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Abstract. For a positive integer n, we introduce the new graph
class of n-ordered graphs, which generalize partial n-trees. Several
characterizations are given for the finite n-ordered graphs, includ-
ing one via a combinatorial game.

We introduce new countably infinite graphs R(n), which we
name the infinite random n-ordered graphs. The graphs R(n) play
a crucial role in the theory of n-ordered graphs, and are inspired by
recent research on the web graph and the infinite random graph.
We characterize R(n) as a limit of a random process, and via an
adjacency property and a certain folding operation. We prove that
the induced subgraphs of R(n) are exactly the countable n-ordered
graphs. We show that all countable groups embed in the automor-
phism group of R(n).

1. Introduction

As is well-known, a tree may be defined from K1 by recursively
adding vertices of degree one. A more general notion is an n-tree,
n ≥ 1, which is a graph recursively built from Kn by adding a new
vertex of degree n joined to an existing n-clique. A partial n-tree is a
spanning subgraph of an n-tree (see [4] for more on partial n-trees).

We say that a countable graph G is called n-ordered if there exists
a well-ordering (xi : i ∈ I) of its vertices, where I is finite, or I has
the order-type of N so that each xj has at most n neighbors xi, with
i < j. (We may consider other countable order-types, but the restriction
above is sufficient for our purposes.) In other words, a vertex is joined
to at most n vertices appearing earlier in the ordering. The ordering
(xi : i ∈ I) is an n-ordering of V (G).

Each finite planar graph is 5-ordered, although K5 is 5-ordered and
not planar. Every partial n-tree is n-ordered, but the converse is false
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in general for n ≥ 3. For example, the graph G in Figure 1 is 3-
ordered, but is not a partial 3-tree. If G is n-ordered, then by the
greedy algorithm ω(G), χ(G) ≤ n + 1.

Figure 1. A 3-ordered graph that is not a partial 3-tree.

Consider the following countably infinite graph, which is defined as a
limit of a certain chain of finite graphs. Let R0

∼= Kn. For some t ≥ 0,
assume that Rt is a finite graph containing R0. For each subset S of
cardinality n in V (Rt), add a new vertex xS joined only to the vertices
of S. We say that xS extends S. The graph Rt along with the new
vertices xS defines the graph Rt+1. Let R(n) be the graph with vertices⋃

t∈N V (Rt) and edges
⋃

t∈NE(Rt). We will write R(n) = limt→∞ Rt for
the graph formed as the limit of this chain of vertices and edges. We
will call R(n) the infinite random n-ordered graph, for reasons that will
become apparent as we proceed (see Corollary 9 and Theorem 10).
This construction is reminiscent of one construction of the so-called
infinite random or Rado graph, written R. For R, at time-step t + 1,
for all subsets S of V (Rt) (not just those of cardinality at most n) add
a new vertex zS joined only to S. Hence, R results by adding vertices
joined in all possible ways to existing vertices.

The graph R is a well-studied example of a countably infinite limit
graph; see the surveys [5, 6] on R for additional background and ref-
erences. Many new infinite limits have been recently discovered in
relation to models for the web graph, whose vertices correspond to web
pages, and edges represent links between pages. Several stochastic
models for the web graph have been introduced (see [2]), and most
are on-line, in the sense that new vertices appear over time. Hence,
it is a natural question to ask about the properties of limits of graphs
generated by these models. For further reading on various types of
infinite limit graphs corresponding to real-world networks, the reader
is directed to [3, 9].

The graph R satisfies the n-existentially closed or n-e.c. adjacency
properties for all positive integers n. A graph is n-e.c. if for all disjoint
finite sets of vertices A,B with |A∪B| = n, there is a vertex z /∈ A∪B
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joined to each vertex of A and to no vertex of B. We say that z is
correctly joined (or c.j.) to A,B. It is easy to see that R(n) is n-e.c.
A graph that is n-e.c. for all n we say is e.c. By a back-and-forth
argument, a countably infinite graph is e.c. if and only if it is isomorphic
to R. The graph R arises naturally via the following infinite random
process which inspires its name. We add new vertices over countably
many discrete time-steps. Fix p ∈ (0, 1). At time t = 0 start with any
fixed finite graph. At time-step t + 1, add in a new vertex xt+1. For
each of the existing vertices y, add the edge yxt+1 independently with
probability p. Erdős and Rényi proved in [7] that with probability 1, a
limit generated by this random process is e.c. and hence, isomorphic to
R. This instance of a random process with a seemingly deterministic
conclusion makes R the centre of much research activity.

