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Abstract  

 

 The present article is a direct continuation of part IV of this series. The 

Local Analyticity Proposition (LAP1), which admits a proof via resolution of 

singularities is a major key to proving the Fukui conjecture via resolution of 

singularities and related methods. By LAP1, the essential part of the 

mechanism of the "asymptotic linearity phenomena" is extracted and is 

elucidated by using tools from the theory of algebraic and analytic curves. 

Here in the present article, we complete the proof of the LAP1 by using 

fundamental tools developed in parts III and IV of this series, thus completing 

the proof of the Fukui conjecture via resolution of singularities and related 

methods. This series of articles I-V establishes, for the first time, a new 

linkage between (i) the mathematical field of resolution of singularities and (ii) 

the chemical field of additivity problems tackled and solved in a unifying 

manner via the repeat space theory (RST), which is the central theory in the 

First and Second Generation Fukui Project. A new development called the 

Matrix Art Program in the Second Generation Fukui Project has also been 

expounded with a graphical representation of energy band curves of a carbon 

nanotube. 



 3

Key words:  

 
 Fukui conjecture; repeat space theory (RST); Asymptotic Linearity 

Theorem (ALT); resolution of singularities; Matrix Art; Asymptotic Linearity 

Theorem Extension Conjecture (ALTEC) 

 

 
AMS subject classification: 92E10, 15A18, 46E15, 13G05, 14H20 
 



 4

1. Introduction 

 

 This article is a direct continuation of the previous part IV [1] of this 

series of articles, which have been devoted to cultivating a new 

interdisciplinary region between chemistry and mathematics along the unifying 

spirit of the First and the Second Generation Fukui Project (cf. [1-15] and 

references therein).  

 The Local Analyticity Proposition (LAP1), which is also referred to as 

the Target Proposition in parts II, III, and IV of this series of articles [1-3], is a 

major key to proving the Fukui conjecture via resolution of singularities and 

related methods. 

  In part II of this series [3], we have established the following sequence 

of logical implications: 

 

  LAP1 ⇒ Functional ALT⇒ the Fukui conjecture, 

 

where the ALT stands for the Asymptotic Linearity Theorem (cf. [3]). 

 Here in this article, we prove the LAP1 (Target Proposition) using 

Proposition 3.5.C (Intermediate Target Proposition), which was established in 

part IV of this series [1]. The assertion of the Intermediate Target Proposition 

involves graphs Γ(hi oνi,j) of complex-valued functions hi oνi,j defined on discs 

on the complex plane. On the other hand the assertion of the Target 

Proposition involves graphs Γ(hi) of real-valued functions hi defined on 

intervals on the real line. We remark that energy band curves given in ref. [8] 

are locally expressed in terms of the graphs Γ(hi) of real-valued functions hi 

defined on intervals on the real line. 

 The crucial step of establishing the Target Proposition in section 2 via 

the Intermediate Target Proposition lies in the topological and complex 
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analysis of the structures of 
  i =1

n

U
  j=1

ki

U Γ(hi oνi,j) and 
  i =1

n

U Γ(hi), which were called 

multi-function-sets in previous parts III and IV of this series. The reader is 

referred to a series of papers [8,9] that analyze energy band curves of carbon 

nanotubes, which helps provide concrete examples of how the  above 

mentioned multi-function-sets 
  i =1

n

U
  j=1

ki

U Γ(hi oνi,j) and 
  i =1

n

U Γ(hi) are analyzed in 

the present paper so as to reach our goal of proving the Target Proposition in 

this article. 

 In section 3, a new development called the Matrix Art Program in the 

Second Generation Fukui Project has been expounded with a graphical 

representation of energy band curves of a carbon nanotube. It is noteworthy 

that Matrix Art which involves fractal structure with self-similarity (see e.g. 

Fig 1 in ref. [5] and Fig. 2 in the present paper) has been utilized to prove the 

Asymptotic Linearity Theorem Extension Conjecture (ALTEC), which 

was presented in article [21] (entitled “Open problem, Magic Mountain and 

Devil's Staircase swapping problems”) and is important in view of the 

Fukui conjecture – a guiding conjecture in the repeat space theory (RST). 
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2. Proof of the Target Proposition 

 

 Throughout, we retain the notation employed in the preceding parts I-

IV of this series of articles [1-4]. (The reader is referred to refs. [1-4] for the 

notation.) Let +, 0
+, , +, 0

+, , and  denote respectively, the set of all 

positive integers, nonnegative integers, integers, positive real numbers, 

nonnegative real numbers, real numbers, complex numbers. 

