
RANK-BASED ATTACHMENT LEADS TO POWER LAW
GRAPHS

JEANNETTE JANSSEN AND PAWE L PRA LAT

Abstract. We investigate the degree distribution resulting from graph genera-
tion models based on rank-based attachment. In rank-based attachment, all ver-
tices are ranked according to a ranking scheme. The link probability of a given
vertex is proportional to its rank raised to the power −α, for some α ∈ (0, 1).
Through a rigorous analysis, we show that rank-based attachment models lead
to graphs with a power law degree distribution with exponent 1+1/α whenever
vertices are ranked according to their degree, their age, or a randomly chosen fit-
ness value. We also investigate the case where the ranking is based on the initial
rank of each vertex; the rank of existing vertices only changes to accommodate
the new vertex. Here, we obtain a sharp threshold for power law behaviour.
Only if initial ranks are biased towards lower ranks, or chosen uniformly at ran-
dom, we obtain a power law degree distribution with exponent 1 + 1/α. This
indicates that the power law degree distribution often observed in nature can be
explained by a rank-based attachment scheme, based on a ranking scheme that
can be derived from a number of different factors; the exponent of the power
law can be seen as a measure of the strength of the attachment.

1. Introduction

The occurrence of power law degree distributions in self-organizing networks
such as the web graph is often explained by a model based on the principle of
Preferential Attachment (PA). In the original PA model proposed by Barabási
and Albert [2], new vertices join a graph one by one, and each new vertex chooses
a pre-determined number of neighbours at random, so that the probability that a
vertex is chosen as a neighbour (its link probability) is proportional to its degree.
Analysis shows that this model indeed generates power law graphs with high
probability, where the exponent of the power law equals 3 [2, 5]. More general
PA models, such as the ones proposed and analyzed in [1] and [6] allow for the
creation of edges between existing vertices and the deletion of edges and vertices.
The power law of the degree distribution in this case depends on the probabilities
with which various kind of steps (edge addition, vertex addition, deletion) are
taken. By varying these probabilities, any exponent in the range (2,∞) can be
obtained. In [3], the preferential attachment with fitness is studied, in which
the degree of a vertex is scaled by its individual fitness factor to determine its
attractiveness.
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It is tempting to conjecture that the exponent of the power law can be controlled
by varying the strength of preferential attachment. Precisely, the link probability
could be proportional to the degree raised to a power α; the hope is that the
exponent of the power law would be a function of α. This would give a more
natural way to fit the model to real-life data than that given by the generalized
addition/deletion models: the ratio of edge vs. vertex addition steps may well
be dictated by considerations about the data that are independent of the power
law. Unfortunately, as pointed out in [11], this approach does not work. Only
the case where α = 1 (i.e. the standard PA model) leads to a power law degree
distribution. If α < 1 (weak preferential attachment), the degree distribution is a
stretched exponential, while if α > 1 (strong preferential attachment), the graph
will be close to a star, with one vertex adjacent to almost all other vertices.

In this paper, we show that the approach outlined above does give the proposed
results if the preferential attachment is based on a ranking of the vertices. In other
words, the vertices are ranked from 1 to n according to their degree (so the vertex
with highest degree has rank 1, etc.), and the link probability of a given vertex is
proportional to its rank, raised to the power −α for some α ∈ (0, 1); we will refer
to α as the attachment strength. (Negative powers are chosen since a low value
for rank should result in a higher link probability.) Then, with high probability,
the resulting graph will have a power law with exponent 1 + 1/α. The rank-based
approach was first proposed by Fortunato, Flammini and Menczer in [7], and the
occurrence of a power law was postulated based on simulations.

In [7], the attachment strength α is allowed to be any positive real number.
However, if α > 1, then only a vanishingly small proportion of all vertices have
any acquired links at all. This is easy to show for the scenario where vertices
are ranked according to age. We feel confident that the same holds for the other
ranking schemes that lead to power law degree distributions. Since a scenario
where almost all vertices have the minimum degree does not correspond to a
typical self-organizing network, we have limited our analysis to the case where
α ∈ (0, 1).

As we will show, rank-based attachment leads to power law graphs for a variety
of different ranking schemes. One obvious ranking scheme is to rank vertices by
age (the old get richer); we show that this leads to a power law with the same
exponent 1+1/α. A more general graph model with rank-based attachment based
on ranking according to age is the protean graph model, which was proposed and
explored by  Luczak, Pra lat and Wormald in [12, 15, 14]. It is also discussed
in [7] and [8]. As a contrast, in this paper we also consider an inverse age ranking
scheme, where younger vertices are ranked higher. As can be expected, this scheme
is not likely to lead to a heavy tail degree distribution: with high probability, the
maximum degree is of order log n, where n is the total number of vertices.

In [7], a ranking scheme based on an external prestige label for each vertex
is given, and it is shown through a heuristic analysis and simulations that this
scheme also leads to power law graphs, with the same exponent. Precisely, each
vertex at its birth is assigned a randomly chosen fitness ` ∈ (0, 1), and vertices
are ranked according to their prestige label. As argued below, since the ranking is
based only on the relative values of the fitness values, the distribution according
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to which ` is chosen is irrelevant (all distributions give equivalent graph generation
processes).

In order to allow for a different distribution of “prestige”over the vertices, we
considered also a random ranking scheme. Here, each vertex is assigned an initial
rank according to a given distribution. We consider distributions of the following
form. Let Ri be the initial rank of a vertex born at time i. Then P(Ri ≤ k) =
(k/i)s. First we show that, if s = 1, then the situation is similar to the one
described previously, and vertices with initial rank Ri exhibit behaviour as if they
had received fitness Ri/i. Thus, we obtain a power law graph.

Next, we consider the case where s > 1, so the rank of new vertices is biased
towards the lower ranks (note that low rank refers to a vertex with high value of
Ri). In this case, with high probability the rank of a vertex will remain close to
its original value throughout the process, so the behaviour is similar to the case
of ranking according to age, and we obtain a power law graph. If s < 1, so initial
ranks are biased towards the higher ranks, then we show that vertices tend to drift
towards the lower ranks, and the behaviour is similar to that of ranking according
to inverse age, where no power law is likely to occur. Thus, the value of s = 1
gives a sharp threshold for power law behaviour of the degree distribution.

These results suggest an explanation for the power law degree distribution often
observed in real-life networks such as the web graph, protein interaction networks,
and social networks. The growth of such networks can be seen as governed by a
rank-based attachment scheme, based on a ranking scheme that can be derived
from a number of different factors such as age, degree, or fitness. The exponent of
the power law is independent of these factors, but is rather a consequence of the
attachment strength. In addition, rank-based attachment accentuates the differ-
ence between higher ranked vertices: the difference in link probability between the
vertices ranked 1 and 2 is much larger than that between the vertices ranked 100
and 101. This again corresponds to our intuition of what constitutes a credible
mechanism for link attachment.

In order to establish the right attachment strength to model a given real-life
network we should consider the following. In a graph in which the number of
vertices of degree k decreases roughly as k−γ the fraction of vertices of degree at
least k changes roughly as

∑
`≥k

O(`−γ) = O(k1−γ) .