The goals of the present article are to present results on the new
graph class of n-ordered graphs and on R(n). Our emphasis is on forg-
ing connections between properties of the infinite graph R(n) with the
class of finite n-ordered graphs. Several characterizations of n-ordered
graphs are given in Theorem 2. For example, we show that n-ordered
graphs may be characterized by a certain two player combinatorial
game. The induced subgraphs of R(n) are precisely the countable n-
ordered graphs; see Theorem 10. We characterize the isomorphism
type of R(n) in Theorem 7 as the unique n-ordered graph which satis-
fies the strongly n-e.c. adjacency property, and show that every graph
with this adjacency property embeds R(n). Hence, the graph R(n) plays
an intriguing role in the theory of n-ordered graphs: it is at once the
maximal n-ordered graph (with respect to the induced subgraph rela-
tion), and the minimal graph satisfying the strongly n-e.c. adjacency
property. We describe how R(n) arises naturally as the limit of a ran-
dom process in Theorem 8. Using our characterizations of R(n), we
study the automorphism group of R(n) and prove that it contains as
subgroups isomorphic copies of all countable groups.

All graphs we consider are simple, undirected, and countable (that
is, finite or countably infinite). We write G ≤ H if G is isomorphic
to an induced subgraph of H, and G ¹ S for the subgraph induced
by S ⊆ V (G). We write G ∼= H if G and H are isomorphic. The
complement of G is written G. The set of natural numbers, including
0, is denoted by N. We write ℵ0 for the cardinality of N.

2. The class of n-ordered graphs

Throughout the rest of the section, we will assume that G is finite,
unless otherwise stated. Let δ(G) and 4(G) be the minimum and
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maximum degrees of G, respectively. Given a graph G, a simple n-
reduction consists of deleting a single vertex of degree at most n. An
n-reduction consists of a sequence of simple n-reductions. A graph G
is an n-core if no n-reductions are possible in G. An n-core of G is an
induced subgraph H such that H is obtained from G by an n-reduction
and H is an n-core. If an n-core H of G is nontrivial, then δ(H) ≥ n+1.
For more on n-cores, see [1, 11].

Each finite graph G is |4(G)|-ordered. Hence, the parameter

Θ(G) = min{n : G is n-ordered}
is well-defined. We say that Θ(G) is the orderability of G. The Θ(G)-
core of G is always K1, and the location of this K1 in V (G) need not
be unique. Further, δ(G) ≤ Θ(G) ≤ 4(G).

The following lemma is a part of folklore, and has a straightforward
proof. Note that it holds for both finite and infinite graphs.

Lemma 1. Let G be a countable graph. For all non-negative integers
n, the n-core of G is unique up to isomorphism.

The n-core of G and the orderability of G may be computed in
polynomial time. The algorithm for computing the n-core is simple
(and well-known): iteratively delete vertices of degree at most n (in
any order). The algorithm for computing Θ(G) is also straightforward:
find the r0 = δ(G)-core (where δ(G) is the minimum degree of G) of G;
call this G1. Then find the r1 = δ(G1)-core of G1; iterate this process
until K1 is obtained. If the algorithm terminates in say k steps, then
it is easy to see that Θ(G) = max{r0,r1, . . . , rk−1}.

In the following, we introduce a new combinatorial game played on
a graph G called n-deletion. The game n-deletion is inspired by the
well-known game of Cops and Robber; see [10]. There are two players:
a deleter and mover. They move on alternate time-steps, with the
deleter beginning the first round of play. The deleter’s move consists
of a simple n-reduction on G. The mover starts at any vertex of G, and
a move for him consists of moving to an adjacent vertex. The mover
can never remain on a vertex for more than one round or the deleter
wins. In particular, if the mover’s position is on an isolated vertex,
then the mover loses. If the mover can move indefinitely, even just
back-and-forth on an edge, then the deleter loses. A winning strategy
for the mover is defined in the usual way (there is no strategy possible
for the deleter).

Theorem 2. Let G be a graph, and let n ≥ 1 be fixed. The following
are equivalent.
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(1) The graph G is n-ordered.
(2) The n-core of G is K1.
(3) The deleter has a winning strategy for n-deletion played on G.
(4) There is an acyclic orientation of G so that each vertex has

out-degree at most n.

Proof. It is straightforward to see that items (1) and (2) are equivalent.
To see that (1) implies (4), let (xi : 1 ≤ i ≤ r) be an n-ordering of G.
Orient the edges so that (xj, xi) is directed edge whenever i < j and
xixj ∈ E(G). Then each vertex has at most n-out-neighbours. Since
vertices may only point to vertices with smaller index, there are no
directed cycles. For (4) implies (1), embed the given acyclic orientation
of G into a linear order. The latter ordering is an n-ordering.

