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C*-ALGEBRAS OF CRYSTAL GROUPS

Keith F. Taylor

A explicit description is given for the C*-algebra of a group with an abelian
subgroup of finite index. An example is given to illustrate the ease of the construction
in any particular case. Finally an extension of the main theorem to the case where the
subgroup of finite index is not necessarily abelian is given.

Let G be a locally compact group with an abelian normal subgroup A of
finite index n in G. The symmetry group of any crystal is of this type. In this paper the
C*-algebra, C*(G), of G is described in detail.

In general, the structure of group C*-algebras have been difficult to un-
derstand with detailed descriptions given in only a few isolated cases, see [1] or [3], for
examples. If @ splits as a semidirect product of a finite group D with A, then C*(G) is
isomorphic to the cross-product C*-algebra of D acting on CO(A). In this case Rieffel has
shown that D acts as automorphisms of M,(C) ® Co(4) and C*(G) is isomorphic to the
fixed point algebra for this t:inite group of automorphisms. Actually Rieffel’s result, 4.3 of
[2] is more general in that Cgﬁ(/i) can be any C*-algebra on which a finite group is acting.

Even when G‘:is not a semidirect product of A by a finite group, let D =
G/A. The main result here is that there is an injective homomorphism of D into the
automorphism group of M,(C) ® Cy(A) such that C*(G) is isomorphic to the fixed point
algebra. Furthermore, the method of proof provides a very easy technique for giving an
extremely explicit description of the C*-algebra of any particular group with an abelian
subgroup of finite index.

Using a detailed analysis of the Mackey procedure, Raeburn in [1] gave ex-
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plicit descriptions of the C*-algebras of two particular groups of the kind considered here.
Raeburn’s paper was an original motivation for this work and the procedure given below
reproduces his descriptions when applied to the two examples he considered.

All the necessary terminology and the main result are given in section 2.
An example of a non-symmorphic two dimensional crystal group is given in section 3 and
its C*-algebra is easily constructed using the main results. Section 4 is an addendum
essentially due to the referee who noticed that the arguments of the main theorem, when
properly viewed, applied to the case where the subgroup of finite index is not abelian.

2. DESCRIPTION OF C*(G)

For a general locally compact group G, C*(G) is the completion of L&)
with respect to the C*-norm determined by the set of all *-representations of LY(G).
If G is an amenable group then this C*-norm is already determined by the left regular
representation A% of L(G) on L?(G). For f € LY(G) and h € L*(G) ,)\?h = f* h, where
F*h(z) = fG Fy)h(y~1z)dy, for almost every z in G. Then A€ is a *-representation of
LY(G) on L*(G). The reduced C*-algebra of G is C3(G), the norm closure of A9 [L}(G)]
in B(L*(G)). If the group @ is amenable, then C*(G) is isomorphic to C3(G).

The abelian case will be used to establish some notation and illustrate the
above definition. Of course, abelian groups are amenable. Let A be an abelian locally
compact group with Pontryagin dual A. Fix a Haar measure on A. For f € L'(4),
define the Fourier transform of f, f on 4, by f(x) = J4 f(a)x(a)da, for all x € A. Then
fe Co(./i) and the Stone-Weierstrass theorem can be used to show that {f: f € L! (A)}
is dense in (Co(4), || - lloo). Fix a Haar measure on A so that, for any f € 'G)n
L2(@), Ifllz = lIf]l2. Let P be the unitary map of L2(4) onto L*(4) such that P(h) = &
for any h € L*(A) N L2(A). For any f € L*(A) and h € L*(A), P(f = h) = FP(h).

Consider the representation M of Cy(4) into B(L*(4)) defined, for
fe C'o(fi) and h € L"’(A), by Mgh = fh. Then M is a C*-isomorphism of Co(/i) with a
C*-subalgebra of B(L?(4)). From the above discussion we have that ’P/\’f“'P"l = M for
each f € L'(A). Then C*(A) is isomorphic to M(Co(A)), the closure of
{PA\{P~*: f € L'(A)} in B(L?(4)) and f — MY (PA4P ") extends to a C*-isomorphism
of C*(A4) with Cy(A).
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Now suppose G is a locally compact group with A as an abelian normal
subgroup of finite index n in G. All the above notation will be retained for A. Let
D = G/A. This group G is amenable, so C*(G) = C5(G). For any coset d of A, the set
of elements of L?(G) supported on d is a subspace isometric with L?(A4) and L*(G) is the
orthogonal direct sum of these subspaces. Thus there is a natural isometry ¥ of L?(G) with
H= Y @L*(A). Then C*(G) is isomorphic with the closure of {TAU-L: f e LY(G)} in
B(erﬁ is very useful to make this explicit.