Thus, in order to imitate this distribution the attachment strength α should be
set to α ∼ 1/(γ − 1). For the web graph the distribution of total degrees is, at
this moment, unknown. However, the number of vertices of in-degree k decreases
roughly as k−2.1, while the fraction of vertices of out-degree k can be approximated
by k−2.7 (cf., Broder et al. [4]). Thus, if the total degree of the graph is close to
the distribution of in-degree, then the appropriate attachment strength for a rank-
based model is α ∼ 0.91.
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2. Definitions

In this section, we formally define the graph generation model based on rank-
based attachment. The model produces a sequence {Gt}∞t=1 = {(Vt, Et)}∞t=1 of
undirected graphs, where t denotes time. Our model has two fixed parameters:
initial degree d ∈ N , and attachment strength α ∈ (0, 1). At each time t, each
vertex v ∈ Vt has rank r(v, t) ∈ [t] (we use [t] to denote the set {1, 2, . . . , t}). To
obtain a proper ranking, the rank function r(·, t) : Vt → [t] is a bijection for all t,
so every vertex has a unique rank. In agreement with the common use of the word
“rank”, high rank refers to a vertex v for which r(v, t) is small: the highest ranked
vertex is ranked number one, so has rank equal to 1; the lowest ranked vertex in
Vn has rank n. The initialization and update of the ranking is done according to
a ranking scheme. Various ranking schemes are considered in this paper; we first
give the general model, and then list the ranking schemes.

For any 0 < α < 1, we define the function gα : N → R:

gα(t) =
t∑

j=1

j−α =
t1−α

1 − α
+ O(1) . (1)

Let G1 = (V1, E1) = ({v1}, ∅) be a fixed initial graph with a single vertex with
d loops, and rank r(v1, 1) = 1. For t > 1 we form Gt from Gt−1 according to the
following rules:

• Add a new vertex vt together with d edges from vt to existing vertices
chosen randomly with weighted probabilities. The edges are added in d
substeps. In each substep, one edge is added, and the probability that vi is
chosen as its endpoint (the link probability), equals r(vi, t−1)−α/gα(t−1).

• Update the ranking function r(·, t) : Vt → [t] according to the ranking
scheme.

Our model allows for loops and multiple edges; there seems no reason to exclude
them. However, there will not in general be very many of these, so excluding them
can be shown not to affect our conclusions in any significant way.

We now define the different ranking schemes that are considered in this paper.

• Ranking by age: The vertex added at time t obtains a rank t and retains
this rank. That is, r(vi, t) = i for i ∈ [t].

• Ranking by inverse age: The vertex added at time t obtains a rank
1, but its rank shifts by one each time a new vertex is added. That is,
r(vi, t) = t− i + 1 for i ∈ [t].

• Ranking by random labeling: The vertex added at time t obtains
a label l(vt) ∈ (0, 1) chosen uniformly at random. Vertices are ranked
according to their labels: if l(vi) < l(vj), then r(vi, t) < r(vj, t).

• Random ranking: The vertex added at time t obtains an initial rank Rt

which is randomly chosen from [t] according to a prescribed distribution.
Formally, let F : [0, 1] → [0, 1] be any cumulative distribution function.
Then for all k ∈ [t],

P(Rt ≤ k) = F (k/t).
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• Ranking by degree: After each time step t, vertices are ranked according
to their degrees in Gt, and ties are broken by age. Precisely, if deg(vi, t) >
deg(vj, t) then r(vi, t) < r(vj, t), and if deg(vi, t) = deg(vj, t) then r(vi, t) <
r(vj, t) if i < j.

In the rest of the paper, {Gt}∞t=1 is assumed to be a graph sequence generated
by the rank-based attachment model, with ranking scheme as defined in each
particular section, and d and α are assumed to be the initial degree and attachment
strength parameters of the model as defined above. The results are generally about
the degree distribution in Gn, where the asymptotics are based on n tending to
infinity.

We will use the stronger notion of wep in favour of the more commonly used
aas, since it simplifies some of our proofs. We say that an event holds with extreme
probability (wep), if it holds with probability at least 1 − exp(−Θ(log2 n)) as
n → ∞. Thus, if we consider a polynomial number of events that each holds
wep, then wep all events hold. To combine this notion with asymptotic notations
such as O() and o(), we follow the conventions in [17].

3. Ranking by degree

The first ranking scheme we consider is the “ranking” version of preferential
attachment: vertices with higher degree are ranked higher. That is, the rank
function r(·, t) : Vt → [t] is determined by the degree sequence at time t: if
deg(vi, t) > deg(vj, t), then r(vi, t) < r(vj, t); otherwise (that is, if deg(vi, t) =
deg(vj, t)) r(vi, t) < r(vj, t) if i < j. In contrast to all other ranking schemes, this
means that the rank of a vertex can change by more than one in each step; if the
degree of a vertex changes from k to k + 1, then the change in its rank can be as
large as the total number of vertices of degree k and k + 1.

In this section only, in order to omit tedious details, we assume that d = 1. The
general case can be studied in a similar way.

For all t ≥ 1 and k ≥ 1, let Yk(t) denote the number of vertices of degree k in
Gt, and let Y≤k(t) = Y1(t) + · · · + Yk(t). (Note that Y0(t) = 0 for all t ≥ 1.) Note
that, at time t, the vertices of degree k have ranks starting at t− Y≤k(t) + 1, and
ending at t − Y≤k−1(t). When the edge vjvt+1 is added at time t + 1, the change
in the Yi’s has contributions from two sources, namely, the change in degree of
vertex vj, and the addition of vertex vt+1 of degree 1. Note that the probability
that a vertex of degree k receives a link in step t + 1 equals

t−Y≤k−1(t)∑
j=t−Y≤k(t)+1

j−α

gα(t)
=

gα(t− Y≤k−1(t)) − gα(t− Y≤k(t))

gα(t)
.

Thus, the following equations express the expected change in each time step:

E(Y1(t + 1) − Y1(t) | Gt) = 1 − gα(t) − gα(t− Y1(t))

gα(t)



6 JEANNETTE JANSSEN AND PAWE L PRA LAT

and similarly, for all k ≥ 2,

E(Yk(t + 1) − Yk(t) | Gt) =
gα(t− Y≤k−2(t)) − gα(t− Y≤k−1(t))

gα(t)

−gα(t− Y≤k−1(t)) − gα(t− Y≤k(t))

gα(t)
.

(Note that Yk(t) = 0 for all k > t.)
To analyze the behaviour of the Yi, we use the differential equations method

(see for a general survey [16]). First, by interpolating variables Yi(t) by real func-
tions and presuming that the changes in the functions are equal to their expected
changes, the equations above can be turned into differential equations. The na-
ture of the limiting behaviour as n → ∞ can be emphasised by considering real
functions zi(x) to model the behaviour of 1

n
Yi(xn). Using the approximation (1),

we obtain a system of differential equations:

z′1(x) =

(
1 − z1(x)

x

)1−α

z′k(x) =

(
1 −

∑k−2
j=1 zj(x)

x

)1−α

− 2

(
1 −

∑k−1
j=1 zj(x)

x

)1−α

+

(
1 −

∑k
j=1 zj(x)

x

)1−α

for k ≥ 2 ,

where z0(x) = 0 for all x. The initial conditions are zk(0) = 0 for all k (or
more precisely, the right limit as x approaches zero equals zero). The solutions
of these equations are zk(x) = ckx, where the constants ck are defined below.