We now prove that (1) and (3) are equivalent. Suppose first that
G is n-ordered. The deleter deletes vertices of degree at most n until
the resulting graph is K1. This is possible since G is n-ordered. Either
the mover occupies an isolated vertex after one of the deleter’s moves,
or the mover resides on the K1 after the deleter’s last move. In either
case, the deleter wins. Hence, (1) implies (3).

For (3) implies (1), suppose the graph G is not n-ordered. In partic-
ular, since (1) and (2) are equivalent, the n-core H of G has more than
one vertex. The mover’s strategy is to always stay in H. No matter
what move the deleter makes, the mover is safe: since vertices of the
n-core H have degree at least n+1, they are never deleted in any move
of the deleter. As n + 1 ≥ 2, the mover may always move in H. ¤

A class of C graphs is hereditary if G ≤ H ∈ C implies that G ∈ C.

Corollary 3. The class of n-ordered graphs is hereditary, and closed
under the taking of countable disjoint unions.

Proof. The proof follows by the equivalence of items (1) and (4) in
Theorem 2. ¤

The Cartesian product G2H of graphs G and H has vertices V (G)×
V (H) and edges (a, b)(c, d) if and only if ac ∈ E(G) and b = d or
bd ∈ E(H) and a = c. Orderability is additive with respect to the
Cartesian product, as our next result demonstrates.

Theorem 4. For graphs G and H, Θ(G2H) = Θ(G) + Θ(H).

Proof. Let m = Θ(G) and n = Θ(H). If m or n equal 0, then the result
follows. For example, if m = 0, then G is independent. Then G2H
is isomorphic to |V (G)| many disjoint copies of H, and so Θ(G2H) =
Θ(H).
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Suppose that m,n > 0.We first give an (m + n)-ordering of G2H
which will supply that Θ(G2H) ≤ Θ(G) + Θ(H). Let {x1, . . . , xr} be
an m-ordering of G, and let {y1, . . . , ys} be an n-ordering of G. Order
the pairs (x, y) of G2H lexicographically; that is, (x, y) < (x′, y′) if
and only if x < x′, or x = x′and y < y′. It is straightforward to see
that this is an (m + n)-ordering of G2H.

For the lower bound on Θ(G2H), we consider the (m + n− 1)-core
of G2H. The (m−1)-core A of G is non-trivial, and the (n−1)-core B
of H is non-trivial. Then A2B is an induced subgraph of G2H with
minimal degree (m − 1) + 1 + (n − 1) + 1 = m + n > 0. Hence, the
(m + n − 1)-core of G2H is non-trivial (as it contains A2B), and so
by Theorem 2, Θ(G2H) ≥ Θ(G) + Θ(H). ¤

It would be interesting to consider variants of the class of n-ordered
graphs where at each time-step, different types of subsets are extended.
A natural example (which results in graphs with chromatic number at
most n + 1) extends all subsets with chromatic number at most n. We
leave the consideration of this and analogous classes as an open-ended
problem.

3. Properties of R(n) and a random process

We consider various isomorphic ways (both deterministic and ran-
dom) of representing R(n). We begin by supplying some structural in-
formation on the graph R(n) itself. A graph G is strongly n-e.c. if for
all n-subsets A of vertices, and finite subsets B, there is a vertex z
/∈ A∪B correctly joined to A,B. Note that if G is strongly n-e.c., then
G is infinite and strongly m-e.c. for all positive m < n (vertices not in
A or B can be added to A to form a set of cardinality n).

Let J = limt→∞ Ht be a limit of a countable sequence C = (Ht : t ∈
N) of graphs, where Ht ≤ Ht+1 for all t ∈ N. Define ageC : V (J) → N
by

ageC(x) =

{
t if x ∈ V (Ht)\V (Ht−1) where t > 0;
0 else.

We will simply write age(x) if C is clear from context. The age of a
finite subset, written age(S), is max{age(x) : x ∈ S}.
Theorem 5. Fix a positive integer n.

(1) The graph R(n) is strongly n-e.c., but not (n + 1)-e.c.
(2) If G is a strongly n-e.c. graph, then R(n) is an induced subgraph

of G.
(3) R(n) ≤ R(n+1).
(4) limn→∞ R(n) ∼= R.
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Proof. For (1), fix A an n-subset and B a finite set in V (R(n)), with
A and B disjoint. Let t0 = age(A ∪ B). Then zA ∈ Rt0+1 is correctly
joined to A and B.

