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Abstract. In this paper, we explore the mathematical properties
of a distance function between graphs based on the maximum size
of a common subgraph. The notion of distance between graphs
has proven useful in many areas involving graph based structures
such as chemistry, biology and pattern recognition. Graph distance
has been used as a way of determining similarity between graphs.
The distance function studied here forms a metric on isomorphism
classes of graphs. We show that this metric induces the discrete
topology. We also show that the distance between two graphs in
the Erdös-Renyi probability space G(n, p) almost always is near
the maximum attainable value. Finally, we define a notion of con-
tinuity of graph parameters and relate it to a property of graphs
that can be easily verified. We also determine whether the nor-
malized versions of some common graph parameters are continous
in this framework.

1. Introduction

The problem of comparing graphs has received a lot of attention over
the past 30 years. In this paper, we will call the problem of comparing
of graphs the graph similarity problem. In many other papers, the
problem is called the graph matching problem [5] [8]. The term graph
matching indicates that the main interest of the application is to find
corresponding regions in graphs which match. In the graph similarity
problem, the main interest is to assign an overall similarity score to
indicate the level of similarity between two graphs. Any method used
for graph matching can be turned into a method for graph similarity
by assigning a score to the similarity of the two graphs. That is, the
two problems are the same, only their focus is different. In graph
similarity, we refer to the function d that assigns the similarity score as
the distance function. This is because we think of the similarity score
between two graphs as the distance between them. Though different
similarity methods lead to different distance functions, we would like
all distance functions to satisfy the three following properties.

• d(G,H) = 0 iff G ∼= H
• d(G,H) = d(H,G)
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• Increasing values of d(G,H) indicate a decreasing amount of
similarity between G and H.

The first condition states that if two graphs are isomorphic then the
distance between them should be 0. The second requirement is that
the distance function is symmetric. If the distance function additionally
satisfies the triangle inequality, as is the case with the similarity method
based on the maximum common subgraph [3], the distance function
forms a metric on the set of isomorphism classes of graphs.

The main force driving the study of this problem has been its numer-
ous applications in many areas such as biology, chemistry and pattern
recognition [8] [15]. There have been many proposed methods such as
graph and subgraph isomorphism, maximum common subgraph meth-
ods and edit distance [6]. More recently, the focus has shifted to the
use of machine learning techniques and graph kernels [23]. The main
interest in graph similarity has been to develop methods to determine
graph similarity and efficient algorithms to compute the distance func-
tion. This has left many questions of a more mathematical flavour
unexplored.

The purpose of this paper is to explore some of these questions us-
ing the distance metric of Bunke and Shearer based on the maximum
common subgraph. The first contribution of this paper will be to show
that the maximum common subgraph distance function induces the
discrete topology on the set of isomorphism classes of graphs. We will
also show that the distance between two graphs from the Erdös-Renyi
probability space G(n, p) almost always have a distance near 1, which
is the maximum value. The implication is that two randomly chosen
graphs are not likely to be similar. The main contribution of this paper
will be to introduce the idea of continuity of graph parameters. There
are many graph parameters which we commonly assign to graphs such
as the diameter, chromatic number, number of vertices etc. We might
expect that for some of these parameters, a small distance between
graphs would indicate a small difference between their graph parame-
ters as well. Such a notion has a flavour of continuity and in Section 5
we will define both a pointwise and a uniform version of graph param-
eter continuity. We will show that all graph parameters are trivially
continuous with respect to the maximum common subgraph distance
function in the pointwise sense and give a condition on which graph
parameters are continuous in the uniform sense.



ON THE CONTINUITY OF GRAPH PARAMETERS 3

2. Graph Distance Metric

This metric introduced by Bunke and Shearer in [3] is based on the
size of the largest common subgraph between two graphs.

