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Abstract  

 

 The present article is a direct continuation of the previous part III of 

this series of articles, which have been devoted to cultivating a new 

interdisciplinary region between chemistry and mathematics. In the present 

part IV, we develop two sets of fundamental theoretical tools, using methods 

from the field of resolution of singularities and analytic curves. These two sets 

of tools are essential in structurally elucidating the assertion of the Fukui 

conjecture (concerning the additivity problems) and the crux of the functional 

asymptotic linearity theorem (functional ALT) that proves the conjecture in a 

broad context. This conjecture is a vital guideline for a future development of 

the repeat theory (RST) – the central unifying theory in the First and the 

Second Generation Fukui Project.  
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1. Introduction 

 

 This article is a direct continuation of the previous part III [1] of this 

series of articles, which have been devoted to cultivating a new 

interdisciplinary region between chemistry and mathematics along the unifying 

spirit of the First and the Second Generation Fukui Project (cf. [1-12] and 

references therein).  

 In the previous part II of this series of articles [7], we have established 

the following sequence of logical implications 

 

LAP1 ⇒ Functional ALT ⇒ the Fukui conjecture,  

   

where Local Analyticity Proposition version 1 (LAP1) was also referred to as 

the Target Proposition. 

 The Target Proposition (LAP1) is a major key to proving the Fukui 

conjecture via resolution of singularities and related methods. This proposition 

involves the union 
  i =1

n

U Γ(hi) of special sets Γ(hi). Such a sum was called a 

multi-function-set in [1] and plays an important role in cross-disciplinary 

investigations using the repeat space theory (RST), which is the central theory 

in the First and the Second Generation Fukui Project. We remark that the 

energy band curves of carbon nanotubes given in article [3] are locally 

expressed in terms of multi-function-sets 
  i =1

n

U Γ(hi). 

 To prove the Target Proposition via resolution of singularities and 

related methods, it is convenient to prepare four sets of fundamental tools: 

(i) fundamental tools I (developed in part III of this series [1]) 

(ii)  fundamental tools II (developed in part III of this series [1]) 

(iii)  fundamental tools III (given in section 2 of the present part IV) 
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(iv) fundamental tools IV (given in section 3 of the present part IV) 

The goal of the present part IV of this series of articles is to set up fundamental 

tools III and IV, and in particular, to establish Proposition 3.5.C in section 3, 

which studies the multi-function-set appearing in the above-mentioned Target 

Proposition. The Target Proposition will be proved in the forthcoming part V 

of this series using Proposition 3.5.C. 

 As in part III, in the present part IV of this series, we construct 

fundamental theoretical tools in such a way that they are also readily usable as 

modular parts of the repeat space theory (RST) [1-12] by which one can solve 

in a unifying manner a variety of molecular problems lying in the 

interdisciplinary region between chemistry and mathematics.  
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2. Fundamental tools III 

 

 Throughout, we retain the notation employed in the preceding parts I, II, 

and III of this series of articles [6,7,1]. (The reader is referred to refs. [1,6,7] 

for the notation.) Let +, 0
+, , +, 0

+, , and  denote respectively, the set 

of all positive integers, nonnegative integers, integers, positive real numbers, 

nonnegative real numbers, real numbers, complex numbers. Throughout this 

article, when a topological space E = (X, o) is defined and when no confusion 

can arise, E also denotes its underlying set X. 

 

Proposition 2.1. Let r ∈ + and define topological subspace E1 of  by 

  E1 = (∆(r), o1), (2.1) 

where o1 denotes the relative topology on ∆(r) induced by the usual Euclidean 

topology of . Let f, g ∈ H(E1). Define ˆ u f,g: E1 → 2 by  

  ˆ u f,g(t) = (f(t), g(t)). (2.2) 

Define topological subspace E2 of 2 by 

  E2 = ( ˆ u f,g(E1), o2), (2.3) 

where o2 denotes the relative topology on ˆ u f,g(∆(r)) induced by the usual 

Euclidean topology of 2. Define uf,g: E1 → E2 by 

  uf,g(t) = ˆ u f,g(t). (2.4) 

 Let m ∈ +, and suppose that 

  f(t) = tm (2.5) 

for all t ∈ ∆(r) and that  

  g(0) = 0. (2.6) 

Let q ∈ ]0, r[. Then uf,g(∆(q)) is a neighborhood of the origin (0, 0) of E2. 