Let S1, S2, . . . , Sn+1 ⊆ V (Rt) be n + 1 disjoint n-subsets, and, for
each Si, 1 ≤ i ≤ n + 1, let zSi

be the new vertex in Rt+1 that extends
Si. Take S = {zSi

: 1 ≤ i ≤ n + 1}. No vertex of Rt+1 is joined to all
of S. Assume that no vertex of Rj is joined to all of S, where j ≥ t + 1
is fixed. No vertex of Rj+1 is joined to all of S. Hence, R(n) is not
(n + 1)-e.c.

For item (2), we proceed by induction on t to embed Rt in G. For the
inductive step, let R′

t be the copy of Rt in G. For k ≤ n, by the strongly
n-e.c. property for G, for each k-subset S of V (R′

t), there is a vertex
zS of V (G)\V (R′

t) joined to S and to no vertex of V (R′
t)\S. Add each

of these vertices zS to V (R′
t) successively, in such a way that they are

all pairwise non-joined, and let R′
t+1 be the resulting subgraph. Then

clearly, R′
t+1

∼= Rt+1 and R′
t ≤ R′

t+1. Hence, the chain (R′
t : t ∈ N) has

a limit isomorphic to R(n), which is in turn isomorphic to an induced
subgraph of G.

Item (3) follows from (2), since R(n+1) is strongly n-e.c. For item (4),
first note that the limit is defined with respect to the chain (R(n) : n ∈
N\{0}), where R(n) is an induced subgraph of R(n+1) (as in (3)). Let
G = limn→∞ R(n). It is sufficient to prove that G is e.c. For this, let
A,B be disjoint finite subsets of G. Suppose that m1 = |A∪B|. Further,
suppose that m2 is such that A ∪ B ⊆ V (R(m2)). Let m = m1 + m2.
Then A∪B ⊆ V (R(m)), and R(m) is m-e.c. Therefore, there is a vertex
correctly joined to A,B in R(m), hence in G. ¤

Let G and H be countable graphs such that H ≤ G and |V (H)| ≥ n.
We say that H 4(n,v) G if there is a vertex v ∈ V (G) such that H =
G− v and degG(v) = n. We write H 4(n) G if there is countable chain
(Gt : t ∈ I) so that G0

∼= H and Gt 4(n,v) Gt+1 for some v ∈ Gt+1,
and if I is finite, then G equals the Gt with maximum index; if I
is infinite, then G = limt→∞ Gt. For example, Kn 4(n) R(n) for all
positive integers n.

For another illustrative example, consider the unique isomorphism
type T∞ of a countable tree such that each vertex has infinite degree.
It is straightforward to check that K1 4(1) T∞, T∞ is strongly 1-e.c.,

and R(1) is isomorphic to T∞.
It is clear that 4(n) is an order relation when restricted to finite

graphs. Our next theorem demonstrates that it is an order relation
also on countable graphs.
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Theorem 6. The relation 4(n) is transitive on countable graphs.

Proof. Let G, H, and J be countable graphs such that G 4(n) H 4(n) J.
We consider the only nontrivial case where V (H)\V (G) and V (J)\V (H)
are both countably infinite.

Suppose that H = limn→∞ Gt, where G0
∼= G, and Gt 4(vt+1,n) Gt+1

for all t ∈ N . That is, for t ≥ 1, vt is the unique vertex in V (Gt)\V (Gt−1),
and vt has degree exactly n in Gt. Similarly, suppose that J = limn→∞ Ht,
where H0

∼= H, and Ht−1 4(ut,n) Ht for all t ∈ N\{0}. Thus, for t ≥ 1,
ut is the unique vertex in V (Ht)\V (Ht−1). Note that the two chains
(vt : t ≥ 1) and (ut : t ≥ 1) enumerate all vertices in V (J)\V (G).

Define the binary relation ¿ on V (J)\V (G) as follows. We have
that vi ¿ vj if and only if i ≤ j, ui ¿ uj if and only if i ≤ j, and
vi ¿ uj if and only if uivj ∈ E(J). Let < be a linear extension of the
transitive closure of the relation ¿, and let (wt : t ≥ 1) be a strictly
increasing chain listing all the elements of V (J)\V (G) according to this
linear order.

We claim that G 4(n) J via the chain (wt : t ≥ 1). Namely, let J0 =
G, and for t ≥ 1, let Jt be the subgraph of J induced on {w1, . . . , wt}.
We will show that Jt 4(wt+1,n) Jt+1 for all t ≥ 0. For this, it is enough
to show that for each t ≥ 1, wt has exactly n neighbours in Jt.

Fix t ≥ 1. We consider two cases. First, suppose wt = vi for some
i ≥ 1. By construction, we know that

(3.1) |NJ(vi) ∩ (V (G) ∪ {v1, v2, . . . , vi−1})| = n.