Let Ck = 1 −
∑k

j=1 cj =
∑∞

j=k+1 cj, so ck = Ck−1 − Ck. Solving the differential
equations one by one, we get the following recurrence:

C0 = 1

C1 = 1 − C1−α
1

Ck−1 − Ck = C1−α
k−2 − 2C1−α

k−1 + C1−α
k for k ≥ 2 . (2)

The recurrence (2) is telescoping, so it can be simplified. Indeed,

Ck(1 + C−α
k ) = C1−α

k−1 − C1−α
k−2 + Ck−1(1 + C−α

k−1)

= C1−α
k−1 − C1−α

1 + C2(1 + C−α
2 )

= C1−α
k−1 .

Thus, C0 = 1 and Ck + C1−α
k = C1−α

k−1 for k ≥ 1.

Lemma 3.1. Let the sequence (Ck : k ≥ 0) be recursively defined so that C0 = 1,
and Ck is the unique positive solution to the equation

Ck + C1−α
k = C1−α

k−1 . (3)

Then Ck = cαk−1/α(1 + o(1)), where cα =
(

1−α
α

)1/α
.
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Proof. Note first that the function f(x) = x+x1−α is concave and strictly increas-
ing when x > 0, so Ck is well-defined and decreasing. Let Bk = Ckk

1/α. We will
show that Bk converges to a constant when k → ∞. Substituting the expression
for Bk into (3) we obtain the following recurrence relation:

B1−α
k +

Bk

k
=

(
1 +

1

k − 1

) 1−α
α

B1−α
k−1 .

Consider the function fk : [0,∞) → R given by

fk(x) = x1−α +
x

k
−
(

1 +
1

k − 1

) 1−α
α

x1−α.

The roots of the function fk are x = 0 and x = xk, where

xk =

(
k

(
1 +

1

k − 1

) 1−α
α

− k

) 1
α

.

Using the Taylor expansion of
(
1 + 1

k−1

) 1−α
α , and considering xα

k , we can show that

xk is a decreasing sequence for k ≥ 2, with limit
(

1−α
α

)1/α
= cα.

It is straightforward to verify that f ′k(xk) > 0. Since fk(xk) = 0 and x1−α + x/k
is an increasing function of x, it follows that Bk−1 > xk implies that Bk < Bk−1,
and Bk−1 < xk implies that Bk > Bk−1. Using the recursive expression for Bk, we
obtain that

fk(Bk) = B1−α
k +

Bk

k
−
(

1 +
1

k − 1

) 1−α
α

B1−α
k

=

(
1 +

1

k − 1

) 1−α
α

(B1−α
k−1 −B1−α

k ) (4)

Since fk is increasing, x > xk if and only if fk(x) > fk(xk). Thus, if Bk−1 > xk

then Bk−1 > Bk, so fk(Bk) > 0 and thus Bk > xk > xk+1 > cα. Therefore, if
there exists a value k0 > 2 so that Bk0−1 > xk0 , then {Bk : k ≥ k0} is monotone
decreasing, and bounded from below by cα. If no such k0 exists, then Bk−1 ≤ xk

for all k ≥ 2, and thus Bk is monotonically increasing, and bounded from above
by a converging sequence. In both cases, the sequence Bk converges.

From (4), we can then conclude that fk(Bk) → 0, and thus Bk → xk → cα as
k →∞ �

Since ck = Ck−1−Ck, the above lemma implies that ck = (1/α)cαk−(1+1/α). We
will see in the rest of this section that the variables Yi indeed follow the behaviour
suggested by the discussion above, as expressed in the following theorem.

Let

K = K(n) =
nα/(4α+2)

log2α/(2α+1) n
.

Theorem 3.2. Wep for all k, 1 ≤ k ≤ K and t, 1 ≤ t ≤ n

Yk(t) = ckn(1 + o(1)) = (1/α)cαk1/α+1n(1 + o(1)).
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Note that if the random variable Yk(t) is smaller than ckt at some point of the
process, then the probability that Yk(t) increases in the next step will go up, so
the value will be increasing with a higher rate. Likewise, if Yk > ckt, then the
probability that Yk(t) stays equal goes up, so Yk(t) tends to stay at the same value
for longer. Thus, these random variables have a certain “self-repairing” quality,
so we expect them to behave well.

This suggests that, in order to show a concentration of Yk, the differential equa-
tions method can be used. In this case, the full force of this method need not be
used, but it suffices to use martingales, or bound the variables by stochastically
dominating the behaviour using binomially distributed variables — these can be
considered as primitive versions of the differential equations method. We present
a technique based on a well-known Azuma-Hoeffding inequality (see for example
Lemma 4.2 in [16]).

Lemma 3.3. Let X0, X1, . . . , Xt be a supermartingale such that |Xj −Xj−1| ≤ cj,
1 ≤ j ≤ t, for constants cj, Then for any ξ > 0

P(Xt −X0 ≥ ξ) ≤ exp

(
− ξ2

2
∑

c2
j

)
.

To avoid tedious repetition, we present the full proof of Theorem 3.2 for variable
Y1 only. A proof sketch will be given for the other cases.

Theorem 3.4. Wep for all t, 1 ≤ t ≤ n

Y1(t) = c1t + O(
√

n log n) .

Proof. Let X(t) = Y1(t)− c1t. Since we expect Y1(t) to stay around c1t, and thus
X(t) to be a random variable close to a martingale. For any two time instances
U < T , let us define event A(U, T ) as follows as the conjunction of the following:

(i) X(U) ∈ [0, 1),
(ii) X(t) is nonnegative at time t, for all U < t < T , and

(iii) X(T ) ≥ ξ =
√

n log n.

Now we estimate the probability that A(U, T ) holds for some fixed U, T , 1 ≤
U ≤ T ≤ n. Let T1 be the smallest t > U so that X(t) < 0 or t = T . For all t so
that U ≤ t < T1,

X(t+1)−X(t) =

{
1 − c1 with probability (1 − c1 −X(t)/t)1−α ≤ (1 − c1)

1−α = c1

−c1 otherwise.

So for U ≤ t ≤ T1

E(X(t + 1) −X(t) | X(t)) ≤ (1 − c1)c1 − c1(1 − c1) = 0 .

Thus, X(U), X(U + 1), . . . , X(T1) is a supermartingale where |X(U)| ≤ 1 and
|X(t + 1) −X(t)| ≤ 1. So from Lemma 3.3 it follows that

P
(
X(T1) ≥ ξ

)
≤ exp(−ξ2/2n) = exp(−Θ(log2 n)).

