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Abstract

The present article is a direct continuation at pé of this series. The
Local Analyticity Proposition (LAP1), which admits proof via resolution of
singularities is a major key to proving the Fukanpcture via resolution of
singularities and related methods. By LAP1, theemesal part of the
mechanism of the "asymptotic linearity phenomens"ektracted and is
elucidated by using tools from the theory of algébrand analytic curves.
Here in the present article, we complete the pmiothe LAP1 by using
fundamental tools developed in parts Il and IMlog series, thus completing
the proof of the Fukui conjecture via resolutionsifigularities and related
methods. This series of articles |-V establishes, the first time, a new
linkage between (i) the mathematical field of resioh of singularities and (ii)
the chemical field of additivity problems tackleddasolved in a unifying
manner via the repeat space theory (RST), whidchascentral theory in the
First and Second Generation Fukui Project. A neweligpment called the
Matrix Art Program in the Second Generation Fuktpj&t has also been
expounded with a graphical representation of enbeayd curves of a carbon

nanotube.
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1. Introduction

This article is a direct continuation of the pmws part IV [1] of this
series of articles, which have been devoted to ivatihg a new
interdisciplinary region between chemistry and reathtics along the unifying
spirit of the First and the Second Generation FuRkugject (cf. [1-15] and
references therein).

The Local Analyticity Proposition (LAP1), which &so referred to as
the Target Proposition in parts I, lll, and IV this series of articles [1-3], is a
major key to proving the Fukui conjecture via re$ioin of singularities and
related methods.

In part Il of this series [3], we have establshke following sequence

of logical implications:

LAP1 = Functional AL the Fukui conjecture,

where the ALT stands for the Asymptotic Linearityebrem (cf. [3]).

Here in this article, we prove the LAP1 (Targebpsition) using
Proposition 3.5.C (Intermediate Target Propositievh)ich was established in
part IV of this series [1]. The assertion of théetmediate Target Proposition
involves graphg(h; o11j) of complex-valued functionls - 4; defined on discs
on the complex plane. On the other hand the asmemif the Target
Proposition involves graphg(h) of real-valued functiondy defined on
intervals on the real line. We remark that energgdocurves given in ref. [8]
are locally expressed in terms of the grapfis) of real-valued functions;
defined on intervals on the real line.

The crucial step of establishing the Target Pritjoosin section 2 via

the Intermediate Target Proposition lies in theotogical and complex



n ki n
analysis of the structures b |J /(hiouij) andJ 7(h), which were called
izl j=1 iz

multi-function-sets in previous parts Il and IV tfis series. The reader is
referred to a series of papers [8,9] that analym¥gy band curves of carbon

nanotubes, which helps provide concrete exampleshat the above

n ki n
mentioned multi-function-setsj U [th ovij) andU /(h) are analyzed in
=1 j=1 i=1

the present paper so as to reach our goal of gydhie& Target Proposition in
this article.

In section 3, a new development called the Matik Program in the
Second Generation Fukui Project has been expounddd a graphical
representation of energy band curves of a carbowtaobe. It is noteworthy
that Matrix Art which involves fractal structure twiself-similarity (see e.g.
Fig 1 in ref. [5] and Fig. 2 in the present pag&a$ been utilized to prove the
Asymptotic Linearity Theorem Extension Conjecture (ALTEC), which
was presented in article [21] (entitle@pen problem, Magic Mountain and
Devil's Staircase swapping problemgid is important in view of the

Fukui conjecture — a guiding conjecture in the eg¢@pace theory (RST).



2. Proof of the Target Proposition

Throughout, we retain the notation employed in pheceding parts I-
IV of this series of articles [1-4]. (The readerederred to refs. [1-4] for the
notation.) LetZ", Z,", Z, R*, Ry', R, andC denote respectively, the set of all
positive integers, nonnegative integers, integqrssitive real numbers,
nonnegative real numbers, real numbers, complexoetsn

This section is devoted to proving our Target Bemjmon. For this

purpose, we need some preparation.

Notation 2.1. Let S, andS, be nonempty sets such ti&t] S, then
inc(S,, $) denotes the inclusion map &finto S;.

Proposition 2.1. Leta, b O R witha<bandlet| =[a, b]. Let p O CH1)[A] be

amonic polynomial of degree q 0 7" given by

p=A"+c A" + . +c, (2.1)
Definef: | x R —» R by
f(6, 1) = A9+ (AT + ... +cy(6), (2.2)
and defineg: | x C —» C by
9(6. 2) = A7+ (AT + ... +¢y(9). (2.3)

Then, we have
() f(0) =g™(0) n (I x ).
Moreover, there exist an open connected set | of Cwithl 01 and an analytic

~

function f: 1 x C — C such that the followi ng statements hold:

(i) g*(0) = f (0) n (1 x ©).
(iii) £ 1(0) = f {(0) n (I x R).