 

Proof. The fact that u(∆(q)) is a neighborhood of the origin (0, 0) of E2 follows 

from the propositions 2.2, 2.3, and 2.4 below. // 
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 In what follows, we let 

  ˆ u  := ˆ u f,g, (2.7) 

  u := uf,g. (2.8) 

 

Proposition 2.2. The notation and the assumption being as in proposition 2.1, 

we have 

  u(∆(q)) ⊃ u(∆(r)) ∩ f (∆(r)− ∆(q))
C × , (2.9) 

where  and C denote, respectively, the closure operation and the complement 

in . 

 

Proof. Let 

  (α, β) ∈ u(∆(r)) ∩ f (∆(r)− ∆(q))
C × . (2.10) 

Then, there exists a t0 ∈ ∆(r) such that 

  α = f(t0), (2.11) 

  β = g(t0), (2.12) 

and such that 

  f(t0) ∈ f (∆(r)− ∆(q))
C
. (2.13) 

Since t0 ∈ ∆(r), we have either 

  t0 ∈ ∆(r) - ∆(q), (2.14) 

or 

  t0 ∈ ∆(q). (2.15) 

But, in case (2.14), 

  f(t0) ∈ f(∆(r) - ∆(q)) ⊂ f (∆(r)− ∆(q)) , (2.16) 

which contradicts (2.13),  thus we have (2.15). 

 Hence, there exists a t0 ∈ ∆(q) such that 

  α = f(t0), (2.17) 
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  β = g(t0). (2.18) 

Therefore, 

  (α, β) ∈ u(∆(q)). (2.19)// 

 

Proposition 2.3. The notation and the assumption being as in proposition 2.1, 

the set u(∆(r)) ∩ f (∆(r)− ∆(q))
C ×  is an open set in E2. 

 

Proof. Note that both  f (∆(r)− ∆(q))
C
 and  are open sets in , and hence 

f (∆(r)− ∆(q))
C ×  is open in 2. The conclusion follows.  // 

  

Proposition 2.4. The notation and the assumption being as in proposition 2.1, 

we have 

  (0, 0) ∈ u(∆(r)) ∩ f (∆(r)− ∆(q))
C × . (2.20) 

 

Proof. Since u(0) = (0, 0), clearly (0, 0) ∈ u(∆(r)), hence it suffices to prove 

that 

  (0, 0) ∈ f (∆(r)− ∆(q))
C × , (2.21) 

i.e.,  

  0 ∉ f (∆(r)− ∆(q)) . (2.22) 

 Let F: ∆(r)→  be such that    

  F(t) = tm (2.23) 

for all t ∈ ∆(r) . Observe that 

  f (∆(r)− ∆(q))  = F(∆(r)− ∆(q))  ⊂ F(∆(r)− ∆(q)) , (2.24) 

and note that ∆(r) − ∆(q)  is compact in ∆(r)  hence that F(∆(r)− ∆(q))  is 

compact in  because F is continuous.  

 By the definition of F, we have 

  0 ∉ F(∆(r)− ∆(q)) . (2.25) 
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On the other hand, recalling the fact that any compact set in   is closed, we 

have  

  F(∆(r)− ∆(q))  = F(∆(r)− ∆(q)) . (2.26) 

Hence, 

  0 ∉ F(∆(r)− ∆(q)) , (2.27) 

implying that (2.22) is true.  // 
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3. Fundamental tools IV 

 

 We begin this section by introducing some new notation.  For the 

fundamental properties of the UFD { z1, z2} and other related UFDs, as well 

as for the Weierstrass Preparation Theorem, the reader is referred to refs. [13-

15] and references therein. 

 

Notation 3.1.  

 For x ∈  and r ∈ +, let 

  ∆x(r) := {y ∈ : |y – x| < r}. 

 For x ∈ , let 

  ∆x(∞) := . 

 For r ∈ +, let 

  ∆(r) := ∆0(r). 

 For x = (x1, x2) ∈ 2 and r = (r1, r2) ∈ +2, let 

  ∆x(r) := ∆ x1
(r1) × ∆ x2

(r2). 

