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Abstract. Higher dimensional analogs of the classical continuous wavelet
transform are developed for Euclidean spaces whose dimension is a perfect
square. For a positive integer n, the space of all n × n real matrices can be

identified with Rn
2

as an additive abelian group. The group of invertible n×n

real matrices naturally acts on this abelian group by matrix multiplication.
The resulting semidirect product group forms a distinguished group of affine

transformations of Rn
2

which may be viewed as a natural generalization of the
full group of affine transformations of R whose unique square-integrable repre-

sentation underlies the classical one-dimensional continuous wavelet transform.
A continuous wavelet transform for Rn

2

is derived and its specific details are
worked out for R4 resulting in a 4D continuous wavelet transform. This trans-
form is discretized by introducing a geometrically intuitive tiling system for
R4 and constructing discrete frames based on this tiling system.

1. introduction

As computational power increases, researchers in a wide variety of disciplines
find value in imaging three dimensional structures in motion. Sample areas where
the resulting 4D data must be processed are dynamic NMR [20], geophysics [18],
medical imaging [21], ultrasound images of a fetus in motion [5], and computer
graphics [23]. Our goal in this paper is to initiate the detailed investigation of
a four dimensional continuous wavelet transform that is based on the general ap-
proach developed in [2]. Besides the potential that we will eventually be able to
provide useful computational techniques for 4D data analysis, we are interested
in investigating this particular transformation because it is a direct generaliza-
tion of the now classical continuous wavelet transform on R. We identify R

4 with
the group of 2 × 2 real matrices, let H denote the group of invertible 2 × 2 real
matrices, and consider the elements of H as acting on R4 through matrix multi-
plication. Combining translations in R4 with these dilations coming from H , we
get an eight dimensional Lie group which shares some important properties with
the group that underlies the classical continuous wavelet transform. In particular,
this eight dimensional Lie group has a unique (up to unitary equivalence) square-
integrable irreducible unitary representation. The reader is directed to [1] for a
general overview of continuous wavelet-like transforms and their applications to a
variety of physical situations.
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In [11], it was recognized that the reconstruction identity that forms the basis
for the continuous wavelet transform on R can be interpreted as a special case of
a generalized orthogonality relation for coefficient functions of a square-integrable
representation of a locally compact group. In the case of the continuous wavelet
transform, the group in question is the group of affine transformations of R and the
combination of translations and dilations provide the square-integrable representa-
tion. See [12] for a discussion of this view of the continuous wavelet transform. In
[2], a general framework for the development of higher dimension continuous wavelet
transforms was investigated. Essentially, if one has a locally compact group H act-
ing on Rn in such a manner that there exists an open subset O in Rn (actually
the Pontryagin dual version of Rn) so that H acts freely and transitively on O,
then there exists an associated continuous wavelet transform theory. See [10] for a
comprehensive investigation of an abstract approach to continuous wavelet trans-
forms. The two dimensional continuous shearlet transform [14] can be viewed in
this manner. See also [19] for similar 2D transforms derived from extending the
three dimensional Heisenberg group by dilations. In [3], a higher dimensional ver-
sion of the shearlet transform is proposed. It shares the anisotropic features of the
2D shearlet transform that are useful in many situations. Note that the transform
presented in this paper is decidedly isotropic. The value of square-integrability
to the application of a continuous wavelet transform to characterizing smoothness
spaces of functions is discussed in [4].

Because the 4D transform we introduce here involves using eight variables to
move a potential wavelet around, we provide the admissibility condition and the
reconstruction formula in both the detailed form that will be necessary for applica-
tions with the precise role played by all variables evident and in an abstract form
where the underlying group provides elegance and ease of proofs. In the more ab-
stract form, it is just as easy to work with n × n real matrices, which results in a

continuous wavelet transform on Rn
2

. This transform reduces to the classical 1D
transform when n = 1 and our desired 4D transform when n = 2. After stating the
concrete 4D case as our main theorem in Section 2, the basic notation and proper-
ties we need are collected in Sections 2 and 3 and the continuous wavelet transform
on Rn

2

is given in Section 4 with the proof of Theorem 2.1 following immediately.
In Section 5, as a first step towards a useful discretization of this transform, we
introduce the concept of a tiling system in an orbit of a locally compact group and
construct an explicit tiling system for a particular GL2(R) orbit which is then used
to construct a discrete frame in R4, in Section 6.

2. the four dimensional transform

Before describing the somewhat abstract background necessary, it may be useful
to present the wavelet condition and reconstruction formula as it appears in the
four dimensional case.