Proof. Let £ O I. Sincecy, ...,cq O C¥(1), for eachi 0 {1, ..., g}, there exists a
power series/; 0 &{ Z} with the radius of convergeng#; [ ]0, ] such that
c(8 = ¢i(6- &) (2.4)
for all 80 | with |@- & < /. (Recall that fox O C andr O R*, A(r) := {y O
C: ly—x| <r}.) Let
D¢:= () 440%). (2.5)

Isi<q
Then, for each O {1, ...,q}, ¢%: Dy — C defined by
¢4(6) = ¢fi(6- &) (2.6)
is analytic orDg where we consideyt; as an element af{ 2.
Next, note that the compact subket C is covered by the open subsets
Dsof C:

10U, Ds (2.7)

thusl has a finite subcover. In other words, theretewisl Z* andé&,, ..., &n O
| such that

1o U o (2.8)

I<jsm
If m> 2, by considering a rearrangement, we may andsionae that
(Y D{_) N Dglﬂ:t O (2.9)

1<jsl
foralll O{1, ..., m-1}. Fix such am and¢,, ..., ¢, as described above, and

let
= b. (2.10)

Relation (2.9) implies thaly ng is open and connected (nfor all | O

j<l
{1, ..., m}. Bearing in mind this fact and the fact that eafhé®s, ..., ¢4 is

analytic on its domairﬁJ{j , we easily see that for eachl {1, ..., g} there exists

a unique analytic functiod ;: | - C so that



¢ 1D, =¢% @Oo{,..m. (2.11)

For eachi O {1, ..., g}, define éi:f - C to be the analytic function that

satisfies (2.11).
Notice now that

& oinc(, 1) = inc®, C) o ¢ (2.12)
foralli O{1, ...,q}.
Definef: 1 xC - C by
f(6,2)= A9+ E QAT + .. +E4(B), (2.13)
and note thaf is analytic on its domain. Recalling the definisoof f andg,

we then have

geinc(l xR, 1 xC) = incR, C) of, (2.14)
f oinc(l xR, 1 xC) = inc(C,C)og, (2.15)
f oinc(l xR, 1xC) = inc@, C)of, (2.16)

l.e., the following diagram is commutative:



| xR y» X
inc inc
V' g v
| xC , €
iNnc iNnc
f
v v
| x{ >

By using this commutative diagram, one easily wesithat statements (i), (ii),
and (iii) are true. This completes the proof. Il

Proposition 2.2. The notation and the assumptions being as in Proposition 2.1,
the following statements are equivalent:
(i) For any 8111, the polynomial
Evg(p) = A%+ cy(A™ + ... +c4(6) (2.17)
over thefield R has g real roots.
(i) £(0) =g™(0).



Gii) fX0)n (I x(C-R)=0.

Proof. By the definition ofg, (i) is equivalent to saying that

g'(0)n (I x (C-R) =0, (2.18)
that is
g'(0) =g™(0) n (I x k). (2.19)
Thus, by the definition df, (i) is equivalent to (ii):
g(0) =f(0). (2.20)

Statement (ii) is equivalent to statement (iiipc&® by Proposition 2.1(ii) and
2.1(iii), equality (2.20) is equivalent to
f50)n (I xC) = fX0)n (I xR), (2.21)

which is equivalent to (iii). Il

We summarize the key facts established so far praatical form,

which will be used for proving Proposition 2.4 (gat Proposition).

Proposition 2.3. Leta, b R witha<bandlet| =[a, b]. Let p O CYI)[A] be
amonic polynomial of degree q 0 Z* given by
p=AT+c AT+ .+ (2.22)

Suppose that for any 80 1, the polynomial

EVg(p) = A%+ cy(A™ + ... +cy(H) (2.23)
over thefield R hasqreal roots.

Definef: | x R - R by

f(6, A) = A9+ cy(GAT + ... +cy(O). (2.24)

Then, there exist an open connected set | of C withl O 1 and an analytic

function f : f x C - (C suchthat

f40)=f%0)n (I xC) = f %0) n (I x R). (2.25)

10



Proof. The conclusion readily follows from Propositich4 and 2.2, Il
The rest of this section is devoted to provingTheget Proposition 2.4.

