minimal graphs with the
given adjacency property, in the sense that they embed in any graph
with the property. We devote this section to the study of deterministic
graphs which are minimal for our models. We introduce graphs RH

and R
(n)
H which are minimal for both the locally e.c. and strongly n-e.c.

properties, respectively. Besides their relationship to our model, these
graphs may be of interest in their own right.

We introduce the following infinite graphs.

RH : Fix H a finite graph. Let RH,0
∼= H. For a fixed t ≥ 0, assume

that RH,t is defined and is finite. For each vertex y ∈ V (RH,t),
and each subset X ⊆ N(y), add a new vertex zy,X joined only to
X. This gives a graph RH,t+1 which contains RH,t as an induced
subgraph. Define RH = limt→∞RH,t.

R
(n)
H : Fix a finite graph H. Let R

(n)
H,0
∼= H. For a fixed t ≥ 0, assume

that R
(n)
H,t is defined and is finite. For each vertex y ∈ V (R

(n)
H,t),

and each subset X ⊆ N(y), add a new vertex zy,X joined only
to X. For each subset of Y of vertices with cardinality at most
n add a new vertex zY joined only to Y. This gives a graph

R
(n)
H,t+1. Define R

(n)
H = limt→∞R

(n)
H,t.

Observe that RH is locally e.c., while R
(n)
H is both locally e.c. and

strongly n-e.c. In addition, for all n, the graph RH is an induced

subgraph of R
(n)
H . The graphs RH and R

(n)
H play the role of minimal

graphs for certain adjacency properties.

Theorem 7. Fix n ∈ N and H a finite graph.

(1) If G is a locally e.c. graph, then RH ≤ G if and only if H ≤ G.

(2) If G is a locally e.c., strongly n-e.c graph, then R
(n)
H ≤ G if and

only if H ≤ G.

(3) The graphs RH and R
(n)
H are not isomorphic.
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Proof. As the proofs of (1) and (2) are similar, we therefore prove only
items (2) and (3). The forward direction of (2) is immediate, since

H ≤ R
(n)
H by the definition of the limit. For the reverse direction of

(2), suppose that H is an induced subgraph of G. Let Rt = R
(n)
H,t,

where t ∈ N, be the finite graphs used to define R
(n)
H . We proceed

by induction on t to show that each of the graphs Rt is an induced
subgraph of G extending the embedding of H in G. We take R0 to be
this copy of H.

Fix a vertex y ∈ V (Rt), and a subset X ⊆ N(y). Let Y = V (Rt)\X.
As G is locally e.c., there is a vertex z correctly joined to X, Y. The
vertex z is joined only to X in Rt, and plays the role of the vertex zy,X
in the definition of R

(n)
H . Fix a subset Y of vertices of cardinality at

most n. Let Z = V (Rt)\Y. As G is strongly n-e.c. there is a vertex z
correctly joined to Y, Z. The vertex z is joined only to Y in Rt, and so

plays the role of zY in the definition of R
(n)
H . Therefore,

R
(n)
H
∼= lim

t→∞
Rt ≤ G.

For item (3), note that the graph RH contains isolated vertices. To
see this, fix y ∈ V (R0) and X = ∅. Then zy,X is isolated in R1. By the
definition of RH , the vertex zy,X acquires no new neighbours as t tends

to infinity. However, as n ≥ 1, no vertex of R
(n)
H is isolated. To see

this, fix v ∈ V (R
(n)
H ). Then v ∈ V (Rt) for some t ≥ 0. The vertex z{v}

is joined to v in Rt+1. �
Corollary 8. Fix p ∈ (0, 1) and H.

(1) If ρ(t) = Θ(ts), with s ∈ [0, 1), then with probability 1, a

limit graph G generated by the model Copy(p, ρ,H) embeds R
(n)
H ,

where n = np,s.
(2) If ρ(t) = 0, then with probability 1, a limit graph G generated

by the model Copy(p, ρ,H) embeds RH .

Proof. By Theorem 1 and Theorem 2 (2), with probability 1, G is
locally e.c. and, for case (1), strongly np,s-e.c. Now apply Theorem
7. �

If G is a countable graph, then define the clique number of G, written
ω(G), to be the supremum of the set {|K| : K is a clique in G}. We
omit the straightforward proof of the following theorem.

Theorem 9. Fix n ∈ N and H a finite graph. Then the following
equalities hold.