It follows from the ordering of the wt that

(3.2) {wi′ : 1 ≤ i′ ≤ t− 1} ∩ {vi′ : i′ ≥ 1} = {v1, . . . , vi−1}.
Hence, (3.1) and (3.2) imply that wt has exactly n neighbours in
V (Gt−1)\{uj : j ≥ 1}. Suppose that wt is joined to a vertex uj ∈
V (Jt−1). Then uj = wt′ for some t′ < t, and ujvi ∈ E(J). Therefore,

wt = vi ¿ uj = wt′ ,

which contradicts our assumption about the ordering of the wt.
For the second case, suppose that wt = uj. In this case

(3.3) |NJ(uj) ∩ (V (H) ∪ {u1, . . . , uj−1})| = n.

Also,

(3.4) {wi′ : 1 ≤ i′ ≤ t− 1} ∩ {ui′ : i′ ≥ 1} = {u1, . . . , uj−1}.
Since V (H) includes all the {vi : i ≥ 1}, (3.3) and (3.4) implies that wt

has exactly n neighbours in V (Jt−1) ∪ {vi : i ≥ 1}. Suppose that wt is
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joined to a vertex vi so that vi 6∈ V (Jt−1), so vi = wt′ with t′ > t. Then

wt′ = vi ¿ uj = wt,

which contradicts our assumption about the ordering of the wt. ¤
Our next result uses the strongly n-e.c. properties and the relations

4(n) to characterize the isomorphism type of R(n).

Theorem 7. Let n be a fixed positive integer and let G be a countable
graph. Then G ∼= R(n) if and only if G is strongly n-e.c. and Kn 4(n) G.

Proof. As the forward direction is immediate, we prove the reverse
direction. Suppose, without loss of generality, that G = limn→∞ Gt,
where G0

∼= Kn, and Gt 4(n) Gt+1 for all t ∈ N . Enumerate V (G)\V (G0)
as {vt : t ∈ N\{0}} so that vt is the unique vertex of Gt not in Gt−1.

Let f0 : G0 → R0 be any fixed isomorphism. As the induction
hypothesis, suppose that for a fixed t ≥ 0, there is a finite induced
subgraph Jt of G containing Gt along with an isomorphism ft : Jt → Rt

extending f0.
The graph Rt+1 is formed from Rt by extending all n-sets of vertices.

If we can find analogous vertices in G for all n-subsets of Jt, including
the vertex vt+1, then this will define Jt+1.

The vertex vt+1 extends some fixed n-set S of Gt. List the n-sets
of Rt as (Xi : 1 ≤ i ≤ r), with X1 = ft(S). By induction, we may
find vertices ai extending the n-sets f−1

t (Xi), so that none of the ai are
pairwise joined. More explicitly, let a1 = vt+1. Assuming a1, . . . , ai have
been chosen such that age(aj) < age(aj+1) for all 1 ≤ j ≤ i, choose ai+1

to be the first vk extending f−1
t (Xi+1) so that age(vk) > age(ai). Note

that vk is not joined to any vj, where j < k, unless vj ∈ f−1
t (Xi+1). The

vertex vk exists by the strongly n-e.c. property for G. Define Jt+1 to be
the subgraph induced by V (Gt)∪{ai : 1 ≤ i ≤ r}. It is straightforward
to see that ft+1 : Jt+1 → Rt+1 is an isomorphism.

Define f : G → R(n) by f =
⋃

t∈N ft. Then f is an isomorphism by
construction. ¤

We now introduce a new random graph process which we name
Model n which with high probability will generate R(n). The model
has some similarities to the Erdős–Rényi model for R, but there are
important differences. In Model n new vertices are added so that older
vertices have a higher probability of acquiring new neighbours than
their younger counterparts.

For Model n, the single parameter of the model is n ∈ N\{0}. Start
with G0

∼= Kn, with vertices labelled v1, . . . vn. For t ≥ 0 fixed, assume
that Gt−1 has been defined and there are finitely many vertices in
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Gt. At time t, add a new vertex vn+t, and choose a set S of n distinct
vertices from V (Gt−1), where the probability that a vertex vi is included
in the set is exponentially proportional to its age. More precisely, for
each S = {vi1 , . . . , vin}, define µ(S) = 2−(i1+···+in). Define

Ct =
∑

1≤j1<j2<···<jn≤t+n−1

2−(j1+j2+···+jn).

In particular, Ct is the sum of all the µ(S), where S a subset of cardi-
nality n from V (Gt−1). The probability that S is chosen from V (Gt−1)
equals µ(S)/Ct. If S is chosen, then join vn+t to each vertex of S. The
probability of an event A in a probability space is written P(A).