Since condition (ii) is equivalent to T1 = T , we have

P(A(U, T )) ≤ P(T1 = T )P(X(T1) ≥ ξ|T = T1),
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and by the previous argument the last probability is exponentially small.
Similarly, we can define events B(U, T ), applying conditions (i), (ii) and (iii)

to −X(t). (So condition (i) of B(U, T ) is that X(U) ∈ (−1, 0], etc.) It can
then be shown in an analogous way that P(B(U, T )) ≤ exp(−Θ(log2 n)) for any
U, T, 1 ≤ U ≤ T ≤ n. Since all events have small probability wep none of them
occur. Indeed,

E

(∑
U,T

IA(U,T ) +
∑
U,T

IB(U,T )

)
= O(n2) exp(−Θ(log2 n)) = exp(−Θ(log2 n))

and this fact follows from Markov’s inequality. Given that none of the events
occur, the assertion holds deterministically. �

We can repeat the same argument for all Yk’s (2 ≤ k ≤ K). Since the error
terms are cumulating, in order to get an asymptotic behaviour K has to satisfy
the following equation

K
√

n log n = K−1−1/αn/ log n = o(cKn) .

Note that K(n) as defined earlier satisfies this equation. This completes the sketch
of the proof of Theorem 3.2.

4. Deterministic Ranking Schemes

In this section we consider two ranking schemes that are deterministic, that is,
the rank of a vertex r(vi, t) does not depend on Gt, but is completely determined
by i and t. In this case, the events that vi receives a link in time step t are
independent for all t. Thus, deg(vi, n) is the sum of n− i independent Bernouilli
trials with pre-determined probabilities. The general theory about such sums can
be directly applied to obtain the results in this section.

4.1. Ranking by Age. Ranking by age means that older vertices have a lower
rank. Precisely, the rank of a vertex equals the time it is born, that is, r(vi, t) = i
for all 1 ≤ i ≤ t. As mentioned in the Introduction, rank-based attachment
with ranking by age is a special case of the growing protean graph model defined
in [15]. The growing protean graph model is more general since it permits deletion
of vertices. Theorem 5.1 and Theorem 5.2 in [15] give results for the degree of
a vertex that apply to our model. However, the next theorem gives stronger
concentration results since it is adopted to the special case that no deletion occurs.

Theorem 4.1. For ranking by age, the expected degree of a vertex vi, i ∈ [n], is
given by

E deg(vi, n) =
(
1 + O(n−α(1−α)/3)

)
d

1 − α

α

((n

i

)α

+
2α− 1

1 − α

)
.

Moreover, if i < n/ log3/α n, then wep

deg(vi, n) =
(
1 + O(log−1/2 n)

)
d

1 − α

α

(n

i

)α

.
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Proof. Let X(t, j) be a random indicator variable for an event that vertex vt joins
vi at substep j of step t (t ∈ [n], j ∈ [d]).

P(X(t, j) = 1) = 1 − P(X(t, j) = 0) =

{
i−α/gα(t) for t > i

0 otherwise.

The number of neighbours vt of vi such that t > i is a random variable and can be
expressed as a sum

∑n
t=i+1

∑d
j=1 X(t, j) of independent random variables. Since

the number of neighbours vt of vi such that t < i is always d,

deg(vi, n) = d +
n∑

t=i+1

d∑
j=1

X(t, j) .

Thus, using (1),

E deg(vi, n) = d + d
n∑

t=i+1

i−α

gα(t− 1)
= d + di−α

n∑
t=i+1

1 − α

t1−α + O(1)
.

Assuming that i ≥ nα/3, we get that

E deg(vi, n) = d +
(
1 + O(nα(α−1)/3)

)
d(1 − α)i−α

n∑
t=i+1

tα−1

= d +
(
1 + O(nα(α−1)/3)

)
d

1 − α

α
i−α
(
nα − iα + O(iα−1)

)
=

(
1 + O(nα(α−1)/3)

)
d

1 − α

α

((n

i

)α

+
2α− 1

1 − α

)
.

A similar calculation can be done for i < nα/3, noting the fact that

E deg(vi, n) = O(nα/3) + di−α

n∑
t=nα/3

1 − α

t1−α + O(1)
.

In order to finish the proof, we use the fact that a sum of independent random
variables with large enough expected value is not too far from its mean (see, for
example, Theorem 2.8 in [10]). From this it follows that, if ε ≤ 3/2, then

P (| deg(vi, n) − E deg(vi, n)| ≥ εE deg(vi, n)) ≤ 2 exp

(
−ε2

3
E deg(vi, n)

)
. (5)

Note that E deg(vi, n) = Ω(log3 n) for i < n/ log3/α n. If we let ε = log n/
√

E deg(vi, n)
in (5), we get that wep deg(vi, n) =

(
1 + O(ε)

)
E deg(vi, n) and the assertion fol-

lows. �

Observe that, for small i, the expected degree of a vertex vi is dominated by
the factor d1−α

α

(
n
i

)α
. Consequently, the degrees are distributed according to the

power law. More specifically, let Zk = Zk(n, d, α) denote the number of vertices
of degree k and Z≥k =

∑
l≥k Zl. The following theorem shows that the Z≥k follow

a power law with exponent 1/α. Since the Z≥k represent the cumulative degree
distribution, this implies that the degree distribution follows a power law with
exponent 1 + 1/α.
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Theorem 4.2. Let 0 < α < 1 and d ∈ N, k ≥ log4 n. Then wep

Z≥k =
(
1 + O(log−1/3 n)

)
n

(
1 − α

α
· d

k

)1/α

.

Proof. This theorem is a simple consequence of Theorem 4.1. One can show that
wep each vertex vi such that

i ≥
(
1 + log−1/3 n

)
n

(
1 − α

α
· d

k

)1/α

has fewer than k neighbours, and each vertex vi for which

i ≤
(
1 − log−1/3 n

)
n

(
1 − α

α
· d

k

)1/α

has more than k neighbours. �

4.2. Ranking by inverse age. To contrast the other schemes, we considered
a scheme where new vertices are ranked the highest. Precisely, r(vi, t) = t − i +
1. Intuitively, this scheme breaks the effect of “cumulative advantage”, since no
vertex has high rank long enough to accumulate a high degree. The results from
this section give evidence that, indeed, this scheme does not lead to a power law
degree distribution.

Note that

E deg(v1, n) = d + d
n∑

t=2

(t− 1)−α

gα(t− 1)
= (1 + o(1))d(1 − α)

n−1∑
t=1

1

t

= (1 + o(1))d(1 − α) log n

and also it is not hard to see that E deg(vi, n) > E deg(vj, n) for 1 ≤ i < j ≤ n.
Thus E deg(vi, n) < (1 + o(1))d(1−α) log n for all i ∈ [n]. Again deg(vi, n) can be
expressed as a sum of independent 0− 1 random variables but since the expected
degree is so low we cannot hope for concentration; the Chernoff bound only tells
us that wep the maximum degree of Gn is E deg(v1, n) + O(log n).

We also show that the number of vertices with expected degree at least k de-
creases exponentially with k. This suggests that the degree distribution does not
follow a power law.