(1) ω(RH) = ω(H).
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(2) ω(R
(n)
H ) = max{n+ 1, ω(H)}.

As an immediate corollary of Theorem 9, we have the following.

Corollary 10. (1) There are infinitely many non-isomorphic graphs
of the form RH .

(2) There are infinitely many non-isomorphic graphs of the form

R
(n)
H .

A mapping f : V (G) → V (H) is a homomorphism if it has the
property that if xy ∈ E(G), then f(x)f(y) ∈ E(H). The map f is
sometimes called an H-colouring, and G is referred to as H-colourable.
We write G → H to denote that G admits a homomorphism to H
without reference to a specific mapping. See the book [14] for more on
graph homomorphisms. The following theorem establishes a surprising
connection between graph homomorphisms and the induced subgraphs
of RH .

Theorem 11. Fix n a positive integer, with H a finite graph and G a
countable graph. Then G ≤ RH if and only if G→ H.

Proof. For the forward direction, suppose that G ≤ RH . Then G →
RH . It is not hard to see that each Rt in the definition of RH admits
a homomorphism ft to H: each new vertex is assigned the same image
as the node it copies from. The union f of the chain (ft : t ∈ N) of
homomorphisms is a homomorphism from RH to H. As G ≤ RH , we
have that G→ H by the transitivity of the homomorphism relation.

For the converse, assume first that G is finite. We introduce an aux-
iliary graph construction. Fix f : G → H a homomorphism. Assume
that V (G) and V (H) are disjoint, and define a graph H(G, f) to have
vertices V (G) ∪ V (H), and edges

E(G) ∪ E(H) ∪ {xy : x ∈ V (G), y ∈ V (H), and f(x)y ∈ E(H)}.
We refer to the induced copy of H in H(G, f) as H ′. The graph

H(G, f) is just the union of G and H, so that for each vertex x of
G, x is joined to all the neighbours of f(x) in H. We proceed by
induction on |V (G)| to show that H(G, f) ≤ RH . (Since G ≤ H(G, f),
this proves the statement.) Note that, if |V (G)| = 1, then H(G, f) is
isomorphic to the disjoint union of H and K1. The base case follows.
The induction hypothesis is that if |V (G)| = n, where n ≥ 1 is fixed,
then H(G, f) is an induced subgraph of RH with H ′ the copy of H at
t = 0.

Let |V (G)| = n + 1, and fix x ∈ V (G). By induction hypothesis,
H(G − x, f � G − x) is a subgraph of RH with H ′ the copy of H at
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t = 0. By the definition of H(G, f), all the neighbours of x in H(G, f)
are also neighbours of the vertex f(x) in H ′. By the locally e.c. property
of RH , there is a vertex z of RH joined exactly to the neighbours of x
in H(G, f). Adding z to the copy of H(G − x, f � G − x) in RH will
give an induced subgraph of RH which is isomorphic to H(G, f), while
H ′ is unchanged. This completes the induction.

In the case G is infinite express G as a limit of some chain finite
induced subgraphs (Gt : t ∈ N). An easy, therefore omitted, argument
using the technique from the finite case shows that we may embed the
graphs Gt as a G′t ≤ RH so that each G′t+1 contains G′t. Hence,

G ∼= lim
t→∞

G′t ≤ RH .

�

One interpretation of Theorem 11 is that the graph RH carries a
certain memory of H,made explicit by the homomorphism to H. Hence,
we have the following corollary.

Corollary 12. For a fixed finite graph H, all countable H-colourable
graphs embed in RH ; that is, RH is a universal H-colourable graph.

Corollary 12 along with Theorem 7 expresses an interesting dual-
ity property for RH : RH is at once the minimal (with respect to the
embedding relation) locally e.c. graph containing H, and the maximal
H-colourable graph. This form of duality is not unique to RH , and
emerges in other limit graphs arising from network models (see [6]).

4. Proofs of Lemmas 4 and 5

In this final section, we give proofs of Lemmas 4 and 5. Our main
tool are the following versions of the Chernoff bounds, which we state
here for completeness (see also Section 2.1 of [15]).

Theorem 13. Let Zt =
∑t

i=1 ζi be the sum of random variables ζi,
where ζi ∈ Be(pi) for 1 ≤ i ≤ t; that is, each ζi is a Bernouilli random
variable where P(ζi = 1) = pi. (Note that E(Zt) =

∑t
i=1 pi.)