Proposition 2.4 (Target Proposition). Let a, b [0 R witha <b and let | =
[a, b]. Let p O C1)[A] be a monic polynomial of degree q O Z* given by
p=AT+c AT+ .+ (2.26)
Suppose that for any 80 1, the polynomial
EVg(p) = A%+ cy(A™ + ... +cy(H) (2.27)
over thefield R hasqreal roots.
Definef: | x R —» R by

(8, 2) = A+ (@A + .. +cy(B). (2.28)
Then, for any (8, 1) O f(0) n (Ja, b[ x R) thereexist &,  >0,n0 Z*, and
hy ..ohy 0 H (8- & 6+ & with hy(8) = ... =hy(6) = A such that
FH0) n (6-5 0+ x1A-aA+d) =) ). (2.29)
Proof. Let
(6,2 017%0) n (Ja, b x 7). (2.30)

By considering a change of variables, we may asgstaté ™ (0) n (Ja, b[ x k)
contains (0, 0) and that
(6.4)=(0, 0) (2.31)
without loss of generality.
By Proposition 2.3, there exist an open connesed of C with| O |

and an analytic functioh: | x C - C such that

f40)=f0)n (1 xC)=f0)n (I xER). (2.32)

11



Note that (2.32) implies thaat(o, 0) =0, andf (0, A) £ 0. Thus, we see that

f can be expressed in a neighborhood of (0, 0) bylementy of C{z, z}
with ¢(0, 0) = 0 and/(0, A) # 0. (Recall that/(C{z, z}) .= { ¢ O C{z, z}:
W0, 0) = 0,10, A) # 0}.) Namely, we see that there exigtl] //(C{z, z,})
andr = (rq, rp) 0 A ¢) such that

HCROEYCY) (2.33)
for all (6, A) O A(r) :=4(r1) x A(ry).

Fix suchy andr = (ry, r,).

Let
W= f %(0) n 4r), (2.34)
which by (2.33) can be rewritten as the set of z@fay in A(r):
W={(6, A) OAr): 6, A) = 0}. (2.35)

Now recall Proposition 3.5.C (Intermediate TarBebposition) in part
IV [1], which implies that there exist
() t=(t t) DR,

(i) sO k",
(i) N0 Z" ky, ...k, O Z7,
(iv) hy O Ho(A(S™™)), ..., hs O Ho(4A(s" ) with hy(0) = ... =h,(0) = 0,
such that the following equality holds:
W A n (@9 x )= A (2.36)
Here
k
A= U rhio vy, (2.37)

where v: A9 - 4(s") is the function defined by ;(x) = v, (9, and

wherei [0 {1, ....m}andj O{1, ..., k}.
Fix sucht = (t1, t), S, n, Ky, ...,kaandhg, ..., h,.

12



We need the following two Lemmas 2.1 and 2.2:

Lemma 2.1. The notation and the assumptions being as above, let |, be any
subset of | = [a, b]. Then, we have

An (lpx(C-R)) =0, (2.38)
foralliO{1, ...,n}.

Proof of Lemma 2.1. Letly beany subset of, then (2.32) implies that
f50)n (Ix(C-R)=0. (2.39)

Sincew O f “%(0) andl, O I, we then see that

Wn (Ipx (C-R))=0. (2.40)
But, by (2.36), we have for all1 {1, ..., n}
AOW (2.41)
hence
A n (lox(C-R))
OWn (lox (C-R) =0, (2.42)
which shows the conclusion of the lemma holds. I

Lemma 2.2. The notation and the assumptions being as above, there exist
ho1, ..., hon H;(-S, S) with hy1(0) = ... =hg,(0) = Osuch that

Ihe) =An (I-s, I xE) =A n (I-s, 9 x C) (2.43)
foralli O{1, ...,n}

Proof of Lemma 2.2. Bearing in mind the assumed fact that 0 is initierior
of | = [a, b], we can use the above Lemma 2.1 and Propositibindpart Il

[2] to get the conclusion of the lemma. Il

13



Now, (2.34), (2.36), and (2.43) imply that
f30) n A(r) n At 0 (-€ & x R)

dgmmuﬁm (2.44)

for all £[0]0, s]. On the other hand, we know that by Propositidi(iR),
f40) = f 0) n (I x R). (2.45)
Hence, considering the intersection ofx(R) and each side of (2.44), we
obtain
f10) n Ar) n At) n (-& & % k)

=U Mo Q-5 el n 1) (2.46)
for all £J]0, s]. Select are [J ]0, s] such that
& d=1]¢&4nl, (2.47)
< min(y, ty), (2.48)
and set
0 = min(y, ty). (2.49)

