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Abstract

The present article is a direct continuation o grevious part Il of
this series of articles, which have been devotedcuttivating a new
interdisciplinary region between chemistry and reathtics. In the present
part IV, we develop two sets of fundamental thecaéttools, using methods
from the field of resolution of singularities andadytic curves. These two sets
of tools are essential in structurally elucidatithg assertion of the Fukui
conjecture (concerning the additivity problems) #imel crux of the functional
asymptotic linearity theorem (functional ALT) thatoves the conjecture in a
broad context. This conjecture is a vital guidelioea future development of
the repeat theory (RST) — the central unifying tiieim the First and the
Second Generation Fukui Project.
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1. Introduction

This article is a direct continuation of the paws part Il [1] of this
series of articles, which have been devoted to ivatihg a new
interdisciplinary region between chemistry and reathtics along the unifying
spirit of the First and the Second Generation FuRkugject (cf. [1-12] and
references therein).

In the previous part Il of this series of artic[@$ we have established

the following sequence of logical implications
LAP1 = Functional ALT= the Fukui conjecture,

where Local Analyticity Proposition version 1 (LAPWas also referred to as
the Target Proposition.

The Target Proposition (LAP1) is a major key toying the Fukui
conjecture via resolution of singularities and tetamethods. This proposition

involves the unimU r(h) of special setg(h). Such a sum was called a
i=1

multi-function-set in [1] and plays an importantleran cross-disciplinary
investigations using the repeat space theory (R8high is the central theory
in the First and the Second Generation Fukui Ptojat remark that the

energy band curves of carbon nanotubes given iclearf3] are locally

expressed in terms of muIti-function-ngjs (h).

=
To prove the Target Proposition via resolution sifigularities and
related methods, it is convenient to prepare fets of fundamental tools:
(i) fundamental tools | (developed in part Il of teeries [1])
(i) fundamental tools Il (developed in part Il of tlsisries [1])

(i) fundamental tools Il (given in section 2 of thegent part 1V)
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(iv) fundamental tools IV (given in section 3 of thegmet part V)
The goal of the present part IV of this seriesrtitkes is to set up fundamental
tools Il and IV, and in particular, to establishoposition 3.5.C in section 3,
which studies the multi-function-set appearingha above-mentioned Target
Proposition. The Target Proposition will be provedhe forthcoming part V
of this series using Proposition 3.5.C.

As in part Ill, in the present part IV of this &=, we construct
fundamental theoretical tools in such a way thay tire also readily usable as
modular parts of the repeat space theory (RSTR]1b¥ which one can solve
in a unifying manner a variety of molecular probgentying in the
interdisciplinary region between chemistry and reathtics.



2. Fundamental tools |11

Throughout, we retain the notation employed inghexeding parts I, I,
and Il of this series of articles [6,7,1]. (Theader is referred to refs. [1,6,7]
for the notation.) Lef", Z,", Z, R*, Ry', R, andC denote respectively, the set
of all positive integers, nonnegative integersegetrs, positive real numbers,
nonnegative real numbers, real numbers, complexbetsnThroughout this
article, when a topological spake= (X, 0) is defined and when no confusion

can ariseE also denotes its underlying sét

Proposition 2.1. Let r O R* and define topological subspace E; of C by
E; = (4(r), 0y), (2.1)
where 0, denotes the relative topology on A(r) induced by the usual Euclidean

topology of C. Let f, g 0 H(E,). Define Gy E; — C*by

Ug(t) = (f(t), 9(1)). (2.2)
Define topological subspace E; of C? by
E, = (Urg(Ed), 0), (2.3)

where 0, denotes the relative topology on Uy4(4(r)) induced by the usual

Euclidean topology of C*. Define Us4: E; — E; by

Urg(t) = Ugg(t). (2.4)
Let m0O Z*, and suppose that
f(t) = t" (2.5)
for all t [ A(r) and that
g(0) = 0. (2.6)

Let g O ]O, r[. Then u;4(4(q)) is a neighborhood of the origin (0, 0)of E,.