Then for all γ ≥ 0, we have the following inequalities.

P(Zt ≤ E(Zt)− γ) ≤ exp

(
− γ2

2E(Zt)

)
, (4.1)

P(Zt ≥ E(Zt) + γ) ≤ exp

(
− γ2

2(E(Zt) + γ/3)

)
. (4.2)
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4.1. Proof of Lemma 4. Let X, Y of size k and `, respectively, born
at t1, be as in the statement of the lemma. Let BX,Y (t) denote the
event that the new vertex vt at time t joins to all vertices of X and no
vertex in Y .

Case 1: pk < 1− s̄k, so ak = 1− s̄k.

In this case, the extra edges play the crucial role; a lower bound
on P(BX,Y (t)) can be derived from the extra edges. Namely, BX,Y (t)
occurs if the extra edges from vt are joined to all vertices in X and
none in Y , and any edge of the copy vertex to a vertex in Y is not
copied. Therefore,

P(BX,Y (t)) ≥ pρ(k, `, t)(1− p)`.
Recall from (2.6) the definition of δ(X, Y, t). Now, for t ≥ t1, we have
that δ(X,Y, t)−δ(X, Y, t1) is bounded below by the sum of independent
Bernouilli variables Zt =

∑t
i=t1+1 ζi, with ζi ∈ Be(pi), where pi =

pρ(k, `, i)(1− p)`. So

E(Zt) = (1− p)`
t∑

i=t1+1

pρ(k, `, i).

By (2.2), pρ(k, `, t) is an increasing function of order Θ(t−s̄k) so E(Zt) ≥
ct1−s̄k = ctak for some constant c > 0. By the Chernoff bounds (4.1)
for each ε > 0 and t > t1,

P(δ(X, Y, t) ≤ tak−ε) ≤ P(Zt ≤ tak−ε)

≤ exp(−(c/2)tak(1 +O(t−ε))).

Fix t2 > t1. Then

P(For some t ≥ t2, δ(X, Y, t) ≤ tak−ε) ≤
∞∑
t=t2

exp(−(c/2)tak(1+O(t−ε))).

The sum decreases exponentially in t2, so wep in t2, δ(X,Y, t) ≥ tak−ε

for all t ≥ t2. Hence, (2.10) follows for Case 1.

Case 2: pk > 1− s̄k.
In this case, copying plays the central role. We use induction on k.

Since p0 = 1− s̄0, the base case k = 0 follows by Case 1.
For the induction step, fix k ≤ np,s, and let X and Y be as stated in

the lemma. Let A be a fixed subset of X of size k−1, and let w be the
unique vertex in X−A. For any t ≥ t1, the new vertex vt+1 is correctly
joined to X and Y if the copy vertex ut+1 is correctly joined to A and
Y (with probability δ(A, Y, t)/t), and all edges from ut+1 to vertices
in A are copied (with probability pk−1), and the vertex w receives an
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extra edge, but no vertex in Y does (with probability pρ(1, `, t + 1)).
Therefore,

P(BX,Y (t+ 1)) ≥ δ(A, Y, t)

t
pk−1pρ(1, `, t+ 1). (4.3)

Fix ε > 0 so that ε < ak−1 − s̄. Note that ak−1 > s̄ by the fact that
k ≤ np,s and the definition of np,s.

By induction, there exists an exponentially decreasing function h(t)
so that for every t2 ≥ t1, there exists a constant c so that

P(For all t ≥ t2 δ(A, Y, t) ≥ cAt
ak−1−ε) ≥ 1− h(t2).

Fix t2 > t1. Since the statement of the lemma is asymptotic for t2
going to infinity, we can assume without loss of generality that t2 > 2t1.
Let cA be so that, with probability 1− h(t2/2) for all t ≥ t2/2,

δ(A, Y, t) ≥ cAt
ak−1−ε. (4.4)

Define

T = min{t > t2/2 : δ(A, Y, t) < cAt
ak−1−ε or t = t2}.

Fix t so that t2/2 ≤ t < T . Since pρ(1, `, t+ 1) is non-increasing and
of order Θ(t−s̄), by (2.2), (4.3), and (4.4) we obtain that

P(BX,Y (t+ 1)) ≥ ctak−1−ε−1−s̄

for some constant c. Thus, δ(X, Y, t) − δ(X, Y, t2/2) can be bounded
below by Zt, a sum of independent Bernouilli variables, with

E(Zt) = c

t∑

τ=t2/2+1

τak−1−ε−1−s̄

=
c

ak−1 − s̄− ε(tak−1−s̄−ε − (t2/2)ak−1−s̄−ε) + o(1).