Then, we have

f40) n (-6 4 x1-0 d)

= U Ithoi | 1-€, &), (2.50)
i=1
which shows that the conclusion of the propositsotiue. /l

14



3. The Second Generation Fukui Project, Matrix Art, and the Asymptotic
Linearity Theorem Extension Conjecture (ALTEC)

The Matrix Art Program is a philosophical and noelical extension,
from science towards art, of Fukui’'s approach dad af the Approach via the
Aspect of Form and General Topology (cf. [13] aaterences therein) in the
repeat space theory, which is the central unifyingory in the First and
Second Generation Fukui project. Part of the Secdaderation Fukui Project
directly related to the Matrix Art is currently tzd Niagara project, since the
idea of this project was born after visiting ther@og Glass Museum on the
way to Niagara Falls, USA, during an internatiomathange program between
Tsuyama National College of Technology (TNCT) Japaa Pennsylvania
College of Technology USA.

Members from the Fukui Project Association who ialved in the
Matrix Art and related programs have been using pger programs in
MATLAB for a set of experiments in molecular netiksrand in computer
graphic art, using fundamental methods of the reppace theory and also
referring to Problems | ~ IV given in ref. [5]. Tellowing picture is one of
the examples of Matrix Art. The picture shows tiéeA) energy surface and
energy band curves of a carbon nanotube. (The amknof this picture is
“Cat’s Cradle”.) It is noteworthy that the mathemal techniques developed
in the present series of papers can be appliedetsetand other energy band
curves. The reader is referred to ref. [8] wherenccete multi-graphs
mentioned in section 1 were given in analyticahfer

15
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Fig. 1. Matrix Art of the(68, A) energy surface and

energy band curves of a carbon nanotube.

Remarks 1. Pattern recognition, global pattern identificatiand pattern analysis of
matrix data are powerful theoretical tools in thtedy of molecular networks and of
properties of molecules having many identical megetin Tsuyama National College of
Technology (TNCT), Japan, matrix data of many mal@cnetworks have been visualized
using MATLAB software, and the visualized matrixallhave been used as a new interface
between science and art. Special thanks are dde Fukuda, H. Ikeda, N. Tsutsui, N.
Tadamasa, T. Miuchi, K. Haruna, T. Komoto, |. Kisbito, and members of the Fukui
Project Association who contributed to the Matrist Rrogram. We also remark that Matrix
Art and Challenging Problems Il ~ IV given in r§b] are closely related to the unifying
approach to the problems of spectral symmetry [t6-20]) via the existence and

uniqueness theorems of spectral resolution [19,20].
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It is noteworthy that Matrix Art which involvesdctal structure with
self-similarity (see e.g. Fig 1 in ref. [5] and F@ in the present paper) has
been utilized to prove the following conjecture (MEC), which was
presented in article [21] (entitledOpen problem, Magic Mountain and
Devil's Staircase swapping problemgd is important in view of the

Fukui conjecture — a guiding conjecture in the eg¢@pace theory (RST).

Asymptotic Linearity Theorem Extension Conjecture (ALTEC C(I)
version) The Asymptotic Linearity Theorem (ALT) can not be extended from
AC(l) to C(I), where AC(l) denotes the functional space of all real valued
absolutely continuous functions defined on closed interval |, and C(l) denotes
the functional space of all real valued continuous functions defined on closed

interval I.

This conjecture (ALTEC) was first proved by thesfiauthor (S.A.) of
the present article, and the second proof of tlisjecture was recently
obtained by him in a seminar called "Matrix Art Gbage Seminar" in
Tsuyama National College of Technology (TNCT), ionminction with a
continuous functiorMagicMt , :[0,1]x[0,1] — R and the following Matrix Art
pictures of the function called 3D Magic-mountainf and 2D Magic-
mountaingz).The scale of the function has been changed irpitteres. The

graph of the functionMagicMt, has an intersting self similarity and the
nickname of the functiodagicMt . is “Tsuyama-castle function” (“Tsuyama-

jyo kansu” in Japanese).

17



Fig2. 3D Magic-mountaing) and 2D Magic-mountairt)

Details of the functionMagicMt, and the proofs of the ALTEC shall be

published elsewhere.

Remarks 2: Pictures of Magic-mountairf) in Fig 2 were first obtained in the
Matrix Art Challenge Seminar in TNCT in parallel thvithe procedure of the above-
mentioned Niagara Project, which is a special newt pf the on-going international,
interdisciplinary, and inter-generational Second n&ation Fukui Project.
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