Proof. The fact that(4(q)) is a neighborhood of the origin (0, O)©Bf follows
from the propositions 2.2, 2.3, and 2.4 below. /l
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In what follows, we let
(2.7)
(2.8)

[ >

.. U
>
lte)

1
i
« Iy

Proposition 2.2. The notation and the assumption being as in proposition 2.1,

we have
u(A(e)) O u(A(r) n TA(N -A@) x C, (2.9)
where ~ and © denote, respectively, the closure operation and the complement
inC.
Proof. Let
(a, B O u(Ar) n TAMN-A@Q) * C. (2.10)
Then, there existstal] A(r) such that
a =f(to), (2.11)
B=9(t), (2.12)
and such that
f(ty) O FAM) -A(@)° . (2.13)
Sincety [0 A(r), we have either
to O A(r) - 4(q), (2.14)
or
to [ A(q). (2.15)

But, in case (2.14),

f(to) O f(A(r) - A(Q)) O £(A(r) - A(@)), (2.16)
which contradicts (2.13), thus we have (2.15).

Hence, there existstgl] 4(q) such that
a =1(ty), (2.17)



B=9(to). (2.18)
Therefore,

(@, B 0 u(4(q)). (2.19)//

Proposition 2.3. The notation and the assumption being as in proposition 2.1,

theset u(4(r)) n f(A(r)- A(q))C x C'isan open set in E,.

Proof. Note that both f(A(r)—A(q))C and C are open sets i@, and hence

f(A(r) - A(q))c x C is open inC% The conclusion follows. /l

Proposition 2.4. The notation and the assumption being as in proposition 2.1,

we have

(0, 0)O u(A(r)) n TAMN) -A@)°  C. (2.20)

Proof. Sinceu(0) = (0, 0), clearly (0, OY u(4(r)), hence it suffices to prove
that

(0,0)0 T(A(N-A@Q) x C, (2.21)
le.,
0O T(A(r)-A(Q). (2.22)
LetF: A(r) — C be such that
F(t) =t™ (2.23)

for allt O A(r). Observe that

f(A(r)-A(@) = F(A(r)-A(a)) O F(A(r) - A()), (2.24)
and note thaf\(r) - A(q) is compact inA(r) hence thatF(A(r) - A(q)) is

compact inC becausé- is continuous.
By the definition ofF, we have
00 F(A(r)-A(9)). (2.25)
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On the other hand, recalling the fact that any carhget inC is closed, we

have
F(A(r) - &(q)) = F(A(r) - A(q)). (2.26)
Hence,
00 F(A(r)-A(q)), (2.27)
implying that (2.22) is true. Il



3. Fundamental tools 1V

We begin this section by introducing some new timmta For the
fundamental properties of the UR[{ z, z} and other related UFDs, as well
as for the Weierstrass Preparation Theorem, thaeraa referred to refs. [13-

15] and references therein.

Notation 3.1.
Forx 0 C andr O K", let
A(r) ={y0C: ly—x| <r}.
Forx O C, let
4e) :=C.
Forr O R, let
A(r) = 4y(r).
Forx = (xi, X)) O C? andr = (rq, rp) O R let
4(r) =4, (r1) x4, (r2).
Forr = (ry, ;) 0 R let
A(r) = A4(rq) x 4(ry).
{z, z}:. the UFD of convergent power series in the indeieatesz;
andz.
Ay = {r OR** fxq, xo) is convergent as a series of
complex numbers for alk{, x,) O A(r)},
wherey U C{ z, z}.
MMz, }) ={ @O {z, z}:. ¢0,0)=0,((0, A1) # 0}

The following proposition and the outline of theopf played a

significant role in preparing fundamental tools ISpecial thanks are due to
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Prof. Isao Naruki (former member of the RIMS, Kyotdniversity and

Ritsumeikan University, Japan) who provided thdioetof the proof.