 This section is devoted to proving our Target Proposition. For this 

purpose, we need some preparation. 

 

Notation 2.1. Let S1 and S2 be nonempty sets such that S1 ⊂ S2, then  

inc(S1, S2) denotes the inclusion map of S1 into S2. 

 

Proposition 2.1. Let a, b ∈  with a < b and let I = [a, b]. Let  p ∈ Cω(I)[λ] be 

a monic polynomial of degree q ∈ + given by 

  p = λq + c1λq-1 + ... + cq. (2.1) 

 Define f: I ×  →  by 

  f(θ, λ) = λq + c1(θ)λq-1 + ... + cq(θ), (2.2) 

and define g: I ×  →  by 

  g(θ, λ) = λq + c1(θ)λq-1 + ... + cq(θ). (2.3) 

Then, we have   

 (i) f -1(0) = g-1(0) ∩ (I × ). 

Moreover, there exist an open connected set ˆ I  of with ˆ I  ⊃ I and an analytic 

function ˆ f : ˆ I  × →  such that the following statements hold: 

 (ii) g-1(0) = ˆ f -1(0) ∩ (I × ). 

 (iii) f -1(0) = ˆ f -1(0) ∩ (I × ). 
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Proof. Let ξ ∈ I. Since c1, ..., cq ∈ Cω(I), for each i ∈ {1, ..., q}, there exists a 

power series ψξ
i ∈ { z} with the radius of convergence ρξ

i ∈ ]0, ∞] such that 

  ci(θ) = ψξ
i(θ - ξ) (2.4) 

for all θ ∈ I with |θ - ξ| < ρξ
i. (Recall that for x ∈  and r ∈ +, ∆x(r) := {y ∈ 

: |y – x| < r}.) Let  

  Dξ := 
  1≤i≤q
I ∆ξ(ρξ

i). (2.5) 

Then, for each i ∈ {1, ..., q}, ˆ c ξi: Dξ →  defined by  

  ˆ c ξi(θ) := ψξ
i(θ - ξ) (2.6) 

is analytic on Dξ, where we consider ψξ
i as an element of { z}.  

 Next, note that the compact subset I of  is covered by the open subsets 

Dξ of : 

  I ⊂ 
  ξ∈IU Dξ, (2.7) 

thus I has  a finite subcover. In other words, there exist m ∈ + and ξ1, ..., ξm ∈ 

I such that 

  I ⊂ 
  1≤ j≤ m
U  Dξ j

. (2.8) 

If m ≥ 2, by considering a rearrangement, we may and do assume that  

  (
  1≤ j≤l
U Dξj

) ∩ Dξl+1
≠ ∅ (2.9) 

for all l ∈ {1, ..., m –1}. Fix such an m and ξ1, ..., ξm as described above, and 

let  

  ˆ I  := 
  1≤ j≤ m
U Dξj

. (2.10) 

Relation (2.9) implies that 
  1≤ j ≤ lU Dξj

 is open and connected in  for all l ∈ 

{1, ..., m}. Bearing in mind this fact and the fact that each of ˆ c 
ξ j

1 , ..., ˆ c 
ξ j

q  is 

analytic on its domain Dξ j
, we easily see that for each i ∈ {1, ..., q} there exists 

a unique analytic function ˆ c  i: ˆ I  →  so that  
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  ˆ c  i | Dξ j
= ˆ c 

ξ j
i     (∀j ∈ {1, ..., m}). (2.11) 

For each i ∈ {1, ..., q}, define ˆ c i: ˆ I  →  to be the analytic function that 

satisfies (2.11). 

 Notice now that 

   ˆ c i o inc(I, ˆ I ) =  inc( , ) o ci (2.12) 

for all i ∈ {1, ..., q}. 

 Define ˆ f : ˆ I  ×  →  by 

  ˆ f (θ, λ) = λq + ˆ c 1(θ)λq-1 + ... + ˆ c q(θ), (2.13) 

and note that ̂ f  is analytic on its domain. Recalling the definitions of f and g, 

we then have 

  g o inc(I × , I × ) =  inc( , ) o f, (2.14) 

  ˆ f  o inc( ˆ I  × , I × ) =  inc( , ) o g,  (2.15) 

  ˆ f  o inc( ˆ I  × , I × ) =  inc( , ) o f, (2.16) 

i.e., the following diagram is commutative: 
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  I  ×  

 g 

  ̂I  ×  

 I ×  

 

 

  ̂f  

  f 

  inc 

  inc 

  inc 

  inc 

 

By using this commutative diagram, one easily verifies that statements (i), (ii), 

and (iii) are true. This completes the proof. // 

 

Proposition 2.2. The notation and the assumptions being as in Proposition 2.1, 

the following statements are equivalent: 

 (i) For any θ ∈ I, the polynomial 

  Evθ (p) = λq + c1(θ)λq-1 + ... + cq(θ) (2.17) 

 over the field  has q real roots. 