Theorem 4.3. Let 0 < α < 1, d ∈ N, and i = i(n) ∈ [n]. The expected degree of
a vertex vi satisfies the following inequalities

E deg(vi, n) ≥ d + (1 + o(1))d(1 − α)α log(n− i)

E deg(vi, n) ≤ d + (1 + o(1))d(1 − α) log(n− i) .

Proof. Define

f(i) =
n−i−1∑

t=0

1

(t + 1)α(t + i)1−α
.
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Then, using the approach as in Theorem 4.1, we obtain,

E deg(vi, n) = d + d
n∑

t=i+1

(t− i)−α

gα(t− 1)

= d + (1 + o(1))d(1 − α)
n∑

t=i+1

(t− i)−α

(t− 1)1−α

= d + (1 + o(1))d(1 − α)f(i) ,

for any i ∈ [n]. The assertion follows from the fact that

f(i) ≥
∫ n−i

0

1

(x + 1)α(x + i)1−α
dx =

∫ n−i

0

(
1 +

i− 1

x + 1

)α
1

x + i
dx

≥
∫ n−i

0

(
1 + α

i− 1

x + 1

)
1

x + i
dx =

∫ n−i

0

(
1 − α

x + i
+

α

x + 1

)
dx

= (1 − α) log(n/i) + α log(n− i + 1) ≥ α log(n− i)

and

f(i) ≤ 1 +

∫ n−i−1

0

1

(x + 1)α(x + i)1−α
dx = 1 +

∫ n−i−1

0

(
x + 1

x + i

)1−α
1

x + 1
dx

≤ 1 +

(
n− i

n− 1

)1−α

log(n− i) ≤ log(n− i) + 1 .

Corollary 4.4. Let 0 < α < 1, d ∈ N.

#{vi : E deg(vi, n) ≥ k} ≥ n− (1 + o(1)) exp

(
k − d

d(1 − α)α

)
#{vi : E deg(vi, n) ≥ k} ≤ n− (1 + o(1)) exp

(
k − d

d(1 − α)

)
.

�

5. Random ranking

In the two ranking schemes discussed in this section, the initial rank r(vt, t) of
a new vertex vt is a random variable Rt ∈ [t]. The new rank function is simply
formed by inserting the new vertex into the existing ranking, so for all j ∈ [t− 1],
r(vj, t) = r(vj, t− 1) if r(vj, t− 1) < Rt, and r(vj, t) = r(vj, t− 1) + 1 otherwise.
The difference in the two schemes lies in the way that Rt is chosen: in the first
scheme, the rank of each vertex is based on a fixed, but randomly chosen, label,
while in the second scheme, Rt is randomly drawn from [t].

5.1. Ranking by random labeling. In this scheme, each new vertex vt obtains
a label l(vt) ∈ (0, 1) chosen uniformly at random. (Note that the probability that
two vertices receive the same label is zero.) Vertices are ranked by their labels: if
l(vi) < l(vj), then r(vi, t) < r(vj, t).

First we note that the process of choosing a label uar from (0, 1) does not imply
loss of generality. Namely, suppose that the labels are chosen from R according
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to any probability distribution with a strictly increasing cumulative distribution
function F . Since F is an increasing function, labels F (l(vi)) lead to exactly
the same ranking as labels l(vi). But P(F (l(vi)) ≤ x) = P(l(vi) ≤ F−1(x)) =
F (F−1(x)) = x, so the values of labels F (l(vi)) are chosen from (0, 1) according
to the uniform distribution.

Since the arguments used here are largely similar to those used in Section 4
(namely, applying the Chernoff bounds for a sum of independent random vari-
ables), we omit technical details.

Theorem 5.1. Let 0 < α < 1, d ∈ N, i = i(n) ∈ [n], and 0 < l(vi) = l(vi)(n) < 1.
If i · l(vi) > log3 n, then the expected degree of a vertex vi that obtained a label l(vi),
is given by

E deg(vi, n) = d + (1 + O(log−(1−α)/2 n))d(1 − α)l(vi)
−α log(n/i) ,

and wep

deg(vi, n) = E deg(vi, n) + O(
√

E deg(vi, n) log n) .

Proof. Note that r(vi, t) is the sum of independent indicator variables of the events
l(vj) ≤ l(vi) for i < j ≤ t. Using large deviation inequalities and the fact that
i · l(vi) > log3 n, we get that wep for all i < t ≤ n,

t · l(vi)(1 − log−1/2 n) ≤ r(vi, t) ≤ t · l(vi)(1 + log−1/2 n) .

Thus,

E deg(vi, n) = d + d
n∑

t=i+1

(
t · l(vi)(1 + O(log−1/2 n))

)−α

gα(t− 1)

= d + (1 + O(log−(1−α)/2 n))d(1 − α)l(vi)
−α

n∑
t=i+1

1

t

= d + (1 + O(log−(1−α)/2 n))d(1 − α)l(vi)
−α log(n/i) .

Since deg(vi, n) can be expressed as a sum of independent random variables, we
can use the Chernoff bound to show the concentration result. �

Using the notation from Section 4 we present the main result.

Theorem 5.2. Let 0 < α < 1 and d ∈ N, log3 n ≤ k ≤ nα/2/ log3α n. Then wep

Z≥k = (1 + o(1))n

(
d(1 − α)

k

)1/α

Γ

(
1

α
+ 1

)
.

Proof. From Theorem 5.1 and the fact that k ≥ log3 n it follows that wep all
vertices vi such that i ≥ ik = k1/α log4 n and

l(vi) ≥ (1 + log−(1−α)/3 n)

(
d(1 − α) log(n/i)

k

)1/α

has fewer than k − d = (1 + o(1))k neighbours, and each vertex vi for which

l(vi) ≤ (1 − log−(1−α)/3 n)

(
d(1 − α) log(n/i)

k

)1/α
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has more than k neighbours.
Let X+

i , X−
i , i ∈ [n], be a family of independent random variables such that

P(X+
i = 1) = 1−P(X+

i = 0) =

(1 + log−(1−α)/3 n)
(

d(1−α) log(n/i)
k

)1/α

for i ≥ ik

1 otherwise,

and

P(X−
i = 1) = 1−P(X−

i = 0) =

(1 − log−(1−α)/3 n)
(

d(1−α) log(n/i)
k

)1/α

for i ≥ ik

0 otherwise.

Then, Z≥k can be bounded from below by X− =
∑n

i=1 X−
i and from above by

X+ =
∑n

i=1 X+
i . Thus,

EZ≥k = O(k1/α log4 n) + (1 + o(1))
n∑

i=1

(
d(1 − α) log(n/i)

k

)1/α

= O(k1/α log4 n) + (1 + o(1))

(
d(1 − α)

k

)1/α

n

∫ 1

0

(log(1/x))1/α dx ,

and putting u = log(1/x) we get

EZ≥k = O(k1/α log4 n) + (1 + o(1))

(
d(1 − α)

k

)1/α

n

∫ ∞

0

u1/αe−udu

= (1 + o(1))n

(
d(1 − α)

k

)1/α

Γ

(
1

α
+ 1

)
,

where Γ(x) denotes the (complete) gamma function. Since the gamma function is
an extension of the factorial, and is increasing for x ≥ 2, Γ(1/α + 1) is a constant
which lies between b1/αc! and d1/αe!.