Proposition 3.1. Let C{z, z} denote the unique factorization domain of
convergent power series in zz and z. Let ¢ be an irreducible element of
{z, z} with A0, 0) = Oand (A0, A) # 0. Then, there exist

(i) a neighborhood V of theorigin (0, 0),

(if) a positive integer k,

(i) a sequence of complex numbers ay, a,, ...,
such that the set of zeros (6, A) of inV isdescribed by the Puiseux expansion
of A

A=Y a.o™ (3.1)

Outline of Proof: Any analytic curve can be desingularized by a dinit
succession of blowing-ups, hence there exists @ [parametrization for each
irreducible branch of an analytic curve. Given aaloparametrization of an

irreducible branch by

G=ct‘L +ct +ct + ...), (3.2)
A=dt+dot? + ..., (3.3)

set
u=u(t) =t(1 +ct + ct® + ... X (3.4)

Thenu = u(t) has an analytic inverse function in some neighbod of the

origin:

t=tu) =Y ec G (3.5)
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On the other hand} is a power series @f we consequently see thatcan be
expanded in a Puiseux series 8fin a neighborhood of the origin (by

supplementing topological arguments). /l

Before proceeding further, the reader is askdatigdly review
(i) the following notation of Arge andv; (cf. [1]),
(i) propositions 3.1 and 3.2 (in section 3. Fundaial Tools I) in [1]: the
previous part Ill of this series.

Notation 3.2.
Forx [0 C - {0}, let Arg x denote the unique real number
@0 [0, 27f such that
x = | exp(6).
ForkO Z"andj O {1, ...,k}, define vj: C - C by

[0 if x=0,
l’)k’j(X) = %
LIx"*exp((Arg x + 277)/K) if x# 0.

Proposition 3.2. Letr 0 R* and let f, g O H(A(r)) be such that f(0) =g(0) = 0
Suppose that f(t) # 0,and let k O Z" be the order of the multiplicity of the zero
of f at the origin of C. Then there exist anr, 0 ]0, r], ans O R*, and an h [
Ho(4A(s™)) with h(0) = Osuch that the following equality holds:

{(f(V), 9()): t T A(rg)} n (4(s) x C)
ij Mhow), (3.6)

wherev;: A(s) — A(s”) isthe function defined by v(x) = U ;(X).
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Proof. We shall prove this proposition in the settingpofposition 3.1[1]. Let,
g O H(A(r)) be such that(0) = g(0) = 0 andf(t) #0, letk, & ands be as in
proposition 3.1[1]. Then, proposition 3.2[1] imdithat the following equality
holds:

{(f(t), 9()): t T A(ro)} n (A(s) x C)

:LkJ /_(goizo/,[oilo VJ)’ (37)

=1
whereiy: A" - ﬁl(A(ro)) denotes the inclusion mapping, ﬁl(A(ro)) -
A(ro) is analytic,i,: A(rg) - A(r) denotes the inclusion mapping, anpd(r) -
C is analytic by the hypothesis.

Thus, the functiomy o i, o f0 iy: A(S™) - C is analytic on its domain,
hence is analytic at the origin 04¢s**). Now it is easily seen that there exists

ans 0 R and arh O Ho(4(s**)) such that
{(f(V), g()): t O A(rg)} n (A(s) x C)
- 01 rtho ). (3.8)

Recall the definition of4, and notice that;(0) = O for allj O {1, ..., k}. By
taking the intersection of each side of (3.8) a@dx C, we then notice that
{(f(®), o): t O A(r)} n ({0} x C)

={(0, h(0))}, (3.9)
which implies thah(0) = 0. I

Remark. If k is not equal to 1, for eagh the mappingy, is not continuous
entirely on its domain, but this does not affect atgument in the present

paper.
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Proposition 3.3.A. Let ¢ O 7I(C{z, z}) be an irreducible element of the UFD
Az, 2}, letr =(ry, 1) O ALY, andlet
W:={(6 A) O Ar): (6 A) =0}. (3.10)

Then, there exist

(i) a neighborhood V of the origin (0, 0)in C?,

(i) ro O R,

(iii) f, g O H(A(rg)) with f(0) =g(0) = 0,
such that

W n V= {(f(t), g(t)): t O A(re)} (3.12)

and such that the mapping u: 4(rg) - W n V defined by u(t) = (f(t), g(t)) isa
bijection that sends any neighborhood of the origin 0 in A(ro) to a

neighborhood of the origin (0, 0)in W n V.