 (ii) f -1(0) = g-1(0). 
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 (iii) ˆ f -1(0) ∩ (I × ( - )) = ∅. 

 

Proof. By the definition of g, (i) is equivalent to saying that  

  g-1(0) ∩ (I × (  - )) = ∅, (2.18) 

that is 

  g-1(0) = g-1(0) ∩ (I × ). (2.19) 

Thus, by the definition of f, (i) is equivalent to (ii): 

  g-1(0) = f -1(0). (2.20) 

Statement (ii) is equivalent to statement (iii), since by Proposition 2.1(ii) and 

2.1(iii), equality (2.20) is equivalent to 

  ˆ f -1(0) ∩ (I × ) = ˆ f -1(0) ∩ (I × ), (2.21) 

which is equivalent to (iii).  // 

 

 We summarize the key facts established so far in a practical form, 

which will be used for proving Proposition 2.4 (Target Proposition). 

 

Proposition 2.3. Let a, b ∈  with a < b and let I = [a, b]. Let  p ∈ Cω(I)[λ] be 

a monic polynomial of degree q ∈ + given by 

  p = λq + c1λq-1 + ... + cq. (2.22) 

Suppose that for any θ ∈ I,  the polynomial 

  Evθ (p) = λq + c1(θ)λq-1 + ... + cq(θ) (2.23) 

over the field  has q real roots. 

 Define f: I ×  →  by 

  f(θ, λ) = λq + c1(θ)λq-1 + ... + cq(θ). (2.24) 

Then, there exist an open connected set ˆ I  of with ˆ I  ⊃ I and an analytic 

function ˆ f : ˆ I  × →  such that 

  f -1(0) = ˆ f -1(0) ∩ (I × ) = ˆ f -1(0) ∩ (I × ). (2.25) 
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Proof. The conclusion readily follows from Propositions 2.1 and 2.2. // 

 

 The rest of this section is devoted to proving the Target Proposition 2.4. 

 

Proposition 2.4 (Target Proposition). Let a, b ∈  with a < b and let I = 

[a, b]. Let  p ∈ Cω(I)[λ] be a monic polynomial of degree q ∈ + given by 

  p = λq + c1λq-1 + ... + cq. (2.26) 

Suppose that for any θ ∈ I,  the polynomial 

  Evθ (p) = λq + c1(θ)λq-1 + ... + cq(θ) (2.27) 

over the field  has q real roots. 

 Define f: I ×  →  by 

  f(θ, λ) = λq + c1(θ)λq-1 + ... + cq(θ). (2.28) 

Then, for any (θ, λ) ∈ f -1(0) ∩ (]a, b[ × ) there exist ε, δ  > 0, n ∈ +, and  

h1, ..., hn ∈ Hr(θ - ε, θ + ε) with h1(θ) = ... = hn(θ) = λ such that 

  f -1(0) ∩ (]θ - ε, θ + ε[ × ]λ - δ, λ + δ[) = 
  i =1

n

U Γ(hi). (2.29) 

 

Proof. Let  

  (θ, λ) ∈ f -1(0) ∩ (]a, b[ × ). (2.30) 

By considering a change of variables, we may assume that f -1(0) ∩ (]a, b[ × ) 

contains (0, 0) and that 

  (θ, λ) = (0, 0) (2.31) 

without loss of generality. 

 By Proposition 2.3, there exist an open connected set ˆ I  of with ˆ I  ⊃ I 

and an analytic function̂ f : ˆ I  × →  such that 

  f -1(0) = ˆ f -1(0) ∩ (I × ) = ˆ f -1(0) ∩ (I × ). (2.32) 
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Note that (2.32) implies that ˆ f (0, 0) = 0, and ̂ f (0, λ) / ≡  0. Thus, we see that 

ˆ f  can be expressed in a neighborhood of (0, 0) by an element ψ of { z1, z2}  

with ψ(0, 0) = 0 and ψ(0, λ) / ≡  0. (Recall that Π( { z1, z2}) := { ψ ∈ { z1, z2}: 

ψ(0, 0) = 0, ψ(0, λ) / ≡  0}.) Namely, we see that there exist ψ ∈ Π( { z1, z2}) 

and r = (r1, r2) ∈ ∇(ψ) such that 

   ˆ f (θ, λ) = ψ(θ, λ) (2.33) 

 for all (θ, λ) ∈ ∆(r) := ∆(r1) × ∆(r2). 