Let 4: D — G be a fixed cross-section of the cosets of A in G. It is no loss of
generality to assume < takes the identity in D to the identity in G. By definition a cross-
section satisfies y(d) € d for each d € D and each d acts on A by d-a = y(d)ay(d)~! for all
a€ A Forbce D, ~(b)y(c) € be and thus there exists a(b, ¢) € A such that v(b)v(c) =
~(bc)a(b,c). Then a is the 2-cocycle which determines the isomorphism class of G given
D, A and the action of D on A. Up to isomorphism G = {(d,a):d € D, a € A}, with group
product (b, a)(c,a') = (be, a(b, c)(c"l -a)a"). The cocycle identity satisfied by a is vital in
making the calculations below: a(b,cd)a(c,d) = a(be,d)(d™! - afb, ¢)) for all b,¢,d, € D.

To get an expression for the unitary ¥ mentioned above, for » € L%(G) and
each d € D, let hy € L%(A) be such that hy(a) = h(d,a), for almost all a in A. The
elements h of H = 3 @LZ(A) will be considered as n-tuples b = (hy)4ep, where each
hg € L*(A). Then, fiiDh € L¥(@G), ¥(R) = (P(Ra)) ye -

Let M, (C()(fi)) denote the algebra of n x n-matrices over Cg(fi) It is conve-
nient to index the matrix entries by elements of D. Thus F € M,(Cy(4)) can be written
F = (F}.)pcep, with Fj, . € Co(A) for each b, c € D. If M, (C) is given the operator norm,
then it is a C*-algebra and Mn (Co(/i)) is naturally identified with Cj (/i, M,(C)). Thus,

|F|| = sup || F(z)]| defines a norm on M, (Cy(A)) with respect to which it is a C*-algebra.
z€A
It is also often convenient to realize M, (C’O(/i)) as M,(C) ® Cy(A).

For F = (F} c)s,cep in M, (Co(A4)) define M(F) in B(H) by for
bk = (h)eep, (M(F)R)s = ) Fyche , for each b € D. Then M is a C*-isomorphism of
M, (Co(A)) into B(H). <

Proposition 1. For each f € L'(G), YAFU™! is in the range of M.
Let F(f) = M_l(\I’A?\II“l)" Then F extends to a C*-isomorphism of C*(G) onto a C*-
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subalgebra of M, (C’o(/i)).

Proof. The last statement of the proposition follows from the first and the
facts that G is amenable, ¥ is a unitary and M is a C*-isomorphism onto its range. The
first statement is established by computing the effect of \II/\? on h € L*(G), for f € LY(G).

As before for d € D, f; € L'(A) and hq € L?(G) are such that fs(a) =
f(d,a) and hy(a) = h(d,a) for almost all a € A. Then using the cocycle identity where

required,

(F+Wue) = £+ 1) = [ FBG (A )y
-3 / f(e, a)h((c;a)""(d, a'))da

ceED

B Z/ fe(@)h(c™1d, alc,c1d)"(d ¢ - a")a')da

cED

_Z/ fe(e™ d - a)he-14(a(c,c™ d) " a" a ) da

c€D

_Z/ fe(e™'d - (afe,c™'d) a)) he-14(a™d')da

ceD

= Z Ge,d * hc—ld(a’) )

ceD
where g..a € L'(A) is such that g, 4(a) = fc(c“ldﬂ (ale, c“ld)‘la)) for almost all a in A.

Therefore
U(f*h)y = GeaP(he-14)

ceD

=" Gae-1,4P(he) .
R ceD
Since §gc-1,4 € Co(A), for each ¢,d € D, it is now clear that \II)\JCZ'\II_1 is in the range of

The action of D on A generates an action on A Forde D and x € 4, let
d-x(a)=x(d"! a),forallac A.

Proposition 2.  For any f € LY(G), F(f) is the element of M, (Co(4))
whose entries are given by

(Fs,e(x) = x(albe™, ) (fro-1)(e - X),
forallx € A, bce D.