Definition 2.1. Given G, G1 and G2, we say that G is a common
subgraph of G1 and G2 if there exist isomorphisms from G to a subgraph
of G1 and from G to a subgraph of G2. A maximum common subgraph
of G1 and G2 is a common subgraph of maximum size. We use the
notation mcs(G1,G2) to denote the maximum size of any common
subgraph of G1 and G2.

It is important to note that a maximum common subgraph of two
graphs is not necessarily unique. Note also that maximum common
subgraphs do not need to be connected.

Definition 2.2. The distance between two graphs G1, G2 ∈ G is defined
as

(1) dmcs(G1, G2) = 1− mcs(G1, G2)

max(|G1|, |G2|)
where max(|G1|, |G2|) is the maximum size of the graphs G1 and G2.

Clearly, dmcs is symmetric; Bunke and Shearer showed in [3] that dmcs
also satisfies the triangle inequality. When dmcs(G1, G2) = 0, it implies
that mcs(G1, G2) = |G1| = |G2|, and thus G1 and G2 are isomorphic,
but not necessarily equal. Thus, dmcs is not a metric over all graphs, but
it is a metric over all isomorphism classes of graphs. In the following,
we will use G to denote the space of all isomorphism classes of non-
empty graphs. We will use Gn to denote the set of isomorphism classes
of graphs on n vertices. To avoid cumbersome notation, we will use the
expression “G ∈ G”to denote both the graph itself, and its isomorphism
class.

3. (G, dmcs) Induces The Discrete Topology

As dmcs forms a metric on the set G, the pair (dmcs,G) forms a metric
space. In this section we will show that this metric space is actually the
discrete topology. We will show that dmcs induces the discrete topology
on G by showing that all open balls in the metric space are also open
sets in the topology. We have the following definition for an open ball
in G.

Definition 3.1. If G ∈ G and r > 0, then an open ball centered at G
with radius r is the set

B(G, r) = {H ∈ G : dmcs(G,H) < r}
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To consider what open balls look like, we consider what possible
distances can exist between a fixed graph G and all other graphs in
G. By definition, dmcs(G,H) ∈ [0, 1) ∩ Q. Since dmcs is a metric,
dmcs(G,H) = 0 precisely when G ∼= H. A distance of 1 is not possible
as graphs in G are non-empty, so any two graphs G and H always have
at least one vertex in common so that mcs(G,H) ≥ 1. Therefore, for
r ≥ 1 we have that B(G, r) = G.

Since mcs(G,H) is an integer, for graphs G and H with sizes |G| = n
and |H| = m ≤ n, dmcs(G,H) := n−i

n
for some i ∈ {1, . . . ,m}. This

observation leads to the following theorem.

Theorem 3.2. Consider a fixed graph G of size n and let H ∈ G.
Then the minimum non zero value for dmcs(G,H) is 1

n+1
.

Proof. SupposeG andH are not isomorphic, somcs(G,H) ≤ min{|G|, |H|}.
Let |H| = m. If m ≤ n, the minimum distance between G and H with
H ∈ Gm is 1

n
. If m > n, then the minimum distance between G and H

with H ∈ Gm is m−n
m

. We thus have to consider the minimum of the set
{m−n

m
: m > n}. The minimum distance occurs when m = n+1, so the

minimum distance between G and H is then dmcs(G,H) = 1
n+1

. �

Thus, if we take r = 1
1+|G| we get B(G, r) = {G}. Therefore, for all

G ∈ G, the set {G} is open, which proves the following corollary.

Corollary 3.3. The distance function dmcs induces the discrete topol-
ogy on G.

Theorem 3.2 says that for a fixed graph G, there is a limit on how
small dmcs(G,H) can be for H ∈ G. We can ask whether this is the case
for any G,H ∈ G. That is, can we find G,H so that dmcs(G,H) is as
small as we like? This question is answered by the following theorem.

Theorem 3.4. For any q ∈ [0, 1)∩Q, there exist two graphs G and H
so that dmcs(G,H) = q.