Theorem 8. Let G = limt→∞ Gt, where Gt was generated by Model n.
With probability 1, G is strongly n-e.c.

Proof. Fix disjoint finite subsets of V (G), A and B, so that |A| = n.
We prove that the probability that there is no vertex correctly joined
to A and B in G is 0. As there are only countably many choices for A
and B and a countable union of measure 0 sets is measure 0, the proof
will follow. Let A = {vi1 , . . . , vin}, so that age(vij) ≤ age(vij+1

), for all
1 ≤ j ≤ n. Let t0 = age(A∪B). For each t ≥ t0 +1, let Vt be the event
that vn+t is joined to all vertices in A and to no vertex in V (Gn+t−1).
Then

P(Vt) = 2−(i1+···+in)/Ct.

Note that Ct ≤
(∑t+n−1

j=1 2−j
)n

≤ 1 for all t. Therefore, if we let t′ be

the minimum age of a vertex in A ∪B, then

(3.5) P(Vt) ≥ 2−(i1+···+in) ≥ 2−nt′

for all t ≥ t0.
Therefore, the probability that there exists no vertex in G that is

c.j. to A and B is at most

P(
∞⋂

t=t0

Vt) =
∞∏

t=t0

(1− P(Vt)) ≤ lim
t→∞

(1− 2−nt′)t = 0.

¤
In Model n, exactly n edges are added at each time-step from the

new vertex to existing vertices. Hence, by Theorems 7 and 8 we have
the following.

Corollary 9. With probability 1, a limit generated by Model n is iso-
morphic to R(n).
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Corollary 9 gives some insight into the finite graphs generated by
Model n. For example, as we will prove in Theorem 10, each finite
partial (in fact, countable) n-tree embeds in R(n). Hence, with prob-
ability 1 as t → ∞, each finite partial n-tree embeds in the graph Gt

generated by Model n.

4. The n-ordered graphs and R(n)

The n-ordered graphs play an important role in the structure of
R(n). Our first result characterizes the class of isomorphism types of
countable induced subgraphs of R(n) (sometimes referred to as the age
of the graph).

Theorem 10. A countable graph G is an induced subgraph of R(n) if
and only if G is n-ordered.

Proof. For the forward direction, suppose that G ≤ R(n). List the
vertices of G according to their age in R(n) from youngest to oldest:
V (G) = (xi : i ∈ I), where I is finite or I = N. It is not hard to see
that this gives an n-ordering of G.

For the reverse direction, let (xi : i ∈ I) be a fixed n-ordering of G,
so that G = limt→∞ Gt, where Gt is the graph induced on {xi : i ≤ t}.
We embed Gt into R(n) inductively. Let G′

0 be the graph induced on
a fixed vertex x of R(n). For t ≥ 0, assume that Gt

∼= G′
t ≤ R(n), and

that G′
t contains x. Let age(G′

t) = s. The vertex xt+1 is joined to at
most n vertices S in Gt. Let T = V (Gt)\S, and let S ′ and T ′ be the
corresponding subsets of V (G′

t). Let X ′ be a set in R(n) with cardinality
n − |S ′| that is disjoint from S ′ and T ′. Suppose that age(X ′) = t′;
without loss of generality, t′ > t.

Then zS′∪X′ ∈ Rt′+1 is joined to S ′ in Rt and no vertex of T ′. Hence,

G′
t+1 = Rt′+1 ¹ (V (G′

t) ∪ {zS′}) ∼= Gt+1,

and G′
t ≤ G′

t+1 .
It follows that

G = lim
t→∞

Gt
∼= lim

t→∞
G′

t ≤ R(n).

¤
Corollary 11. The graph R(n) embeds all countable n-ordered graphs.

Hence, the graph R(n) is a countable universal n-ordered graph (that
is, embeds all countable n-ordered graphs), analogous to the infinite
random graph, which is a countable universal graph. Furthermore,
every strongly n-e.c. graph embeds R(n) by Theorem 5 (2). The graph
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R(n) is then both a maximal n-ordered graph and a minimal strongly n-
e.c. graph (with respect to the embedding order on countable graphs).

We may vary the definition of R(n) somewhat and obtain an isomor-
phic graph. For example, for a countable graph G, define R(n,G) by
the same limit process used to define R(n) but with the initial graph
R0

∼= G. A graph generates R(n) if R(n,G) ∼= R(n). We do not know
exactly which graphs generate R(n). We partially characterize graphs
which do and do not generate R(n) in the following corollary.

Corollary 12. Let G be a countable graph, and let n be a positive
integer.