Proof. The proof of proposition 1 shows that (.7-'(f))b,c = §pe-1,5, Where
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ge,d(a) = fo(c™1d - (afe, c'd)"'a)). A direct computation shows that
de,a(x) = x(ale, c'ld))fc(c_ld - x), for each x € A. A simple change of indices then
establishes the formula in the proposition.

The next step is to characterize the range of F inside M, (Cg (fi))

Theorem 1. There is an injective homomorphism of the finite group D
into the automorphism group of Mn(Co(fi))" The fized point algebra Mn(Co(/i))D under
the resulting group of automorphisms is a C*-subalgebra of M, (CO(A)) and F extends
from L'(G) to a C*-isomorphism of C*(G) with M, (Co(/i))D.

Proof. Let p denote the right regular representation of G on L?(G) given
by p(y)h(z) = h(zy) for h € L*(G), z,y € G. Each p(y) is a unitary operator on L3(G).
Then, for any y € G and f € L(G), p(y)/\?p(y)* = /\?. In particular, for d € D, p(y(d))
commutes with A?(L*(@)). Let U(d) = Up(v(d))¥~1, a unitary on H for each d € D.
For h = (h¢)cep in H, direct computations show that, for any b € D and
X € 4, (U(d)(x) = &7 x(a(b, d))hsa(d " - ), and
(U(d)*a)s(x) = x((bd™", d))hsg-1(d - x). For F = (Fyc)s,cep in Mn(Co(4)),
[U(d)M(F)U(d)*h]b(X) = g)d“l ‘X(a(b, d)tale, d))de,Cd(d‘1 - X)he(x). Thus conju-
gation by U(d) leaves the ra;ge of M invariant and an automorphism B(d) of M, (Cy(4))
can be defined by B(d)(F) = M™! (U()M(F)U(d)*), for each F € Mn(C’g(A)). Then
[B(d)(F)] b,c(x) =d™ - x(a(b,d)a(c,d)) Fya,ca(d™ - x) and further easy computations
show that § is a homomorphism of D into the automorphism group of M, (Co(fi))‘ Since
any F with only one entry nonzero has that entry moved by any d in D different then the
identity, 8 is cleary injective.

Let M, (Co(A))” = {F € M, (Co(A)): B(d)(F) = F, for all d € D}. Then,
for any f € LNG), p((d)AGp(1(d))* = AG, implies that F(f) € Mo (Co(4))”. The
proof of theorem 1 will be completed by showing that F(L(G)) is dense in M, (C’O(/i))D"
Let e denote the identity in D. For any F € M, (CO(A))D, the e-column, (Fy¢)pep and
D-invariance completely determine F. For f € LY(G), (F(f))s,e = f», for each b € D.

For fixed F' € M, (CO(A))D and ¢ > 0, choose § > 0 so that,

F' € M, (Co(A)) with [|F} , — Fyclleo < 6 for all b,c € D implies || F' — F|| < ¢. For each
b€ D, pick f; € L'(A) such that ||/ — Fyc|loo < 6. Define f € LY(G) by f(b,a) = fi(a),
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for all b € D, a € A. Then || Ff — F|| < &. Thus F(L*(G)) is dense in Mp (C'O(A))D.

Remark. M, (CO(A))D is the algebra of matrices F' whose e-column con-
sists of n arbitrary Co(A) elements (Fy.)aep With every other entry determined by D-
invariance. From the formulas in the above proof one easily shows that
Foo(x) = B x(a(b, ) ale, ) Fye-1,e(c® - x), for x € A, b,c € D. Thus, C*(G),
being isomorphic to this algebra, is given a very detailed description.