 Fix such ψ and r = (r1, r2). 

 Let 

  W := ˆ f -1(0) ∩ ∆(r), (2.34) 

which by (2.33) can be rewritten as the set of zeros of ψ in ∆(r): 

  W = {(θ, λ) ∈ ∆(r): ψ(θ, λ) = 0}. (2.35) 

 Now recall Proposition 3.5.C (Intermediate Target Proposition) in part 

IV [1], which implies that there exist  

 (i) t = (t1, t2) ∈ +2,  

 (ii) s ∈ +, 

 (iii) n ∈ +, k1, ..., kn ∈ +, 

 (iv) h1 ∈ H0(∆(s1/ k1)), ..., hn ∈ H0(∆(s1/ kn )) with h1(0) = ... = hn(0) = 0, 

such that the following equality holds: 

  W ∩ ∆(t) ∩ (∆(s) × ) = 
  i =1

n

U Ai. (2.36) 

Here 

  Ai := 
  j=1

ki

U Γ(hi o νi,j), (2.37) 

where νi,j: ∆(s) → ∆(s 1/ ki ) is the function defined by νi,j(x) = ˆ ν 
ki , j

(x), and 

where i ∈  {1, ..., m} and j ∈ {1, ..., ki}. 

 Fix such t = (t1, t2), s, n, k1, ..., kn and h1, ..., hn. 
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 We  need the following two Lemmas 2.1 and 2.2: 

 

Lemma 2.1. The notation and the assumptions being as above, let I0 be any 

subset of I = [a, b]. Then, we have 

  Ai ∩ (I0 × (  - )) = ∅, (2.38) 

for all i ∈ {1, ..., n}. 

 

Proof of Lemma 2.1. Let I0 be any subset of I, then (2.32) implies that 

  ˆ f -1(0) ∩ (I × (  - )) = ∅. (2.39) 

Since W ⊂ ˆ f -1(0) and I0 ⊂ I, we then see that 

  W ∩ (I0 × (  - )) = ∅. (2.40) 

But, by (2.36), we have for all i ∈ {1, ..., n} 

  Ai ⊂ W (2.41) 

hence 

  Ai ∩ (I0 × (  - )) 

  ⊂ W ∩ (I0 × (  - )) = ∅, (2.42) 

which shows the conclusion of the lemma holds. // 

 

Lemma 2.2. The notation and the assumptions being as above, there exist 

h01, ..., h0n∈ Hr(-s, s) with h01(0) = ... = h0n(0) = 0 such that 

  Γ(h0i) = Ai ∩ (]-s, s[ × ) = Ai ∩ (]-s, s[ × ) (2.43) 

for all i ∈ {1, ..., n}. 

 

Proof of Lemma 2.2. Bearing in mind the assumed fact that 0 is in the interior 

of I = [a, b], we can use the above Lemma 2.1 and Proposition 4.4 in part III 

[2] to get the conclusion of the lemma.  // 
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 Now, (2.34), (2.36), and (2.43) imply that 

  ˆ f -1(0) ∩ ∆(r) ∩ ∆(t) ∩ (]-ε, ε[ × ) 

  = 
  i =1

n

U Γ(h0i | ]-ε, ε[) (2.44) 

for all ε ∈ ]0, s]. On the other hand, we know that by Proposition 2.1(iii), 

  f -1(0) = ˆ f -1(0) ∩ (I × ). (2.45) 

Hence, considering the intersection of (I × ) and each side of (2.44), we 

obtain 

  f -1(0) ∩ ∆(r) ∩ ∆(t) ∩ (]-ε, ε[ × ) 

  = 
  i =1

n

U Γ(h0i | (]-ε, ε[ ∩ I)) (2.46) 

for all ε ∈ ]0, s]. Select an ε ∈ ]0, s] such that  

  ]-ε, ε[ = ]-ε, ε[ ∩ I, (2.47) 

   ε < min(r1, t1), (2.48) 

and set  

  δ  = min(r2, t2). (2.49) 

Then, we have 

  f -1(0) ∩ (]-ε, ε[ × ]-δ, δ[) 

  = 
  i =1

n

U Γ(h0i | ]-ε, ε[), (2.50) 

which shows that the conclusion of the proposition is true. // 
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3. The Second Generation Fukui Project, Matrix Art, and the Asymptotic 