(1) If Kn 4(n) G, then R(n,G) ∼= R(n).
(2) If either

(a) G has a nontrivial n-core, or
(b) |V (G)| = n and |E(G)| < (

n
2

)
,

then R(n,G) 6∼= R(n).

Proof. For item (1), since Kn 4(n) G and G 4(n) R(n,G), we have that

Kn 4(n) R(n,G) by Theorem 6. It is straightforward to see that R(n,G)

is strongly n-e.c. Hence, the proof follows from Theorem 7.
For item (2a), assume G has a nontrivial n-core C. Without loss of

generality, assume that G = C. Let H = R(n), and J = R(n,G), and
assume for a contradiction that f is an isomorphism from H to J . Let
X be the vertices of H that correspond to the initial copy of Kn with
age 0, and let Y be the vertices of J that correspond to the initial copy
of G of age 0.

Construct a set S ⊆ V (H) as follows. Let S0 be the set with elements
f−1(Y ). For i > 0, form Si+1 from Si as follows: for each v ∈ Si, add
all neighbours of v with lower age than v. Stop when no new vertices
can be added, and let S =

⋃
i Si. The set S contains X. The n-core of

H ¹ S is K1.
Let T = f(S), so that Y ⊆ T . The n-core of T is G. However, the

n-core of a countable graph is unique by Lemma 1, which contradicts
that H ¹ S ∼= J ¹ T .

For item (2b), we proceed in a similar fashion as the proof of (2a),
defining the sets X, Y , S, and T as before. Note that S and T are
finite. Let |S| = r. Since all vertices in S except those in X have
exactly n lower age neighbours in S, H ¹ S has exactly n(r − n) +

(
n
2

)
edges.

Assume that all edges in J ¹ T are directed from higher age to
lower age vertices. Then, each vertex has out-degree at most n, while
vertices in Y have out-degree zero. This implies that J ¹ T has at
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most n(r − n) + |E(G)| edges. But then |E(J ¹ T )| < |E(G ¹ S)| by
hypothesis, which contradicts the fact that f is an isomorphism. ¤

As an application of Corollary 12, note that by (2b), R(2,K2) 6∼= R(2).
Corollary 12 is also useful to prove various properties of R(n). For ex-
ample, let Kn(ω) be the graph formed from Kn by adding ℵ0-many
pairwise non-joined vertices joined to each vertex of Kn. Then Kn 4(n)

Kn(ω) and by Corollary 12, Kn(ω) generates R(n). See Theorem 14 for
an application of the corollary to the automorphism group of R(n).

The graph R(1) is the unique countable tree with each vertex of infi-
nite degree. Hence, R(1) has infinite diameter. However, for n ≥ 2, R(n)

has diameter 2 (since any 2-e.c. graph has diameter 2). The spanning
subgraphs of R are well-known; see [5]. A ray is an infinite path that
extends indefinitely in one direction; a double ray is an infinite path
that extends indefinitely in two directions. A one-way Hamiltonian
path is a spanning subgraph that is a ray, while a two-way Hamiltonian
path is a spanning subgraph that is a double ray. Henson [8] proved first
that R contains one- and two-way Hamiltonian paths, and we obtain
a similar result for R(n).

Theorem 13. If G is a strongly 2-e.c. graph, then G has one and
two-way Hamilton paths. In particular, for n ≥ 2, R(n) has one and
two-way Hamilton paths.

Proof. We prove that G has one-way Hamilton path; the existence of
a two-way Hamilton path is similar. Without loss of generality, let
V (G) = N.

We construct such a path by induction. Let X0 be the subgraph
induced by {0}. Suppose that Xn contains the vertices {0, 1, . . . , n−1},
and further suppose that Xn has a Hamilton path P. If n is contained
in V (Xn), then let Xn+1 = Xn. Suppose that n is not in Xn, and let
u be an endvertex of P. By the strongly 2-e.c. property, there is a
vertex z joined to n and u, and joined to none of the other vertices in
Xn. Let Xn+1 be the graph formed by taking the subgraph induced by
V (Xn)∪{z, n+1}. Then Xn+1 contains a Hamilton path. A Hamilton
path in G is then X = limn→∞ Xn. ¤

4.1. Symmetries of R(n). A mapping f : G → H with the property
that xy ∈ E(G) implies that f(x)f(y) ∈ E(H) is a homomorphism.
We write fg for the composition of two mappings. If S ⊆ V (G), then
we write f ¹ S for the restriction of f to S. An embedding f : G→ H is
an injective homomorphism with the property that xy /∈ E(G) implies
that f(x)f(y) /∈ E(H). An automorphism is a bijective embedding.
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The group of all automorphisms of G under composition is written
Aut(G). We write idG for the identity mapping on G.