By (4.1) we derive that

P(δ(X, Y, T ) = 0) ≤ P(ZT = 0)

≤ exp(−(1/2)E(ZT )).

From the induction hypothesis, we have that with probability 1 −
h(t2/2) that T = t2. Since E(Zt) is increasing in t, we have that the
probability that δ(X,Y, t2) = 0 is bounded above by an exponentially
decreasing function in t2. In other words, wep in t2, Gt2 contains at
least one vertex correctly joined to X and Y .

In the following, assume that δ(X, Y, t2) > 0. For any t ≥ t2, vt+1 is
correctly joined to X and Y if the copy vertex ut+1 is correctly joined
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to X and Y , each link from ut+1 to X is copied, and no vertex in Y
receives an extra edge in step t+ 1. Therefore,

P(BX,Y (t+ 1)) ≥ pk
δ(X,Y, t)

t
pρ(0, `, t+ 1). (4.5)

By (2.2), pρ(0, `, t) converges to 1 as t → ∞. Without loss of gen-
erality, assume that t2 is large enough so that pρ(0, `, t) > 1− ε/(2pk)
for all t ≥ t2. Let t3 be so that

(t2/t3)ak−ε <
ε/2

ak − ε/2 . (4.6)

Choose

c∗ = (t3)−ak+ε.

Define

S = {t ≥ t2 : δ(X, Y, t) > c∗tak−ε},
and

T1 =

{
minS if S 6= ∅,
∞ else.

The proof in Case 2 will follow if we show that, wep in t2, T1 = ∞.
Note that T1 ≥ t3, since c∗tak−ε < 1 for all t < t3, and by assumption
δ(X,Y, t2) > 0.

For all t so that t2 ≤ t < T1,

P(BX,Y (t+ 1)) ≥ (pk − ε/2)c∗tak−ε−1.

(Recall that for this case, ak = pk.) So for all t so that t2 < t ≤
T1, δ(X, Y, t) − δ(X, Y, t2) can be bounded below by the sum Zt of
independent Bernouilli variables, where

E(Zt) ≥ c∗
(
ak − ε/2
ak − ε

)
(tak−ε − (t2)ak−ε + 1).

By (4.1) we have that

P(δ(X,Y, t) > c∗tak−ε) ≤ P(Zt > c∗tak−ε)

≤ exp

(
−
(

(E(Zt)− c∗tak−ε)2

2E(Zt)

))
. (4.7)

If t ≥ t3, then

E(Zt)− c∗tak−ε ≥ c∗
(

ε/2

ak − εt
ak−ε − ak − ε/2

ak − ε (t2)ak−ε − 1

)

= c∗
((

ε/2

ak − ε −
ak − ε/2
ak − ε (t2/t)

ak−ε
)
tak−ε − 1

)
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By (4.6) the term in front of tak−ε is positive. Since E(Zt) = Θ(tak−ε),
by (4.7) for all t ≥ t3

P(δ(X, Y, t) < c∗tak−ε|δ(X,Y, t2) > 0) ≤ exp(−ctak−ε),

for some constant c > 0. Thus,

P(For some t2 < t ≤ T1, δ(X,Y, t) > c∗tak−ε|δ(X, Y, t2) > 0)

≤
t∑

τ=t2

exp(−cτak−ε).

From this inequality, it follows that, if δ(X, Y, t2) > 0, then the proba-
bility that T1 is finite is exponentially small (in t2).

Therefore,

P(For some t > t2, δ(X,Y, t) > c∗tak−ε)

≤ P(For some T > t2, δ(X, Y, t) > c∗tak−ε|δ(X,Y, t2) > 0)

+P(δ(X, Y, t2) = 0).

The last two probabilities are both bounded by functions exponentially
decreasing in t2, so the result follows.