 For r = (r1, r2) ∈  +2, let 

  ∆(r) := ∆(r1) × ∆(r2). 

 { z1, z2}: the UFD of convergent power series in the indeterminates z1 

and z2. 

∇(ψ) := {r ∈ +2: ψ(x1, x2) is convergent as a series of  

 complex numbers for all (x1, x2) ∈ ∆(r)},  

where ψ ∈ { z1, z2}. 

 Π( { z1, z2}) := { ψ ∈ { z1, z2}: ψ(0, 0) = 0, ψ(0, λ) / ≡  0}. 

 

 The following proposition and the outline of the proof played a 

significant role in preparing fundamental tools IV. Special thanks are due to 
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Prof. Isao Naruki (former member of the RIMS, Kyoto University and 

Ritsumeikan University, Japan) who provided the outline of the proof. 

 

Proposition 3.1. Let { z1, z2} denote the unique factorization domain of 

convergent power series in z1 and z2. Let ψ be an irreducible element of 

{ z1, z2}  with ψ(0, 0) = 0 and ψ(0, λ) / ≡  0. Then, there exist 

 (i) a neighborhood V of  the origin (0, 0), 

 (ii)  a positive integer k, 

 (iii)  a sequence of complex numbers a1, a2, ..., 

such that the set of zeros (θ, λ) of ψ in V is described by the Puiseux expansion 

of λ: 

  λ(θ) = 
n=1

∞

∑ anθ n/k. (3.1) 

 

Outline of Proof:  Any analytic curve can be desingularized by a finite 

succession of blowing-ups, hence there exists a local parametrization for each 

irreducible branch of an analytic curve. Given a local parametrization of an 

irreducible branch by 

  θ = ctk(1 + c1t + c2t
2 + ... ), (3.2) 

  λ = d1t + d2 t
2 + ... , (3.3) 

set  

  u = u(t) = t(1 + c1t + c2t
2 + ... )1/k. (3.4) 

Then u = u(t) has an analytic inverse function in some neighborhood of the 

origin: 

  t = t(u) = 
n=1

∞

∑ en(c -1/kθ1/k)n. (3.5) 
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On the other hand, λ is a power series of t; we consequently see that λ can be 

expanded in a Puiseux series of θ in a neighborhood of the origin (by 

supplementing topological arguments). // 

 

 Before proceeding further, the reader is asked to briefly review  

(i) the following notation of Arg x and ̂  ν k,j (cf. [1]), 

(ii) propositions 3.1 and 3.2 (in section 3. Fundamental Tools I) in [1]: the 

previous part III of this series. 

 

Notation 3.2.  

 For x ∈  - {0}, let Arg x denote the unique real number  

θ ∈ [0, 2π[ such that  

  x = |x| exp(iθ).  

For k ∈  + and j ∈ {1, ..., k}, define ˆ ν k,j:  →  by 

     0     if  x = 0,  
ˆ ν k,j(x)  =          

    |x|1/kexp(i(Arg x + 2πj)/k) if   x ≠ 0. 

  

Proposition 3.2. Let r ∈  + and let f, g ∈ H(∆(r)) be such that f(0) = g(0) = 0. 

Suppose that f(t) / ≡  0, and let k ∈ + be the order of the multiplicity of the zero 

of f at the origin of . Then there exist an r0 ∈ ]0, r], an s ∈ +, and an h ∈ 

H0(∆(s1/k)) with h(0) = 0 such that the following equality holds: 

 {( f(t), g(t)): t ∈ ∆(r0)} ∩ (∆(s) × ) 

  = 
  j=1

k

U Γ(h o νj), (3.6) 

where νj: ∆(s) → ∆(s1/k) is the function defined by νj(x) = ˆ ν k,j(x). 