The automorphism group of R has been actively studied (see [5]).
For example, the e.c. property and a back-and-forth argument together
imply that each countable group is isomorphic to a subgroup of the
automorphism group of R; we say that Aut(R) embeds each countable
group. We prove an analogous result for R(n).

Theorem 14. The automorphism group of R(n) embeds all countable
groups. In particular, the countably infinite symmetric group Sω is a
subgroup of Aut(R(n)).

Proof. For a positive integer r, let Kn(ω) be the graph formed from
Kn by adding infinitely many pairwise non-joined vertices joined to
each vertex of Kn. Then Kn 4(n) Kn(ω) and by Corollary 12, Kn(ω)

generates R(n). Let G = R(Kn(ω),n). The countably infinite symmetric
group Sω is a subgroup of Aut(Kn(ω)), since we may permute in all
ways the elements of the independent set outside Kn, leaving Kn fixed.
By Cayley’s theorem on symmetric groups, each countable group is a
subgroup of Sω. Hence, to prove the theorem it is enough to prove that
the Aut(Kn(ω)) = Aut(R0) is isomorphic to a subgroup of Aut(G).

Let f0 be an automorphism of R0. Assume that ft is an automor-
phism of Rt such that ft ¹ X0 = f0. For each vertex zS of V (Rt+1)\V (Rt),
where S is a subset of V (Rt) satisfying |S| = n, define ft+1(zS) = zft(S).
Otherwise, define ft+1 to be ft on Rt. It follows that ft+1 is an auto-
morphism of Rt+1 satisfying ft+1 ¹ Rt = ft.

Define F ∈ Aut(G) by F =
⋃

t∈N ft, and let α : Aut(R0) → Aut(G)
be defined by α(f) = F. Since F ¹ R0 = f, it follows that α is injective.
To prove that Sω is isomorphic to a subgroup of Aut(G), it is sufficient
to show that α is a group homomorphism.

As α clearly preserves the identity automorphism, we show that for
all x ∈ V (G),

(4.1) α(fg)(x) = α(f)α(g)(x).

Fix x ∈ V (G) with age(x) = t. We prove (4.1) by induction on t. If
t = 0, then (4.1) clearly holds. Suppose that (4.1) holds for all vertices
x with age(x) ≤ t. Let age(x) = t + 1. Then x is of the form zS, where
S is a finite subset of Xt such that |S| ≤ n. Now,

α(fg)(x) = (fg)t+1(x)

= z(fg)t(S)

= zftgt(S)

= α(f)α(g)(x),
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where the third equality follows by induction hypothesis. Hence. (4.1)
holds by induction on t. ¤

The tree R(1) is easily seen to be vertex-transitive. However, for
n > 1, the graph R(n) is not in general vertex-transitive. This is in
sharp contrast to R, which possesses a large amount of symmetry; see
[5]. For example, if n = 2, then consider the 2-ordered graph G in
Figure 4.1 Since every vertex but z has degree 3, z may only appear as

z

Figure 2. A graph G with K2 ¹ G.

the last vertex in any 2-ordering of G. As K2 ¹ G, by Theorem 12 we
may generate R(2) by G. If R(2) were vertex-transitive, then we may
automorphically map z in G to a vertex u of the copy of K2 with age 0.
In particular, there is an isomorphic copy G′ of G in R(2), containing
u, and with u acting as z. But then the 2-ordering of R(2) induces a
2-ordering L of G′ with z as the first or second vertex in L, which is a
contradiction.
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[7] P. Erdős, A. Rényi, Asymmetric graphs, Acta Mathematica Academiae Scien-
tiarum Hungaricae 14 (1963) 295-315.

[8] C.W. Henson, A family of countable homogeneous graphs, Pacific Journal of
Mathematics 38 (1971) 69-83.

[9] J. Kleinberg, R. Kleinberg, Isomorphism and embedding problems for infi-
nite limits of scale-free graphs, In: Proceedings of ACM-SIAM Symposium on
Discrete Algorithms, 2005.

[10] R. Nowakowski, P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete
Mathematics 43 (1983) 235-239.

[11] S.B. Seidman, Network structure and minimum degree, Social Networks 5
(1983) 269-287.

Department of Mathematics, Wilfrid Laurier University, Water-
loo, ON, Canada, N2L 3C5

E-mail address: abonato@rogers.com

Department of Mathematics and Statistics, Dalhousie University,
Halifax, NS, Canada, B3H 3J5

E-mail address: janssen@mathstat.dal.ca

Department of Mathematics and Statistics, Dalhousie University,
Halifax, NS, Canada, B3H 3J5

E-mail address: cwang@mathstat.dal.ca