3. AN EXAMPLE

The description of sectin 2 will be illustrated with an example from the
two-dimensional crystal groups. In this example 4 = Z? and D = {1,-1} ~ Z,. Let
G = {(1,n,m), (=1,n,m):n,m € Z} with group products given by the following list, for

k,l,mneZ,
(1,k,0)(1,n,m) = (L,k+n,l +m)

(1, k,0)(=1,n,m) = (=L,k+n,m—1)
(-1,k,D)(1,n,m) = (~1,k +n,l+m)
(-1, k,)(-1,n,m)=(Lk+n+1l,m- h
with A = {(1,n,m):n,m € Z}, A is isomorphic to the torus T? = {(z,w):z,w € C, |2| =
lw| = 1}. For (z,w) € T2 let x>* € A be defined by x**(1,n,m) = 2"w™, for all
(1,n,m) € A. The actions of D on A and A are given by (=1)-(1,n,m) = (1,n,—m) and
(=1)-x*% = x>®. A cross-section y from D into G is given by v(1) = (1,0,0) and y(-1) =
(—1,0,0). Then the 2-cocycle o has only one nonidentity value, a(—1, 1) = (1,1,0).
For ease of notation, write functions on A as functions of (z,w) € T?. The
remark at the end of section 2 can now be used to see that C*(G) is isomorphic to the

algebra of matrix-valued funéﬁi“ons F on T? of the form:
_{ Fi(z,w) zFi_1(2,w)
F(Z,w) - (Fl_l(z,w) Fll(z,ﬁ) ’
for all (z,w) € Tz, where Fi; and Fy_; are arbitrary continuous functions.
Let Q = {(z,w) € T*: Im(w) > 0}. For each z € T, let

R, = {(5§ Zb):a,b € C}, a *-subalgebra of M(C). Then the map which restricts F' in

M, (C(T?)) = C(T?, M2(C)) to Q provides an isomorphism of C*(G) with
{F € C(Q,M(C)): F(z,£1) € R;, for each z € T}.
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4. AN ADDENDUM

The arguments used to prove theorm 1 apply in greater generality if one
removes the Fourier transform converting C*(A) to Co(A). This is the observation of the
referee, who was kind enough to work out the details. Before stating the theorem some
notation is required.

Let G be a locally compact group with a normal subgroup N of finite index,
n,in G. Let D = G/N and let v : D — G be a fixed cross-section of the cosets of N in G.
Let U : L*(G) — Y 4cp ®L*(N) denote the isomorphism given by (Uh)a(t) = h(y(d)t),
for t € N, d € D, and h € L}G). Let p denote the right regular representation . As
before, C§(N) and C3(G) denote the reduced C*-algebras of N and G respectively. For
any y € G and f € L'(@), p(y)AS(f)p(y~1) = A4(f), so p(y) commutes with C3(G).

For F = (fs,c)s,cep € Mn(L'(N)), define MF) in B(Xaep ®L*(N)) by

(MF)R), =Y MW(fae)he, forh=(he)eep € Y OL*N).
ceD deD

Then X extends to an isomorphism, also denoted X of M, (C3(N)) into B(X 4ep BLA(N)).
For ease of notation, identify M, (C%(N)) with its image under X

Theorem 2. (the referee) There is an injective homomorphism of D into
the automorphism group of M, (C}(N)) such that C}(G) 1s 1somorphic with the fized point
algebra M, (C3(N))”.

Proof. Most of the computational details will be left out since they are
very similar to those in the proof of theorem 1.

It is easy to see that for f € L}(G), UXG(f)U* € M,(Cx(N)) so UCK(G)U* C
M, (C3(N)). For y € G, define a(y)T = Up(y)U*TU p(y~*)U*, for each
Te B(EdeD @®L*(N)). Oné checks, by computation, that a(y) maps M,(C3(N)) onto
itself. Consider @ as a map of G into the automorphism group of M, (C/’{(N )) Clearly «
is a homomorphism and one can check that the kernel of o is N (because p(¢) commutes
with C3(IV) for each t € N). Thus, a defines an injective homomorphism, also denoted «,
of D into M, (C3(N)). Since p(y) commutes with C}(G), UC}(G)U* is in the fixed point
algebra of a(D).

If T = (T, )p,cen € Mn(C3(N)) is invariant under a(D) and € > 0, let
F = (A(fo,e))ycep € Ma(AV(L'(IV))), be such that || T — F ||< e. Replacing F by
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Ly iepa(d)F, which is still in M,(AN(L*(N))) one can assume F is a(D) invariant.
Define f € LY(G) by f(y(d)t) = fi.(t) for d € D, t € N, where ¢ is the identity in D.
Then computing carefully yields UNC(f)U* = F. Thus UXC (LI(G))U* is dense in the
fixed point algebra which implies that UC}(G)U* is the fixed point algebra in M, (C;(N))
under a(D).
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