 



 13

Proof. We shall prove this proposition in the setting of proposition 3.1[1]. Let f, 

g ∈ H(∆(r))  be such that f(0) = g(0) = 0 and f(t) / ≡ 0,  let k, µ, and s be as in 

proposition 3.1[1]. Then, proposition 3.2[1] implies that the following equality 

holds:    

  {( f(t), g(t)): t ∈ ∆(r0)} ∩ (∆(s) × ) 

   = 
  j=1

k

U Γ(g o i2 o µ o i1 o νj), (3.7) 

where i1: ∆(s1/k) → ˆ h 1(∆(r0))  denotes the inclusion mapping, µ: ˆ h 1(∆(r0)) → 

∆(r0) is analytic, i2: ∆(r0) → ∆(r) denotes the inclusion mapping, and g: ∆(r) → 

 is analytic by the hypothesis. 

 Thus, the function g o i2 o µ o i1: ∆(s1/k) →  is analytic on its domain, 

hence is analytic at the origin 0 in ∆(s1/k). Now it is easily seen that there exists 

an s ∈ + and an h ∈ H0(∆(s1/k)) such that 

  {( f(t), g(t)): t ∈ ∆(r0)} ∩ (∆(s) × ) 

  = 
  j=1

k

U Γ(h o νj). (3.8) 

Recall the definition of νj, and notice that νj(0) = 0 for all j ∈ {1, ..., k}. By 

taking the intersection of each side of (3.8) and {0} ×  , we then notice that 

  {( f(t), g(t)): t ∈ ∆(r0)} ∩ ({0} × ) 

  = {(0, h(0))}, (3.9) 

which implies that h(0) = 0.  // 

 

Remark. If k is not equal to 1, for each j, the mapping νj is not continuous 

entirely on its domain, but this does not affect our argument in the present 

paper. 
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Proposition 3.3.A. Let ψ ∈ Π( { z1, z2}) be an irreducible element of the UFD 

{ z1, z2}, let r = (r1, r2) ∈ ∇(ψ), and let 

  W := {(θ, λ) ∈ ∆(r): ψ(θ, λ) = 0}. (3.10) 

Then, there exist 

 (i) a neighborhood V of  the origin (0, 0) in 2, 

 (ii) r0 ∈ +, 

 (iii)  f, g ∈ H(∆(r0)) with f(0) = g(0) = 0, 

such that  

  W ∩ V = {(f(t), g(t)): t ∈ ∆(r0)} (3.11) 

and such that the mapping u: ∆(r0) → W ∩ V defined by u(t) = (f(t), g(t)) is a 

bijection that sends any neighborhood of the origin 0 in ∆(r0) to a 

neighborhood of the origin (0, 0) in W ∩ V. 

 

 We prove this proposition at the end of this section. 

 

Proposition 3.3.B. Let ψ ∈ Π( { z1, z2}) be an irreducible element of the UFD 

{ z1, z2}, let r = (r1, r2) ∈ ∇(ψ), and let 

  W := {(θ, λ) ∈ ∆(r): ψ(θ, λ) = 0}. (3.12) 

Then, there exist 

 (i) a neighborhood V of the origin (0, 0) in 2, 

 (ii) r0 ∈ +, 

 (iii)  f, g ∈ H(∆(r)) with f(0) = g(0) = 0, 

such that 

  W ∩ V = {(f(t), g(t)): t ∈ ∆(r0)} (3.13) 

and such that the mapping u: ∆(r0) → W ∩ V defined by u(t) = (f(t), g(t)) is a 

homeomorphism. 
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Proposition 3.4. Proposition 3.3.A and proposition 3.3.B are equivalent. 

 

Proof. Proposition 3.3.B ⇒ proposition 3.3.A is evident. We prove that 

proposition 3.3.A ⇒ proposition 3.3.B: 

 Suppose that proposition 3.3.A is true, and let  

 (i) a neighborhood V1 of  the origin (0, 0) in 2, 

 (ii) s ∈ +, 

 (iii)  f1, g1 ∈ H(∆(s))  with f1(0) = g1(0) = 0, 

be such that  

  W ∩ V1 = {(f1(t), g1(t)): t ∈ ∆(s)} (3.14) 

and such that the mapping u1: ∆(s) → W ∩ V1 defined by u1(t) = (f1(t), g1(t)) is 

a bijection that sends any neighborhood of the origin 0 in ∆(s) to a 

neighborhood of the origin (0, 0) in W ∩ V1. 