4.2. Proof of Lemma 5. For item (1), the proof will proceed by
induction on k = |X|, for 0 ≤ k ≤ np,s. Recall the definition of δ(X, t)
in (2.5). For the base case of the induction, note that if k = 0, so
X = ∅, then δ(X, t) = |V (Gt)| = t and a0 = 1. Therefore, δ(X, t) ≤ ta0

for all t ≥ t1, so (2.11) holds with probability 1 for c = 1 and t2 ≥ t1.
For the induction step, fix a positive integer k ≤ np,s, and let X be

a set of vertices born at time t1, of cardinality k. As explained before
and by (2.4), we will resolve the probability P(BX(t + 1)) into cases,
depending on the overlap of the neighbourhood of the copy vertex
u = ut+1 with X.

Let A be a fixed subset of X of cardinality `, and define s = 1 − s.
Let f`(t) be a function so that f`(t) = Θ(1), and for 0 ≤ i ≤ `,

pρ(k − i, 0, t+ 1) ≤ f`(t)t
−(k−i)s.

Such a function f` exists since, by (2.2), pρ(j, 0, t) = Θ(t−js) for all
j > 0.
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Then

P(BX(t+ 1) |Nt(u) ∩X = A)

=
∑̀
i=0

(
`

i

)
pi(1− p)`−ipρ(k − i, 0, t+ 1)

≤ t−s(k−`)f`(t)
∑̀
i=0

(
`

i

)
pi
(
(1− p)t−s)`−i

= t−s(k−`)f`(t)(p+ (1− p)t−s)`.
Moreover, if ` = k, then

P(BX(t+ 1) |Nt(u) ∩X = A)

= pk +
k−1∑
i=0

(
k

i

)
pi(1− p)k−ipρ(k − i, 0, t+ 1)

≤ pk + fk(t)t
−sk(1− p)

k−1∑
i=0

(
k − 1

i

)
pi(1− p)k−1−it−(k−1−i)s

= pk + g(t)t−s,

where g(t) = fk(t)k(1− p)(p+ (1− p)t−s)k−1. Note that g(t) = Θ(1).
Define the function

f(t) = max
0≤`<k

f`(t)
(
p+ (1− p)t−s)` .

Note that f(t) = Θ(1).
Since

P(BX(t+ 1) |Nt(u) ∩X = A) ≤
{
f(t)t−s(k−`) if A ⊂ X,
pk + g(t)t−s if A = X,

and

P(Nt(u) ∩X = A) ≤ P(A ⊆ Nt(u)) =
δ(A, t)

t
,

we have that

P(BX(t+ 1)) =
∑
A⊆X

P(BX(t+ 1) |Nt(u) ∩X = A)P(Nt(u) ∩X = A)

≤ (pk + g(t)t−s)
δ (X, t)

t
+ f(t)

δ(A, t)

t

∑
A⊂X

t−s|X−A|.(4.8)

Let
δ∗(t) = max

A⊂X
t−a|A|δ(A, t).

Then we have by (4.8) that
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P(BX(t+ 1)) ≤ (pk + g(t)t−s)
δ (X, t)

t
+ f(t)δ∗(t)

k−1∑

`=0

(
k

`

)
t−s(k−`)ta`−1

≤ (pk + g(t)t−s)
δ (X, t)

t
+ f(t)δ∗(t)tak−1

k−1∑

`=0

(
k

`

)

≤
(
pk

t
+ g(t)t−s−1

)
δ(X, t) + 2kf(t)δ∗(t)tak−1.

The second inequality follows from (2.9):

ak ≥ a` + s(k − `)
for all 0 ≤ ` < k .

It can be deduced from the induction hypothesis that there exists an
exponentially decreasing function h(t) so that for each t2 ≥ t1, there
exists a constant c′ so that, for each A ⊂ X of size ` with probability
at least 1− h(t2), for all t ≥ t2

δ(A, t) ≤ c′ta`+ε.

Fix ε > 0, t2 ≥ t1. Without loss of generality, as g(t) = Θ(1) assume
that g(t)t−s ≤ ε/4 for all t ≥ t2. As g(t) = Θ(1), let cf be so that
f(t) ≥ cf for all t ≥ t2. Choose t3 > t2 so that

t2(t3)−ak−ε ≤ ε/2

ak + ε
. (4.9)

Without loss of generality, assume that c′ ≥ t3. Let c∗ > 1 be so that

c∗ ≥ (t3)1−ak−ε,

c∗ ≥ c′cf2k(4/ε).

Define

S = {t ≥ t2 : δ(X, t) > c∗tak+ε or δ∗(t) > c′tε},
and

T =

{
minS if S 6= ∅,
∞ else.