Proof. Let q = i/n, where n and i are non-negative integers, and i < n.
Let G = Kn. Let H be the disjoint union of the clique Kn−i and the
set of isolated vertices Ki. as follows. Then mcs(G,H) = n− i, and

dmcs(G,H) = 1− n− i
n

=
i

n
= q

�
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4. Distance between random pairs of graphs

In this section, we investigate the mcs distance between two ran-
domly chosen graphs in the well-known Erdös-Renyi random graph
probability space G(n, p). The main theorem below states that almost
any pair of randomly chosen graphs in G(n, p) are at near-maximum
distance from each other. Namely, the distance between these graphs
tends to 1 as n tends to infinity, while the definition of mcs distance is
such that this distance never can exceed 1. For the special case where
p = 1/2, G(n, p) gives the uniform distribution on all graphs with n
vertices (all labelled graphs). Thus, a corollary of the the theorem is
that almost all pairs of graphs of size n have mcs distance close to 1.

Theorem 4.1. Let G and H be two graphs chosen according to G(n, p).
Then almost surely

1−
5 log1/p∗(n)

n
< dmcs(G,H) < 1−

2 log1/p∗(n)

n
.

Proof. Let G and H be two graphs chosen according to G(n, p). Con-
sider the graph GH formed as follows: V (GH) = [n], and for each
pair i < j in [n], i and j are adjacent in GH precisely when i and j
are adjacent in both G and H, or i and j are non-adjacent in both G
and H. Clearly, any clique of size k in GH corresponds to a common
subgraph of size k in G and H. Also, the probability of an edge occur-
ring in GH equals p∗ = p2 + (1 − p)2 = 2p2 − 2p + 1, and edges still
occur independently, so GH can be considered to be chosen according
to G(n, p∗). It a well known result in random graph theory (see for
example [1]) that almost surely the clique number G(n, p∗) is at least
2 log1/p∗ n. This leads to upper bound on dmcs(G,H).

For the lower bound, we compute the probability that G and H
have a common subgraph of size k. Let X be the number of common
subgraphs of size k. For every set S, and every one-to-one map f :
S → [n], define the indicator variable XS,f , where XS,f = 1 if f is an
isomorphism from the subgraph of G induced by S to the subgraph of
H induced by f(S), and zero otherwise. Then X =

∑
S,f XS,f , and

by linearity of expectation, E(X) =
∑

S,f EXS,f . For each particular
choice of S and f ,

EXS,f = P(XS,f = 1) = (p∗)(
k
2).

Namely, for each pair {i, j} ⊆ S, either i, j are adjacent in G and
f(i), f(j) are adjacent in H, which happens with probability p2, or
i, j are non-adjacent in G and f(i), f(j) are non-adjacent in H, with
probability (1− p)2.
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There are
(
n
k

)
≤ nk choices for S, and, given S, there are n(n −

1) . . . (n− k + 1) ≤ nk choices for f . Therefore,

EX ≤ n2k(p∗)(
k
2) ≤ n2k(1/p∗)−k

2/2 + o(1).

Now let k = 5 log1/p∗(n), so (1/p∗)−k
2/2 = n−2.5k . Then EX =

O(n−0.5k) = o(1). By Markov’s inequality,

P(dmcs(G,H) <
n− k
n

) = P(X ≥ 1) ≤ EX,

and EX → 0 when n→∞.
�

The reader may not think that this result extends to the unlabelled
graphs of G since the proof assumes we are working with the labelled
graphs of G(n, p). This is not the case. For the upper bound, the max-
imum common subgraph between two labelled graphs is less than or
equal to the maximum common subgraph between their corresponding
unlabelled graphs so that the upper bound still holds. For the lower
bound, we consider all subsets of vertices of both graphs and all one-to-
one functions between them so that the lower bound given is precisely
the lower bound for the unlabelled graphs as well.