For ψ ∈ L2(R4) and parameters x = (x1, x2, x3, x4), h = (h1, h2, h3, h4) ∈ R4,
define ψx,h ∈ L2(R4) by, for (y1, y2, y3, y4) ∈ R4,

ψx,h(y1, y2, y3, y4) =
1

|h1h4 − h2h3|
ψ (b1, b2, b3, b4) ,

where

bj =
h4

h1h4 − h2h3
(yj − xj)−

h2
h1h4 − h2h3

(yj+2 − xj+2) , when j ∈ {1, 2},
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bj =
h1

h1h4 − h2h3
(yj − xj)−

h3
h1h4 − h2h3

(yj−2 − xj−2) , when j ∈ {3, 4}.

Our main theorem characterizes those ψ which can serve as a wavelet in the 4D
continuous wavelet transform.

Theorem 2.1. Let ψ ∈ L2(R4). If

∫

R4

∣∣∣ψ̂(h1, h2, h3, h4)
∣∣∣
2 dh1dh2dh3dh4
|h1h4 − h2h3|2

= 1, (1)

then, for any f ∈ L2(R4),

f =

∫

R4

∫

R4

〈f, ψx,h〉ψx,h
dx1 · · · dx4 dh1 · · · dh4

|h1h4 − h2h3|4
, (2)

weakly in L2(R4).
Conversely, if (2) holds for every f ∈ L2(R4), then ψ satisfies (1).

Theorem 2.1 will follow immediately from the general formulation in Section 4.

3. notation and definitions

If X is a locally compact space, C0(X) denotes the Banach space of continuous
complex-valued functions on X which vanish at infinity, equipped with the supre-
mum norm, and Cc(X) denotes the dense subspace consisting of the continuous
functions with compact support. If there is a distinguished regular Borel measure
µ on X , then Lp(X) = Lp(X,µ) denotes the usual Lebesgue space, for 1 ≤ p ≤ ∞.
Note that Cc(X) is dense in Lp(X), for 1 ≤ p <∞. The Hilbert space structure of

L2(X) has inner product 〈f, g〉 =
∫
X f(x)g(x) dµ(x), for f, g ∈ L2(X).

Let n be a positive integer. The set of n×n real matricesMn(R) is an algebra over
R when equipped with matrix addition, matrix multiplication and multiplication

by scalars. It is a topological algebra when given the topology of Rn
2

under the
obvious identification. For x ∈Mn(R), the determinant of x, det(x), is a polynomial
in the coordinates of x and GLn(R) = {x ∈Mn(R) : det(x) 6= 0} is a dense open
subset of Mn(R). When considering Mn(R) as an abelian group under addition,

we will denote it as A. Note A is just Rn
2

. We also introduce the notation H
for GLn(R), considered as a locally compact group which naturally acts on A by
matrix multiplication. When n = 1, A = R and H = R∗ = {h ∈ R : h 6= 0}. The
reader will notice the classical theory of the continuous wavelet transform on R in
the following.

For x ∈ A and h ∈ H let [x, h] denote the affine transformation of A given by
[x, h]z = hz + x, for z ∈ A, where hz is the simple product of the matrices h and
z. By composing transformations, we get a product operation,

[x, h][y, k] = [x+ hy, hk]. (3)

Let A⋊H = {[x, h] : x ∈ A, h ∈ H} equipped with the product (3). Then A⋊H
is a locally compact group when given the product topology. If I denotes the n×n
identity matrix, then [0, I] is the identity in A ⋊ H and [x, h]−1 = [−h−1x, h−1],
for [x, h] ∈ A⋊H .
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We equipA with Lebesgue measure under the identification with Rn
2

and
∫
A
f(x)dx

will denote Lebesgue integration. For h ∈ H , let δ(h) = | det(h)|n. Then for any
integrable function g on A,

∫

A

g(x)dx = δ(h)

∫

A

g(hx)dx. (4)

We also need integration over H . Any locally compact group G carries a regular
Borel measure which is invariant under left translation called left Haar measure.
This measure is unique up to a constant multiple. This measure can be specified by
the positive linear functional it defines on Cc(G). See [13] or [9] for the properties
of Haar measure and the Haar integral. We will denote the integral with respect
to the left Haar measure on H by

∫
H g(h)dh for any function g ∈ Cc(H) or for

any function g for which this integral makes sense. In [13] one finds that, since
H = GLn(R),

∫

H

g(h)dh =

∫

R

∫

R

. . .

∫

R

g



h11 h12 . . . h1n
...

...
. . .