We prove this proposition at the end of this scti

Proposition 3.3.B. Let ¢ U1 /1(C{ z,, z,}) be anirreducible element of the UFD
{z1, 2}, letr =(rq, rp) O [A¢), and let
W:={(6 A) O Ar): (6 A) =0}. (3.12)

Then, there exist

(i) a neighborhood V of the origin (0, 0)in C?,

(i) ro O R,

(iii) f, g O H(A(r)) with f(0) =g(0) = 0,
such that

W n V= {(f(t), g(t)): t O Are)} (3.13)

and such that the mapping u: 4(rg) - W n V defined by u(t) = (f(t), g(t)) isa

homeomor phism.
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Proposition 3.4. Proposition 3.3.Aand proposition 3.3.Bare equivalent.

Proof. Proposition 3.3.B= proposition 3.3.A is evident. We prove that
proposition 3.3.A= proposition 3.3.B:

Suppose that proposition 3.3.A is true, and let

(i) a neighborhood; of the origin(0, 0) inC?,

(i) sO R,

(iii) f1, g1 O H(A(S)) withf,(0) =0:(0) =0,
be such that

W n V= {(fy(t), gu(t)): t O A(S)} (3.14)
and such that the mapping 4(s) - W n V; defined byu,(t) = (fy(t), gi(t)) is
a bijection that sends any neighborhood of the originin 4(s) to a
neighborhood of the origi(0, 0) inW n V;.

Note first that4(s/2) is a neighborhood of the origin 0 #(s), and
hence thau,(4(s/2)) is a neighborhood of the orig(f, 0) inW n Vi. This
implies that there exists a neighborhagaf the origin(0, 0) in C? such that

W n Vi n Vo= {(fy(t), g1(t): t O AF2) } = uy(4(5/2)). (3.15)

Set
V=V;nV,, (3.16)
thenV is obviously a neighborhodtle origin(0, 0) in C?. Set
ro =52, (3.17)
f=f| A(ro), (3.18)
g=0:| 4(ro), (3.19)
and definau: 4(ro) — u(4(ro)) by
u(t) = (f(t), (1)), (3.20)
or equivalently by
u(t) = uy(t). (3.21)
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To verify that proposition 3.3.A> proposition 3.3.B, it now suffices to
prove thau is a homeomorphism.
Note thatA(r,) is compact and that the mappihgA(r,) - ui(A(r,))
defined by
h(t) = uy(t) (3.22)
IS a continuous bijection and hence homeomorphignthe following well-
known fact: Ifh is a continuous bijection from a compact topolobgmace to

a Hausdorff space, thénis a homeomorphism.

If h" is a homeomorphism of a topological spXcentoY and if Xyis a
nonempty subset oK, thenu': Xy —» h'(Xy) defined byu'(t) = h'(t) is a
homeomorphismApplying this argument tch and u, we see thauis a

homeomorphism. Il

The following proposition can be proved by usinther proposition

3.3.A or 3.3.B; we shall use the former.