Since k ≤ nα/2/ log3α n, EZ≥k = Ω(
√

n log3 n). Using large deviation inequali-
ties one more time, we can show that whp Z≥k = (1 + o(1))EZ≥k. This finishes
the proof of the theorem. �

5.2. Randomly chosen initial rank. Next, we consider the case where the
rank of the new vertex vt, Rt = r(vt, t), is chosen at random from [t]. As described
earlier, the ranks of existing vertices are adjusted accordingly. In contrast to the
previous scheme, in this case it now matters according to which distribution Rt

is chosen. We make the assumption that all initial ranks are chosen according
to a similar distribution. In particular, we fix a continuous bijective function
F : [0, 1] → [0, 1], and for all integers 1 ≤ k ≤ t, we let

P(Rt ≤ k) = F

(
k

t

)
.

Thus, F represents the limit, for t going to infinity, of the cumulative distribution
functions of the variables Rt. To simplify the calculations while exploring a wide
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array of possibilities for F , we assume F to be of the form

F (x) = xs, where s > 0.

A special case is the case s = 1, where the distribution of each Rt is uniform. We
will see that this case is the threshold for a power law degree distribution; if s < 1,
then the probability that a new vertex receives a high rank (that is, a low value of
Rt) is enhanced, and thus we get behaviour similar to that of age-based ranking,
as seen in Subsection 4.1, including a power law degree distribution; if s > 1, then
the probability that a new vertex receives a high rank is diminished, and we get
behaviour similar to the inverse age ranking scheme described in Subsection 4.2.

To study the degree of a given vertex vi in Gn under this ranking scheme we
again use the differential equations method. Assume that vertex vi obtained an
initial rank Ri. Then r(vi, t), t > i, is a random variable, which in time step t
increases by one precisely when Rt ≤ r(vi, t − 1). Since the latter happens with
probability F (r(vi, t− 1)/t), we have that

E(r(vi, t) − r(vi, t− 1) | Gt) =

(
r(vi, t− 1)

t

)s

. (6)

Using a real function z(x) to model the behaviour of r(vi, xn)/n, the above equa-
tion leads to the following differential equation for z:

z′(x) =

(
z(x)

x

)s

(7)

with the initial condition z(i/n) = Ri/n.
If s = 1, the general solution is z(x) = Cx, C ∈ R and the particular solution

is z(x) = Ri

i
x. This suggests that a random variable r(vi, t) should be close to a

deterministic function Ri

i
t. We will use martingales to show that this is indeed

the case.
Let Yt = r(vi,t)

t+1
for all i ≤ t ≤ n. The sequence {Yt : i ≤ t ≤ n} is a martingale

with respect to the random process {Gt}. Namely,

E(Yt | Yt−1) =
r(vi, t− 1) +

(
r(vi,t−1)

t

)
t + 1

=
r(vi, t− 1)

t
= Yt−1 .

In order to show a concentration for Yt, and thus for r(vi, t), we use a well-known
Azuma-Hoeffding inequality (see for example Lemma 4.1 in [16]).

Lemma 5.3. Let X0, X1, . . . , Xt be a martingale such that |Xj − Xj−1| ≤ cj,
1 ≤ j ≤ t, for constants cj, Then for any α > 0

P(|Xt −X0| ≥ α) ≤ 2 exp

(
− α2

2
∑

c2
j

)
.

Now, we are ready to state a concentration theorem.

Theorem 5.4. Let i = i(n) ∈ [n], Ri = Ri(n) such that 1 ≤ Ri ≤ i and R2
i /(i +

1) > log4 n. If the vertex vi obtained an initial rank Ri, and l(vi) = Ri/(i + 1),
then wep

t · l(vi)(1 − log−1/2 n) ≤ r(vi, t) ≤ t · l(vi)(1 + log−1/2 n)
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for all t, i < t ≤ n.

Proof. Let Yt be a random variable defined as before. Note that l(vi) = Yi. It has
been shown that {Yt} is a martingale and it is also easy to see that |Yt−Yt−1| ≤ 1

t
.

Since
n∑

t=i

(
1

t

)2

=

∫ n

i

x−2dx + O(1) = O

(
1

i

)
,

we can apply Lemma 3.3 with ct = 1
t

and α = log n√
i

to obtain that wep |Yt−Yi| ≤ α.

So wep

Yt = Yi

(
1 + O

(
α

Yi

))
= l(vi)

(
1 + O

(
log n√
i · l(vi)

))
= l(vi)(1 + O(log−1 n)) .

Moreover, one can use a concept of a stopping time (see Section 12.4 in [9]) to
show that wep all values of Yt, i ≤ t ≤ n, lie within the bounds given by the
equation above. This finishes the proof. �

Since the proofs of Theorems 5.5 and 5.6 are almost the same as the proofs of
Theorems 5.1 and 5.2, we omit them stating the results only.

Theorem 5.5. Let 0 < α < 1, d ∈ N, i = i(n) ∈ [n], Ri = Ri(n) such that 1 ≤
Ri ≤ i. If the vertex vi obtained an initial rank Ri such that R2

i /(i + 1) > log4 n,
and l(vi) = Ri/(i + 1), then the expected degree of vi is

E deg(vi, n) = d + (1 + O(log−(1−α)/2 n))d(1 − α)l(vi)
−α log(n/i) .

and wep

deg(vi, n) = E deg(vi, n) + O(
√

E deg(vi, n) log n) .

Theorem 5.6. Let 0 < α < 1 and d ∈ N, log3 n ≤ k ≤ nα/3/ log2α n. Then wep

Z≥k = (1 + o(1))n

(
d(1 − α)

k

)1/α

Γ

(
1

α
+ 1

)
.

Note that Theorem 5.2 and 5.6 suggest that the random ranking scheme with
uniform distribution behaves similarly to the random labeling scheme. However,
the upper bound values k for which the power law holds is lower in this case.
This can be explained by the fact that the eventual rank of a vertex is not always
easy to predict in this scheme. For example, assume that in the random labeling
scheme, the first vertex obtained a label of 1/2. Then its rank at time n is almost
surely close to its expected value of n/2. In the current scheme, if a vertex has
initial rank Ri/2i, then the expected rank at time n also equals n/2 but this rank
is not concentrated. Namely, the rank behaves like the proportion of white balls
in Polya’s urn problem, and thus r(v1, n)/n converges to a random variable with
uniform distribution on [0, 1].

Next, we consider the case where s > 1. The general solution of the differential
equation (7) is z(x) = (x1−s + C)−1/(s−1). Thus, we expect r(vi, t) to be approxi-
mately equal to nz(t/n) = (t1−s + c)−1/s−1. Note that, if t gets large, this function
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converges to a constant. As we will see, the definition below captures the value of
this constant.