5. Graph Continuity

In this section we introduce a notion of continuity for graph param-
eters. Our definitions follow the standard definition of continuity of
functions, but are adapted to (G, dmcs).

Most commonly, continuity refers to pointwise continuity. In our
setting, a graph function f : G → R is continuous at G0 ∈ G if for
all ε > 0 there exists a δ > 0 such that d(G,G0) < δ implies that
|f(G) − f(G0)| < ε. This definition is not very useful for the metric
space under consideration, since all graph functions f : G → R are
trivially pointwise continuous. Namely, by Theorem 3.2, if we select
δ = 1

1+|G0| , the only graph H satisfying dmcs(G,G0) < δ is G = G0.

Thus, every graph function f is pointwise continuous at G.
A more useful concept is that of uniform continuity.

Definition 5.1. A graph function f : G → R is uniformly continuous
if for all ε > 0 and G,H ∈ G there exists a δ > 0 such that when
d(G,H) < δ we have that |f(G)− f(H)| < ε.

Many common graph functions, such as chromatic number, diam-
eter, or girth, are integer valued. Thus, for such an integer valued
function f , f(G1) − f(G2)| < 1 implies that f(G1) = f(G2), making
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the condition for uniform continuity too restrictive. For this reason, we
consider functions that are graph parameters normalized by the size of
the graph.

Definition 5.2. Let f : G → R be a graph function. The function f̄

given by f̄(G) = f(G)
|G| is the normalized graph function for f .

The remainder of this section explores the relation between a bound-
edness condition on a graph parameter, and uniform continuity of the
derived normalized graph function.

Definition 5.3. Given a graph parameter f , the step change of f
equals the supremum, over all choices of graph G and vertex v of G, of
|f(G)− f(G− v)|.

Since the maximum is taken over the infinite family of all graphs,
the step change can be infinite. Note that the step change is always
non-negative.

Lemma 5.4. Given a graph parameter with step change C. Then for
any two graphs G and H of size |H| ≤ |G| = n, |f(G) − f(H)| ≤
2Cndmcs(G,H).

Proof. Let i = ndmcs(G,H), and let K be a maximum common sub-
graph of G and H. Note that, by the definition of dmcs, i is an integer,
and |K| = n− i. Let A = {a1, . . . , ai} ⊆ V (G) and B = {b1 . . . , bj} ⊆
V (H) be so that G−A and H −B are isomorphic to K. By repeated
application of the definition of the step change we obtain that |f(G)−
f(G−a1−· · ·−ai)| ≤ iC. Similarly, |f(H)−f(H−b1−· · ·−bj)| ≤ Cj.
Since f(G−a1−· · ·−ai) = f(K) = f(H−b1−· · ·−bj)|, we can conclude
that |f(G)− f(H)| ≤ |f(G)− f(K)|+ |f(H)− f(K)| ≤ 2Ci. �

Theorem 5.5. Let f be a graph function that satisfies f(G) ≤ |G| for
all G, and has finite step change C. Then f̄ is uniformly continuous.

Proof. Let f be a graph function and G and H are graphs with |G| = n
and |H| = m and n ≥ m. Let i = ndmcs(G,H). By the definition of
the step change, this implies that |f(G)− f(H)| ≤ 2Ci. Now let f̄ be
the normalized graph function for f .
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Consider |f̄(G) − f̄(H)| and write f(G) = p1 and f(H) = p2. We
have that

|f̄(G)− f̄(H)| =

∣∣∣∣∣p1

n
− p2

m

∣∣∣∣∣
=

∣∣∣∣∣mp1 − np2

nm

∣∣∣∣∣
=

∣∣∣∣∣mp1 −mp2 − np2 +mp2

mn

∣∣∣∣∣
≤

∣∣∣∣∣p1 − p2

n

∣∣∣∣∣+

∣∣∣∣∣p2(n−m)

nm

∣∣∣∣∣
Now

|p1 − p2

n
| = |f(G)− f(H)

n
| ≤ 2Ci/n = 2Cdmcs(G,H).