Proposition 3.5.A. Let ¢ O 71(C{z, z,}) be an irreducible element of the UFD
XAz, 2}, letr =(ry, 1) O AY), andlet
W:={(6 1) O Ar): (6 A) =0}. (3.23)

Then, there exist

(i) a neighborhood V of the origin (0, 0)in C?,

(i) sOR,

(i) kO Z7,

(iv) h O Ho(4(s*) with h(0) = 0,
such that the following equality holds:

WA Vn (49 xC) = LkJ rho v, (3.24)

=1

where v: A(s) — A(s™) isthe function defined by Vi(x) = V;(X).
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Proof. Under the assumptions of the proposition, by gigiroposition 3.3.A
we see that there exist

(i) a neighborhood; of the origin(0, 0) inC?,

(ii) ro O K",

(iii) f, g O H(A(rg)) with f(0) =g(0) = 0,
such that

W n Vi = {(f(t), g(t)): t O A(ro)} (3.25)
and such that the mapping4(ro) - W n V; defined byu(t) = (f(t), g(t)) is a
bijection that sends any neighborhood of the ori@inin A(rg) to a
neighborhood of the origi(0, 0) inW n V;.

We claim thatf(t) # 0. Suppose the contrary{t) = 0. Then the
hypothesis¢(0, A) # 0 implies thatg O H(4(rg)) is not an open mapping,
hence thag is a constant function. Singg0) = 0, we have(t) = 0. But, then
we would have

W n Vi ={(0, 0)}, (3.26)
which is impossible in view of the Weierstrass Rreion Theorem [14,15].
Hence, our claim is true. L&t Z* be the order of the multiplicity of the zero
of f at the origin inC.

Now we may apply proposition 3.2, and we see thate exist amg
010, ro], ans O R, and anh O Hy(4A(s™)) with h(0) = 0 and such that the
following equality holds:

{(f(1), g(1): t O A(rog)} n (A(s) x C)
_ 0 Mhe w). (3.27)

On the other hand, sincf(rog) is a neighborhood of the origin 0 in
A(ro), we see thati(4(rqog)) = {(f(t), g(t)): t O A(reg)} is a neighborhood of the
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origin (0, 0) inW n V;. This implies that there exists a neighborh&6df

the origin in C*such that

{(f(V), g(t)): t O A(rog} = Wn Vi n Vo (3.28)
Set
V=V;nV, (3.29)
thenV is a neighborhood of the origin (0, 0) in?. By combining (3.27),
(3.28), and (3.29), we get the conclusion. /l

Proposition 3.5.B. Let ¢ [0 //(C{z, z}) be anirreducible element of the UFD
{z1, 2}, letr = (rq, ro) O /A¢), and let
W:={(6, A) OAr): (6, A) =0} (3.30)

Then, there exist

() s OR™,

(i) sOR,

(i) kO Z7,

(iv) h O Ho(4(s*) with h(0) = 0,
such that the following equality holds:

W AE) n (A x C) = ij rho u), (3.31)

=1

where v: 4(s) - A(s™) isthe function defined by Vi(x) = 1 ;(X).
Proposition 3.6. Proposition 3.5.Aand proposition 3.5.Bare equivalent.

Proof. Proposition 3.5.B=> proposition 3.5.A is evident. We prove that
proposition 3.5.A= proposition 3.5.B:

Suppose that proposition 3.5.A is true, and let

(i) a neighborhood of the origin (0, 0) inC?,
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(i) s O R,

(i) kO Z7,

(iv) h O Ho(A(s:**)) with h(0) = 0,
be such that

W Vo @s)x0) =) {chy): xO A} (332)

j=1
SinceV is a neighborhood of the origin 6f, for somes = (s, S,) O

R*? one has

As) O V. (3.33)
Fix such ars, and also fix ars (1 ]0, 1] such that
s<s, (3.34)
and such that
IN(1i(x)) - h(4(0)) | = h(¥(X))| <S> (3.35)

for all x 0 A(s) and for allj U {1, ..., k}. (Note that all theh - 1; are continuous
at the origin ofC.)
Now it remains to prove that

Wn AS) n (A9 xC) = ijl {(x, h(1(x): xO A(9)}- (3.36)
By (3.34) and (3.35), we see that the relations

A(s) n (A(s) x C) = A(s) x 4(s2) U LkJ {(x h(y(x): x D As)} (3.37)