R∗
i =

(
R1−s

i − (i + 1)1−s
)−1/(s−1)

. (8)

Theorem 5.7. For all i ≥ n1/2 logs+1 n, if vertex vi has initial rank Ri so that
n1/2 logs+1 n ≤ Ri ≤ (1 − log1−s n)i, then wep

r(vi, t) = R∗
i

(
1 +

(
R∗

i

t + 1

)s−1
) −1

s−1

(1 + O(log−1 n)).

The proof uses the supermartingale method of Pittel et al. [13], as described
in [16, Corollary 4.1]. We need the following lemma.

Lemma 5.8. Let G0, G1, . . . , Gn be a random process and Xt a random variable
determined by G0, G1, . . . , Gt, 0 ≤ t ≤ n. Suppose that for some real β and
constants γt,

E(Xt −Xt−1 | G0, G1, . . . , Gt−1) < β

and
|Xt −Xt−1 − β| ≤ γt

for 1 ≤ t ≤ n. Then for all α > 0,

P
(
For some t with 0 ≤ t ≤ n : Xt −X0 ≥ tβ + α

)
≤ exp

(
− α2

2
∑n

j=1 γ2
t

)
.

Proof of Theorem 5.7. We transform r(vi, t) into something close to a martingale.
Consider the following real-valued function

H(x, y) = y1−s − (x + 1)1−s (9)

Let wt = (t, r(vi, t)), and consider the sequence of random variables (H(wt) : i ≤
t ≤ n). Note that H(i, Ri) = (R∗

i )1−s. We will show that wep H(t, r(vi, t)) is
close to H(i, Ri). The function H is chosen so that H(w) is constant along every
trajectory w of the differential equation (7).

Note that

grad H(wt) =
(
−(1 − s)(t + 1)−s, (1 − s)r(vi, t)

−s
)
,

It follows from the choice of H, and can be checked using (6), that

E(wt+1 −wt | Gt) · grad H(wt) = 0,

Using the fact that Ri ≤ r(vi, t) ≤ t at all times, we can show that all second-

order partial derivatives of H evaluated at wt are O(R
−(s+1)
i ). Therefore,

H(wt+1) −H(wt) = (wt+1 −wt) · grad H(wt) + O(R
−(s+1)
i ). (10)

Taking the expectation of (10) conditional on Gt, we obtain that

E(H(wt+1) −H(wt) | Gt) = O(R
−(s+1)
i ).

The rank changes by at most one in each step, so from the above, we obtain

|H(wt+1) −H(wt)| ≤ (s− 1)
(
r(vi, t)

−s + (t + 1)−s
)

+ O(R
−(s+1)
i )

= O(R−s
i ).
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Now we may apply Lemma 5.8 to the sequence (H(wt) : i ≤ t ≤ n), and

symmetrically to (−H(wt) : i ≤ t ≤ n), with α = R−s
i n1/2 log n, β = O(R

−(s+1)
i ),

and γt = O(R−s
i ). From the lower bound on Ri it follows that nβ = O(α), and we

obtain that wep
|H(wt) −H(wi)| = O(R−s

i n1/2 log n)

for i ≤ t ≤ n. As H(wi) = (R∗
i )1−s, this implies from the definition (9) of the

function H, that wep

r(vi, t)
1−s = (R∗

i )1−s + (t + 1)1−s + O(R−s
i n1/2 log n)

=
(
(R∗

i )1−s + (t + 1)1−s
)

(1 + O((R∗
i )s−1R−s

i n1/2 log n)

for i ≤ t ≤ n, so

r(vi, t) = R∗
i

(
1 +

(
R∗

i

t + 1

)s−1
) −1

s−1

(1 + O((R∗
i )s−1R−s

i n1/2 log n)).

Since Ri/i ≤ (1 − log1−s n), we have that

R∗
i /Ri = O(log n). (11)

Since Ri ≥ n1/2 logs+1 n we have that

(R∗
i )s−1R−s

i n1/2 log n = O
(
R−1

i n1/2 logs n
)

= O(log−1 n)

which finishes the proof of the theorem. 2

We can now use the same approach as for age-based ranking.

Theorem 5.9. For a vertex vi so that n1/2 logs+1 n ≤ Ri ≤ (1 − log1−s n)i and

R∗
i ≤ n log−3/α n, wep,

deg(vi, n) = (1 + O(log−min{1/2,3(s−1)/α} n))d
a

1 − α

(
n

R∗
i

)α

.

Moreover, for all vertices vi, wep

deg(vi, n) = d
1 − α

α

(
n

Ri

)α

+ O(log2 n).

Proof. The proof follows the same reasoning as the proof of Theorem 4.1. To prove
the first part, using Theorem 5.7, we obtain the expected degree of vi at time n
as follows:

E deg(vi, n) = E deg(vi, 2R∗
i ) + d

n∑
t=2R∗i +1

r(vi, t)
−α

gα(t)
.

For the first term, we use the fact that r(vi, t) ≥ Ri for all t ≥ i.

E deg(vi, 2R∗
i ) ≤ d + d

2R∗i∑
t=i+1

R−α
i

gα(t)
(12)

= d + (1 + o(1))dR−α
i (1 − α)

2R∗i∑
t=i+1

tα−1

= O((R∗
i /Ri)

α).
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Since (R∗
i /Ri) = O(log n) (see (11)) and, by assumption, n/R∗

i ≥ log3/α n, we have
that

E deg(vi, 2R∗
i ) = O(logα n) = O((n/R∗

i )α log−2 n).

Now, we can estimate the second part as follows:

d
n∑

t=2R∗i +1

r(vi, t)
−α

gα(t)

= (1 + O(log−1 n))d(1 − α)(R∗
i )−α

n∑
t=2R∗i +1

(
1 +

(
R∗i
t+1

)s−1
) α

s−1

t1−α

= (1 + O(log−1 n))d(1 − α)(R∗
i )−α

n∑
t=2R∗i +1

(
tα−1 + O((R∗

i )s−1tα−s)
)

= (1 + O(log−1 n))d(1 − α)(R∗
i )−α

(
nα/α−O((2R∗

i )α) + O((R∗
i )s−1nα−s+1)

)
= (1 + O(log−min{1,3(s−1)/α} n))d

1 − α

α

(
n

R∗
i

)α

since R∗
i ≤ n log−3/α n. Therefore,

E deg(vi, n) = (1 + O(log−min{1,3(s−1)/α} n))d
1 − α

α

(
n

R∗
i

)α

.

Using the Chernoff bound as before (see (5)), together with the fact that

E deg(vi) = Ω(log3 n) for R∗
i < n log−3/α n, and putting ε = log n/

√
E deg(vi)

in (5), we get that wep deg(vi) =
(
1 + O(ε)

)
E deg(vi) and the assertion follows.