Consider the second piece of our inequality p2(n−m)
nm

. By assumption,
p2 = f(H) ≤ |H| = m, so p2

m
≤ 1 giving

p2(n−m)

nm
≤ n−m

n
≤ n− |mcs(G,H)|

n
= dmcs(G,H).

Therefore,

|f̄(G)− f̄(H)| ≤ (1 + 2C)dmcs(G,H).

Fix ε > 0, and let δ = ε
1+2C

. Then dmcs(G,H) < δ implies |f̄(G) −
f̄(H)| < ε. Thus, f̄ is uniformly continuous.

�

The following theorem gives a result that is close to the converse of
the above theorem.

Theorem 5.6. Let f be a graph parameter so that f̄ is uniformly
continuous. Then for all graphs G and H where |H| ≤ |G| = n and
dmcs(G,H) = i

n
,

|f(G)− f(H)| ≤ α(n− i+ 1)i,

Where α : N→ N is a function such that α(n)
n
→ 0 as n→∞.

Proof. Let

α′(n) = max|G|=n, v∈V (G)|f̄(G)− f̄(G− v)|,
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We first show that α′(n)/n → 0 as n → ∞. Fix ε > 0. Since f̄ is
uniformly continuous, there exists δ > 0 be such that dmcs(G,H)) < δ
implies that |f̄(G)− f̄(H)| < ε.

Take N ∈ N such that 1
N
< δ. Fix G ∈ G of size n ≥ N , and

H = G−v for some vertex v ∈ G. Then dmcs(G,H) = 1/n ≤ 1/N < δ.
Thus we have that

|f(G)− f(H)| = |nf̄(G)− (n− 1)f̄(H)| ≤ n|f̄(G)− f̄(H)| ≤ εn.

So for all ε > 0, there exists N ∈ N so that α′(n)/n ≤ ε for all n ≥ N .
Now let

α(n) = n sup{α′(k)/k | k ≥ n}.

Clearly, since α′(n)/n goes to zero as n goes to infinity, then so does
α(n)/n.

Fix G and H with maximum common subgraph K, and |H| ≤ |G| =
n. Let i = ndmcs(G,H). By the definition of the step change it follows
that

|f(G)− f(H)| ≤ α′(n) + α′(n− 1) + · · ·+ α′(n− i+ 1)

≤ n
(
α′(n)
n

+ α′(n−1)
n−1

+ · · ·+ α(n−i+1)
n−i+1

)
≤ iα(n− i+ 1)

�

Theorem 5.5 makes it easy to find examples of graph parameters
whose normalized functions are uniformly continuous. For example, the
size of a graph, the chromatic number of a graph, and the domination
number of a graph all have step change 1, and thus their normalized
functions are uniformly continuous.

We conclude with an example of a graph function which is not con-
tinuous.

Theorem 5.7. The diameter is not a uniformly continuous graph func-
tion with respect to dmcs

Proof. Consider the graphs Pn and Cn and let f̄ be the normalized
graph function for the diameter. For all n, we have that d(Pn, Cn) = 1

n

and f̄(Cn) =
bn

2
c

n
and f̄(Pn) = n−1

n
= 1. For all n the difference in the

normalized diameters is then

|f̄(Cn)− f̄(Pn)| =

∣∣∣∣∣bn2 c − (n− 1)

n

∣∣∣∣∣ ≥ 1

2
− 1

n
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for n ≥ 1. Fix ε = 1
4
. Fix any δ > 0, and let N ≥ max{4, 1/(N + 1))}.

Then dmcs(PN , CN) = 1/N < δ, but

|f̄(CN)− f̄(PN)| ≥ 1

2
− 1

N
≥ 1

4
.

So, for every choice of δ > 0, there exists a pair of graphs that violates
the uniformity condition. �
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