=1

hold and hence that the relation

W AS) n (A9 x ©) OW n (ij {(x, h(u(): xO A9} (3.38)

holds. But, (3.32) implies
w0 0 {(x, h(y(x)): x T 4A(s)} (3.39)

holds. Thus, the right-hand side of (3.38) is eqodhat of (3.36).
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We now only have to show that

Wn AES) n (A9 xC) O ij {(x h(yX): xO A9}, (3.40)

=1
but this relation is evidently true since
Wn A4S) n (A(s) x C)

OWn Vn (49 xC) = LkJ {(x, h(u(x): x O AS)}. (3.41)

=1

I

The second proof of proposition 3.1. The conclusion directly follows from

propositions 3.5.A. Il

Proof of proposition 3.3.A. We shall prove proposition 3.3.A by using the

following proposition:

Proposition 3.7. Let ¢ O 7/(C{z, z}) be an irreducible element of the UFD
XAz, o}, letr =(ry, 1) O ALY, andlet
W:={(6 A) O Ar): (6 A) =0}. (3.42)

Then, there exist

(i) a neighborhood V of the origin (0, 0)in C?,

(i) ro O R,

(i) mO Z7,

(iv) g O H(A(rg)) with g(0) = 0,
such that

W V={(t" g(t): t O Are)} (3.43)

and such that the mapping u: A(r) — W n V defined by u(t) = @™, g(t)) isa

bijection.
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Proof of proposition 3.7. This is an immediate consequence of theoremrid3 a
theorem 5.7 in [14]: Phillip A. Griffiths, Introdtion to Algebraic Curves (Am.
Math. Soc., Providence, 1989). Il

In view of proposition 3.7, in order to prove posion 3.3.A, it is
enough to show that the above functiogends any neighborhood of the origin
0 in A(r) to a neighborhood of the orig(@, 0) INWn V.

But, by proposition 2.1 (in section 2. Fundameiiabls 111), we know
that for anyg O (0, r), u(4(q)) is a neighborhood of the origin (0, O)WAn V,
from which it immediately follows that the functiansends any neighborhood
of the origin 0 in4(r) to a neighborhood of the orig{@, 0) INWn V. Il

The following proposition is a general form of position 3.5.B and it

easily follows from proposition 3.5.B.

Proposition 3.5.C. Let ¢ 11 [I(C{z, zo}), letr = (ry, rp) O [A¢), andlet

W:={(6, A) O A(r): (6, A) = O}. (3.44)
Then, there exist
() s OR*,
(i) sO R",
(i) nOZ", ky, ..., ka0 27,
(iv) hy O Ho(A(s"™)), ..., h, O Ho(A(s"*)) with hy(0) = ... =h,(0) = 0,

such that the following equality holds:
n k
Wn AS)n 49 x0) = U rhiowy, (3.45)
=1 j=1

where v: 4() — As") is the function defined by u;(x) = v, (9, and

wherei [0 {1, ...,n} andj O{1, ..., k}.
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Proof. SinceC{z, z} is a UFD, ¢ can be expressed as a finite product of
irreducible elements of{ z, z}. Bearing this fact in mind, we see that there
existr' = (r'y, r';) O R, nOZ, and irreducible elements, ..., ¢ of
C{z, z} which are all convergent for alg{ A) 00 A(r'), such that

U6, A) = yn(6, ) Iyn(6, 1) (3.46)
for all (6, 1) O A(r'). Note that consequently the set of zerog/ah A(r') can
be written as the union of the sets of zerog/af A(r'):

(61 0A): @6 M =0}
=604 Ol w6 A =0}

=UJ (8 DAr): ¢(6 ) =0} (3.47)
i=1
Now the conclusion easily follows from propositidr.B. Il

In the forthcoming part V of this series, propwsit3.5.C proved above plays
a key role in establishing our Target Propositibodal Analyticity Proposition
version 1 (LAP1)).
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