Linearity Theorem Extension Conjecture (ALTEC) 

 

 The Matrix Art Program is a philosophical and methodical extension, 

from science towards art, of Fukui’s approach and also of the Approach via the 

Aspect of Form and General Topology (cf. [13] and references therein) in the 

repeat space theory, which is the central unifying theory in the First and 

Second Generation Fukui project. Part of the Second Generation Fukui Project 

directly related to the Matrix Art is currently called Niagara project, since the 

idea of this project was born after visiting the Corning Glass Museum on the 

way to Niagara Falls, USA, during an international exchange program between 

Tsuyama National College of Technology (TNCT) Japan and Pennsylvania 

College of Technology USA. 

 Members from the Fukui Project Association who are involved in the 

Matrix Art and related programs have been using computer programs in 

MATLAB for a set of experiments in molecular networks and in computer 

graphic art, using fundamental methods of the repeat space theory and also 

referring to Problems I ~ IV given in ref. [5]. The following picture is one of 

the examples of Matrix Art. The picture shows the (θ, λ) energy surface and 

energy band curves of a carbon nanotube. (The nickname of this picture is 

“Cat’s Cradle”.) It is noteworthy that the mathematical techniques developed 

in the present series of papers can be applied to these and other energy band 

curves. The reader is referred to ref. [8] where concrete multi-graphs 

mentioned in section 1 were given in analytical forms. 
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Fig. 1.    Matrix Art of the (θ, λ) energy surface and  

energy band curves of a carbon nanotube. 

 

 Remarks 1. Pattern recognition, global pattern identification, and pattern analysis of 

matrix data are powerful theoretical tools in the study of molecular networks and of 

properties of molecules having many identical moieties. In Tsuyama National College of 

Technology (TNCT), Japan, matrix data of many molecular networks have been visualized 

using MATLAB software, and the visualized matrix data have been used as a new interface 

between science and art. Special thanks are due to T. Fukuda, H. Ikeda, N. Tsutsui, N. 

Tadamasa, T. Miuchi, K. Haruna, T. Komoto, I. Kishimoto, and members of the Fukui 

Project Association who contributed to the Matrix Art Program. We also remark that Matrix 

Art and Challenging Problems II ~ IV given in ref. [5] are closely related to the unifying 

approach to the problems of spectral symmetry (cf. [16-20]) via the existence and 

uniqueness theorems of spectral resolution [19,20]. 
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 It is noteworthy that Matrix Art which involves fractal structure with 

self-similarity (see e.g. Fig 1 in ref. [5] and Fig. 2 in the present paper) has 

been utilized to prove the following conjecture (ALTEC), which was 

presented in article [21] (entitled “Open problem, Magic Mountain and 

Devil's Staircase swapping problems”) and is important in view of the 

Fukui conjecture – a guiding conjecture in the repeat space theory (RST). 

 

Asymptotic Linearity Theorem Extension Conjecture (ALTEC C(I) 

version) The Asymptotic Linearity Theorem (ALT) can not be extended from 

AC(I) to C(I), where AC(I) denotes the functional space of all real valued 

absolutely continuous functions defined on closed interval I, and C(I) denotes 

the functional space of all real valued continuous functions defined on closed 

interval I. 

 

 This conjecture (ALTEC) was first proved by the first author (S.A.) of 

the present article, and the second proof of this conjecture was recently 

obtained by him in a seminar called "Matrix Art Challenge Seminar" in 

Tsuyama National College of Technology (TNCT), in conjunction with a 

continuous function MagicMt : [0,1] [0,1]π × →  and the following Matrix Art 

pictures of the function called 3D Magic-mountain(π ) and 2D Magic-

mountain(π ).The scale of the function has been changed in the pictures. The 

graph of the function MagicMtπ  has an intersting self similarity and the 

nickname of the function MagicMtπ  is “Tsuyama-castle function” (“Tsuyama-

jyo kansu” in Japanese). 
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  Fig 2.    3D Magic-mountain(π ) and 2D Magic-mountain(π ) 

 

Details of the function MagicMtπ  and the proofs of the ALTEC shall be 

published elsewhere. 

  

 Remarks 2: Pictures of Magic-mountain(π ) in Fig 2 were first obtained in the 

Matrix Art Challenge Seminar in TNCT in parallel with the procedure of the above-

mentioned Niagara Project, which is a special new part of the on-going international, 

interdisciplinary, and inter-generational Second Generation Fukui Project. 
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