 Note first that ∆(s/2) is a neighborhood of the origin 0 in ∆(s), and 

hence that u1(∆(s/2)) is a neighborhood of the origin (0, 0) in W  ∩ V1. This 

implies that there exists a neighborhood V2 of  the origin (0, 0) in  2  such that  

  W ∩ V1 ∩ V2 = {( f1(t), g1(t)): t ∈ ∆(s/2) } = u1(∆(s/2)). (3.15) 

Set  

  V = V1 ∩ V2, (3.16) 

 then V is obviously a neighborhood the origin (0, 0) in  2. Set  

  r0 = s/2, (3.17) 

  f = f1 | ∆(r0), (3.18) 

  g = g1 | ∆(r0), (3.19) 

and define u: ∆(r0) → u1(∆(r0))  by  

  u(t) = (f(t), g(t)), (3.20) 

or equivalently by 

  u(t) = u1(t). (3.21) 
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 To verify that proposition 3.3.A ⇒ proposition 3.3.B, it now suffices to 

prove that u is a homeomorphism. 

 Note that ∆(r0)  is compact and that the mapping h: ∆(r0)  → u1(∆(r0) ) 

defined by  

  h(t) = u1(t) (3.22) 

is a continuous bijection and hence homeomorphism by the following well-

known fact: If h is a continuous bijection from a compact topological space to 

a Hausdorff space, then h is a homeomorphism.  

 If h′ is a homeomorphism of a topological space X onto Y and if X0 is a 

nonempty subset of X, then u′: X0 → h′(X0) defined by u′(t) = h′(t) is a 

homeomorphism. Applying this argument to h and u, we see that u is a 

homeomorphism.   // 

  

 The following proposition can be proved by using either proposition 

3.3.A or 3.3.B; we shall use the former. 

 

Proposition 3.5.A. Let ψ ∈ Π( { z1, z2}) be an irreducible element of the UFD 

{ z1, z2}, let r = (r1, r2) ∈ ∇(ψ), and let 

  W := {(θ, λ) ∈ ∆(r): ψ(θ, λ) = 0}. (3.23) 

Then, there exist 

 (i) a neighborhood V of  the origin (0, 0) in 2, 

 (ii) s ∈ +, 

 (iii) k ∈ +, 

 (iv) h ∈ H0(∆(s1/k)) with h(0) = 0, 

such that the following equality holds: 

  W ∩ V ∩ (∆(s) × ) = 
  j=1

k

U Γ(h o νj), (3.24) 

where νj: ∆(s) → ∆(s1/k) is the function defined by νj(x) = ˆ ν k,j(x). 
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Proof. Under the assumptions of the proposition, by using proposition 3.3.A, 

we see that there exist  

 (i) a neighborhood V1 of  the origin (0, 0) in 2,  

 (ii) r0 ∈ +,  

 (iii) f, g ∈ H(∆(r0)) with f(0) = g(0) = 0, 

such that  

  W ∩ V1 = {(f(t), g(t)): t ∈ ∆(r0)} (3.25) 

and such that the mapping u: ∆(r0) → W  ∩ V1 defined by u(t) = (f(t), g(t)) is a 

bijection that sends any neighborhood of the origin 0 in ∆(r0) to a 

neighborhood of the origin (0, 0) in W ∩ V1. 

 We claim that f(t) / ≡ 0. Suppose the contrary: f(t) ≡ 0. Then the 

hypothesis ψ(0, λ) / ≡  0 implies that g ∈ H(∆(r0)) is not an open mapping, 

hence that g is a constant function. Since g(0) = 0, we have g(t) ≡ 0. But, then 

we would have 

  W ∩ V1 = {(0, 0)}, (3.26) 

which is impossible in view of the Weierstrass Preparation Theorem [14,15]. 

Hence, our claim is true. Let k ∈ + be the order of the multiplicity of the zero 

of f at the origin in  .  