To prove the second part, we can use a calculation similar to (12) to show that

E deg(vi, n) = d
(

1−α
α

) (
n
Ri

)α

+ O(1), and use the Chernoff bound to prove the

statement of the theorem. �

Theorem 5.10. Let k be so that log4 n ≤ k ≤ nα/2 log−α(s+3) n. For random
ranking with initial rank distribution given by F where F (x) = xs and s > 1,

Z≥k =
(
1 + O(log1−s n)

)
n

(
1 − α

α
· d

k

)1/α

,

Proof. Let ω(n) = n1/2 logs+1 n. Fix k so that logmax(3α,3/α+2) ≤ k ≤ nα/2 log−α(s+3) n.
Define sets S+

k and S−k as follows:

S−k =

{
vi |R∗

i ≤
(
1 − log1−s n

)
n

(
1 − α

α
· d

k

)1/α
}

,

S+
k =

{
vi |R∗

i ≥
(
1 + log1−s n

)
n

(
1 − α

α
· d

k

)1/α
}

.

We will argue below that wep all but a small fraction of the vertices in S−k have
degree at least k, and in S+

k have degree less than k. First, we estimate the size
of S−k and S+

k .
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Let f(k) be a function so that f(k) = Θ(k−1/αn); f(k) is meant to represent
the bound on R∗

i that defines S+
k or S−k . The bounds on k imply that f(k) =

O(n log−3 n) and f(k) = Ω(ω(n) log2(n)).
From (8), R∗

i ≤ f(k) if and only if Ri ≤ ((i + 1)1−s + f(k)1−s)−1/(s−1). Thus

for any i, the probability that R∗
i ≤ f(k) equals

(
1 +

(
f(k)
i+1

)1−s
) −s

s−1

(1 + 1
i
). The

expected number of vertices vi so that R∗
i ≤ f(k) is expressed by the following

sum:

n∑
i=1

(
1 +

(
f(k)

i + 1

)1−s
) −s

s−1

(1 +
1

i
) =

∫ n

1

(
1 +

(
f(k)

x

)1−s
) −s

s−1

dx + O(log n)

= f(k)

∫ n/f(k)

1/f(k)

(1 + ys−1)
−s
s−1 dy + O(log n)

= f(k)(1 + O(n−1/2)).

The last step can be explained as follows. The antiderivative of (1 + ys−1)
−s
s−1

equals (1 + y1−s)
1

1−s , and thus
∫∞

0
(1 + ys−1)

−s
s−1 dy = 1. The integral from 0

to 1/f(k) is at most 1/f(k) = O(n−1/2). The integral from n/f(k) to infinity

equals 1
s−1

(
f(k)

n

)s−1

(1 + o(1)) = o(1). The result then follows because f(k) =

Ω(n1/2 log n).
Using the Chernoff bound, and the lower bound on f(k), it follows that wep,

the number of vertices with R∗
i ≤ f(k) equals (1+O(log−1 n)f(k). Therefore, wep

|S−k | =
(
1 − log1−s n

)
n

(
1 − α

α
· d

k

)1/α

,

while the number of vertices that is neither in S+
k nor in S−k is O(log1−s |S−k |).

Consider the vertices in S−k . Let f(k) =
(
1 − log1−s n

)
n
(

1−α
α

· d
k

)1/α
. From the

bounds on k it follows that R∗
i ≤ f(k) = O(n log−3 n), so we may assume that

R∗
i ≤ n log−3/α n. By Theorem 5.9, if ω(n) ≤ Ri ≤ (1 − log1−s n)i, then wep

deg(vi, n) ≥ k.
Consider the vertices in S−k with initial rank Ri < ω(n). Since lower initial rank

will wep lead to higher degree, and since deg(vi, n) would have been at least k
even if the initial rank Ri had been 2ω(n), we can conclude that these vertices
also have degree at least k.

If vi ∈ S−k and Ri > (1− log1−s n)i, then this implies that i ≤ ik, where ik is so
that

(1 − log1−s n)ik = ((ik + 1)1−s + f(k)1−s)−1/(s−1)

=

(
1 +

(
f(k)

ik + 1

)1−s
)−1/(s−1)

(ik + 1).

It is straightforward to verify that ik = Θ(f(k) log−1 n). Since |S−k | = Θ(f(k)),
the number of vertices in S−k that do not have degree at least k is O(|S−k | log−1 n).
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Next, consider the vertices in S+
k . From the bounds on k, it follows that R∗

i =
Ω(ω(n) log2(n)). If Ri ≤ (1− log1−s n)i, then R∗

i /Ri = O(log n), and thus we may
assume that Ri ≥ ω(n).

If R∗
i ≤ n log−3/α n and ω(n) ≤ Ri ≤ (1− log1−s n)i then, by Theorem 5.9, wep

deg(vi, n) < k. If R∗
i > n log−3/α n, then, by the second part of Theorem 5.9, wep

deg(vi, n) = O(log3+α n) < k.

This time, let f(k) =
(
1 + log1−s n

)
n
(

1−α
α

· d
k

)1/α
. If Ri > (1 − log1−s n)i

and i ≥ 3f(k) then we may assume that Ri ≥ 2f(k), and, using the second
part of Theorem 5.9, we find that wep deg(vi, n) < k. The probability that
Ri > (1 − log1−s n)i equals 1 − (1 − log1−s n)s ≤ s log1−s n. So the expected
number of vertices vi with i ≤ 3f(k) and Ri > (1 − log1−s n)i is O(log1−s nf(k)),
and, using the Chernoff bound again, we can conclude that wep the actual number
is at most of the same order. Since f(k) and |S−k | are both Θ(k−1/αn), we can
conclude that the total number of vertices in S+

k that do not have degree less than
k is O(|S−k | log1−s n). This completes the proof of the theorem. �

If s < 1, then the solution of the differential equation (7) is the same as for the
case that s < 1. Using methods almost identical to the ones used for the case
where s > 1, we can show that wep the rank is close to the one suggested by the
differential equation.

Theorem 5.11. For all i ≥ n1/2 logs+1 n, if vertex vi has initial rank Ri so that
n1/2 logs+1 n ≤ Ri, then wep

r(vi, t) =

(
t− (R∗

i )1−s

1 − s
ts
)

(1 + O(ts−1n(1−s)/2 log n)).

Proof. The initial part of the proof is identical to the proof of Theorem 5.7, and
is thus omitted. Using the differential equation method, we can show that

r(vi, t)
1−s = (R∗

i )1−s + (t + 1)1−s + O(R−s
i n1/2 log n)

=
(
(R∗

i )1−s + (t + 1)1−s
)

(1 + O(ts−1R−s
i n1/2 log n))

=
(
(R∗

i )1−s + (t + 1)1−s
)

(1 + O(ts−1n(1−s)/2 log n))

for i + 1 ≤ t ≤ n, so

r(vi, t) = t

((
R∗

i

t

)1−s

+

(
t + 1

t

)1−s
) 1

1−s

(1 + O(ts−1n(1−s)/2 log n))

=

(
t +

(R∗
i )1−s

1 − s
ts
)

(1 + O(ts−1n(1−s)/2 log n)).

�

Thus, the rank of a vertex at time t tends to be close to t, which means we are
in a situation similar to the inverse age case. In emulation of Theorem 4.3, we can
show that almost all vertices have expected degree at most O(log n). Since the
proof is almost identical to the proof of Theorem 4.3, it is omitted.
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Theorem 5.12. Let 0 < α < 1, d ∈ N, and i ≥ n1/2 log2(1−s) n. Then

E deg(vi, n) = O(log n).
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