Item (1) of the lemma will follow if we prove that, wep in t2, T = ∞.
Note that T ≥ t3, since c∗tak+ε ≥ t and c′ta`+ε ≥ t for all t ≤ t3.

Fix t so that t2 ≤ t < T . Then δ(X, t) − δ(X, t2) is bounded above
by the sum Zt of independent Bernouilli variables with probabilities
pt = (ak + ε/2)c∗(t− 1)ak+ε−1, and

E(Zt) ≤ c∗
(
ak + ε/2

ak + ε

)
tak+ε. (4.10)
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By (4.2) for all γ > 0

P(Zt ≥ E(Zt) + γ) ≤ exp

(
− γ2

2(E(Zt) + γ/3)

)
.

Setting γ = c∗ ε/2
ak+ε

tak+ε− t2, and using the fact that δ(X, t2) ≤ t2, and

that c∗tak+ε − E(Zt) ≥ ε/2
ak+ε

tak+ε we obtain by (4.2) that

P(δ(X, t) ≥ c∗tak+ε) ≤ P(Zt ≥ c∗tak+ε − t2)

≤ exp

(
− γ2

2E(Zt) + γ/3

)
.

Since

γ =

(
ε/2

ak + ε
c∗ − t2t−ak−ε

)
tak+ε,

it follows from (4.9) that γ > 0 for all t > t3, and γ = Θ(tak+ε). Since
E(Zt) = O(tak+ε), for all t3 ≤ t ≤ T ,

P(δ(X, t) ≥ c∗tak+ε) ≤ exp(−ctak+ε)

for some constant c > 0. Thus,

P(For some t2 < t ≤ T , δ(X, t) ≥ c∗tak+ε)

= P(For some t3 < t ≤ T, δ(X, t) ≥ c∗tak+ε)

≤
T∑

τ=t2

exp(−cτak−ε). (4.11)

Using (4.11) and the induction hypothesis, we have that the prob-
ability that T is finite is exponentially decreasing in t2. Item (1) now
follows.

We now prove item (2) of the lemma. Let X be a set of cardinality
k = np,s + 1. The probability of BX(t+ 1) can be bounded exactly the
same as above. So from (4.8),

P(BX(t+ 1)|δ(X, t) = 0) ≤ f(t)
∑
A⊂X

t−s|X−A|
(
δ(A, t)

t

)

≤ f(t)δ∗(t)
k−1∑

`=0

(
k

`

)
t−s(k−`)ta`−1

≤ 2kf(t)δ∗(t)tanp,s−s−1, (4.12)

where the last inequality follows from (2.9):

anp,s = ak−1 ≥ a` + s(k − 1− `) for all 0 ≤ ` ≤ k − 1 .



INFINITE LIMITS AND COPYING MODELS 23

Let ε = s̄ − anp,s . It follows from the definition of np,s that ε > 0.
By item (1) of the lemma, for all t2 > t1 there exists a constant c > 0
so that, wep in t2, δ∗(t) ≤ ctε/2 for all t ≥ t2.

Let t2 and c be so that, with positive probability p1, for all t ≥ t2,
δ∗(t) ≤ ctε/2. Define

S1 = {t ≥ t2 : δ∗(t) > ctε/2},
and

T1 =

{
minS1 if S1 6= ∅,
∞ else.

Observe that, for all t ≥ t2,

P(T1 ≥ t) ≥ p1. (4.13)

Let c∗ > 0 be so that f(t) ≤ c∗/c2−k for all t ≥ t2, and let

β = 1 + ε/2 > 1.

Then by (4.12) for all t > t2,

P(BX(t+ 1)|δ(X, t) = 0) ≤ c∗t−β. (4.14)

Choose t2 to satisfy the previous requirements and be sufficiently large
so that c∗(t2)−β < 1. Thus

P

( ⋂
t2<τ≤t

BX(τ)|δ(X, t2) = 0

)

=
t∏

τ=t2

P(BX(τ + 1)|δ(X, τ) = 0)

≥ P(T1 ≥ t)
t∏

τ=t2

P(BX(τ + 1)|δ(X, τ) = 0, τ ≤ T1)

≥ p1

t∏
τ=t2

(1− c∗τ−β),

where the final inequality follows by (4.13) and (4.14). Since β > 1
and by the choice of c∗, the last product is bounded by a constant in
(0, 1). By taking the limit as t→∞, (2.12) follows.
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