 Now we may apply proposition 3.2, and we see that there exist an r00 

∈ ]0, r0], an s ∈ +, and an h ∈ H0(∆(s1/k)) with h(0) = 0 and such that the 

following equality holds: 

  {( f(t), g(t)): t ∈ ∆(r00)} ∩ (∆(s) × ) 

  = 
  j=1

k

U Γ(h o νj). (3.27) 

 On the other hand, since ∆(r00) is a neighborhood of the origin 0 in 

∆(r0), we see that u(∆(r00)) = {(f(t), g(t)): t ∈ ∆(r00)} is a neighborhood of the 
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origin (0, 0) in W  ∩  V1. This implies that there exists a neighborhood V2 of 

the origin in  2 such that 

  {( f(t), g(t)): t ∈ ∆(r00)} = W ∩ V1 ∩ V2. (3.28) 

Set  

  V = V1 ∩ V2,  (3.29) 

then V is a neighborhood of the origin (0, 0) in  2. By combining (3.27), 

(3.28), and (3.29), we get the conclusion. // 

   

Proposition 3.5.B. Let ψ ∈ Π( { z1, z2}) be an irreducible element of the UFD 

{ z1, z2}, let r = (r1, r2) ∈ ∇(ψ), and let 

  W := {(θ, λ) ∈ ∆(r): ψ(θ, λ) = 0}. (3.30) 

Then, there exist 

 (i) s′ ∈ +2, 

 (ii) s ∈ +, 

 (iii) k ∈ +, 

 (iv) h ∈ H0(∆(s1/k)) with h(0) = 0, 

such that the following equality holds: 

  W ∩ ∆(s′) ∩ (∆(s) × ) = 
  j=1

k

U Γ(h o νj), (3.31) 

where νj: ∆(s) → ∆(s1/k) is the function defined by νj(x) = ˆ ν k,j(x). 

 

Proposition 3.6. Proposition 3.5.A and proposition 3.5.B are equivalent. 

 

Proof. Proposition 3.5.B ⇒ proposition 3.5.A is evident. We prove that 

proposition 3.5.A ⇒ proposition 3.5.B: 

 Suppose that proposition 3.5.A is true, and let  

 (i) a neighborhood V of the origin (0, 0) in 2, 
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 (ii) s1 ∈ +, 

 (iii)  k ∈ +, 

 (iv) h ∈ H0(∆(s1
1/k)) with h(0) = 0, 

be such that  

  W ∩ V ∩ (∆(s1) × ) = 
  j=1

k

U {( x, h(νj(x)):  x ∈ ∆(s1)}. (3.32) 

 Since V is a neighborhood of the origin of 2, for some s′  = (s′1, s′2) ∈ 
+2, one has 

   ∆(s′) ⊂ V. (3.33) 

Fix such an s′, and also fix an s ∈ ]0, s′1] such that 

  s < s′1, (3.34) 

and such that 

  |h(νj(x)) - h(νj(0)) | = |h(νj(x))| < s′2 (3.35) 

for all x ∈ ∆(s) and for all j ∈ {1, ..., k}. (Note that all the h o νj are continuous 

at the origin of .) 

 Now it remains to prove that 

  W ∩ ∆(s′) ∩ (∆(s) × ) = 
  j=1

k

U {( x, h(νj(x)):  x ∈ ∆(s)}. (3.36) 

 By (3.34) and (3.35), we see that the relations 

  ∆(s′) ∩ (∆(s) × ) = ∆(s) × ∆(s′2) ⊃  
  j=1

k

U {( x, h(νj(x)): x ∈ ∆(s)} (3.37) 

hold and hence that the relation 

  W ∩ ∆(s′) ∩ (∆(s) × ) ⊃ W ∩ (
  j=1

k

U {( x, h(νj(x)): x ∈ ∆(s)}) (3.38) 

holds. But, (3.32) implies 

  W ⊃  
  j=1

k

U {( x, h(νj(x)): x ∈ ∆(s)} (3.39) 

holds. Thus, the right-hand side of (3.38) is equal to that of (3.36). 
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 We now only have to show that 

  W ∩ ∆(s′) ∩ (∆(s) × ) ⊂ 
  j=1

k

U {( x, h(νj(x)): x ∈ ∆(s)}, (3.40) 

but this relation is evidently true since  

  W ∩ ∆(s′) ∩ (∆(s) × ) 

  ⊂ W ∩ V ∩ (∆(s) × ) =  
  j=1

k

U {( x, h(νj(x)): x ∈ ∆(s)}. (3.41) 

   // 

 

The second proof of proposition 3.1. The conclusion directly follows from 

propositions 3.5.A.  // 

 

Proof of proposition 3.3.A. We shall prove proposition 3.3.A by using the 

following proposition: 

 

Proposition 3.7. Let ψ ∈ Π( { z1, z2}) be an irreducible element of the UFD 

{ z1, z2}, let r = (r1, r2) ∈ ∇(ψ), and let 

  W := {(θ, λ) ∈ ∆(r): ψ(θ, λ) = 0}. (3.42) 

Then, there exist 

 (i) a neighborhood V of the origin (0, 0) in 2, 

 (ii) r0 ∈ +, 

 (iii)  m ∈  +, 

 (iv) g ∈ H(∆(r0)) with g(0) = 0, 

such that 

  W ∩ V = {(tm, g(t)): t ∈ ∆(r0)} (3.43) 

and such that the mapping u: ∆(r) → W ∩ V defined by u(t) = (tm, g(t)) is a 

bijection. 

 



 21

Proof of proposition 3.7. This is an immediate consequence of theorem 5.3 and 

theorem 5.7 in [14]: Phillip A. Griffiths, Introduction to Algebraic Curves (Am. 

Math. Soc., Providence, 1989).   // 

 

 In view of proposition 3.7, in order to prove proposition 3.3.A, it is 

enough to show that the above function u sends any neighborhood of the origin 

0 in ∆(r) to a neighborhood of the origin (0, 0) in W ∩ V. 

 But, by proposition 2.1 (in section 2. Fundamental Tools III), we know 

that for any q ∈ (0, r), u(∆(q)) is a neighborhood of the origin (0, 0) in W ∩ V, 

from which it immediately follows that the function u sends any neighborhood 

of the origin 0 in ∆(r) to a neighborhood of the origin (0, 0) in W ∩ V. // 

 

 The following proposition is a general form of proposition 3.5.B and it 

easily follows from proposition 3.5.B. 

 

Proposition 3.5.C. Let ψ ∈ Π( { z1, z2}), let r = (r1, r2) ∈ ∇(ψ), and let 

  W := {(θ, λ) ∈ ∆(r): ψ(θ, λ) = 0}. (3.44) 

Then, there exist 

 (i) s′ ∈ +2, 

 (ii) s ∈ +, 

 (iii) n ∈ +, k1, ..., kn ∈ +, 

 (iv) h1 ∈ H0(∆(s1/ k1)), ..., hn ∈ H0(∆(s1/ kn )) with h1(0) = ... = hn(0) = 0, 

such that the following equality holds: 

  W ∩ ∆(s′) ∩ (∆(s) × ) = 
  i =1

n

U
  j=1

ki

U Γ(hi o νi,j), (3.45) 

where νi,j: ∆(s) → ∆(s 1/ ki ) is the function defined by νi,j(x) = ˆ ν 
ki , j

(x), and 

where i ∈  {1, ..., n}  and j ∈ {1, ..., ki}. 
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Proof. Since { z1, z2} is a UFD, ψ can be expressed as a finite product of 

irreducible elements of { z1, z2}. Bearing this fact in mind, we see that there 

exist r′ = (r′1, r′2) ∈ +2,  n ∈ +,  and  irreducible  elements ψ1, ..., ψn  of  

{ z1, z2} which are all convergent for all (θ, λ) ∈ ∆(r′),  such that 

   ψ(θ, λ) = ψ1(θ, λ) ⋅⋅⋅ ψn(θ, λ) (3.46) 

for all (θ, λ) ∈ ∆(r′). Note that consequently the set of zeros of ψ in ∆(r′) can 

be written as the union of the sets of zeros of ψ in ∆(r′): 

  {(θ, λ) ∈ ∆(r′): ψ(θ, λ) = 0} 

  = {(θ, λ) ∈ ∆(r′): ∨
i =1

n

[ ψi(θ, λ) = 0]} 

  = 
  i =1

n

U {( θ, λ) ∈ ∆(r′): ψi(θ, λ) = 0}. (3.47) 

Now the conclusion easily follows from proposition 3.5.B. // 

  

 In the forthcoming part V of this series, proposition 3.5.C proved above plays 

a key role in establishing our Target Proposition (Local Analyticity Proposition 

version 1 (LAP1)). 
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