...
hn1 hn2 . . . hnn



dh11dh12 . . . dh1ndh21 . . . dhn1 . . . dhnn

| det(h)|n ,

(5)
where h = (hij)

n
i,j=1 is a generic element of H . It turns out that left Haar measure

on GLn(R) is also right invariant and, hence, inversion invariant. That is, for any
h′ ∈ H and g ∈ Cc(H),

∫

H

g(h′h) dh =

∫

H

g(hh′) dh =

∫

H

g(h−1) dh =

∫

H

g(h) dh.

Now we can describe left Haar integration on A⋊H . For f ∈ Cc(A⋊H),
∫

A⋊H

f([x, h]) d[x, h] =

∫

H

∫

A

f([x, h])δ(h)−1dx dh. (6)

It is a routine calculation to show that the integral given on the right hand side of
(6) is invariant under left translations.

For the purpose of Fourier analysis on Rn
2

, identified with A, there are many

ways to pair A with Â, the group of characters on A. To exploit the notational
advantage of matrix multiplication we chose the following identification. For b =

(bij)
n
i,j=1 ∈ A, define χb ∈ Â by

χb(x) = e2πitr(bx), for x ∈ A. (7)

We have, Â = {χb : b ∈ A}. Thus, Â can also be identified with Rn
2

and Haar

integration on Â is simply the Lebesgue integral. That is
∫

Â

g(χ) dχ =

∫

Rn
2

g(χb) db =

∫

R

· · ·
∫

R

g(χ(b11,...,bnn)) db11 . . . dbnn,

where we are thinking of b as an n2−vector. For f ∈ L1(A), the Fourier transform

f̂ : Â → C is given by f̂(χ) =
∫
A
f(x)χ(x)dx, for all χ ∈ Â. Then f̂ ∈ C0(Â).

For f ∈ L1(A) ∩ L2(A), f̂ ∈ L2(Â) and ‖f̂‖2 = ‖f‖2. There is a unitary map

P : L2(A) → L2(Â), the Plancherel transform, such that Pf = f̂ , for all f ∈
L1(A) ∩ L2(A).
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The action H on A determines an action of H on Â by, for h ∈ H, χ ∈ Â, (h ·
χ)(x) = χ(h−1 · x), for all x ∈ A. Then, h · χb = χbh−1 , for b ∈ A and h ∈ H . This

action scales Lebesgue measure, so that, for any ξ ∈ Cc(Â),
∫

Â

ξ(χ) dχ = δ(h)−1

∫

Â

ξ(h · χ) dχ, (8)

which can be verified by direct computation. As usual, (8) holds for any function
ξ for which the integrals make sense. There are special features of the H-orbit

structure in Â that are critical to the existence of a continuous wavelet transform
strongly connected to the group structure. Let O = {h · χI : h ∈ H}. We gather
the properties of this H-orbit together in a proposition.

Proposition 3.1. With the above notation,

(i) O = {χh−1 : h ∈ H} = {χh : h ∈ H}.
(ii) O is a dense open subset of Â.

(iii) Â \O is a null set with respect to Lebesgue measure on Â.
(iv) The map h→ h · χI is a homeomorphism of H with O.
(v) For any ξ ∈ Cc(O),

∫
Â
ξ(χ) dχ =

∫
H
ξ(h · χI)δ(h)−1dh.

(vi) For any ξ ∈ L2(Â) and any two elements χ, ω ∈ O,
∫
H |ξ(h−1 · χ)|2dh =∫

H
|ξ(h−1 · ω)|2dh.

Proof. Assertion (i) is simply because H is a group. Assertion (iii) follows from (ii)
and for (ii), we note that GLn(R) is a dense open subset of Mn(R) and GLn(R)

maps onto O under the parametrization of Â given by (7). Assertion (iv) is obvious.
For (v), let ξ ∈ Cc(O). Recall δ(h) = | det(h)|n, for h ∈ H , and that the Haar

integral on H , given in (5), is inversion invariant. Then
∫

H

ξ(h·χI)δ(h)−1dh =

∫

H

ξ(χh−1)δ(h−1)dh =

∫

H

ξ(χh)δ(h)dh =

∫

Rn
2

ξ(χb)db =

∫

Â

ξ(χ)dχ.

Now, let ξ ∈ L2(Â), χ, ω ∈ O. There exists a h′ ∈ H such that ω = h′ · χ, so
χ = h′−1 · ω. Then, left invariance of the Haar integral on H implies
∫

H

|ξ(h−1·χ)|2dh =

∫

H

|ξ(h−1·h′−1·ω)|2dh =

∫

H

|ξ((h′h)−1·ω)|2dh =

∫

H

|ξ(h−1·ω)|2dh.

Thus, (vi) holds. �

4. a square-integrable irreducible representation

In this section, we provide three equivalent versions of the distinguished irre-
ducible representation of A ⋊ H that underlies the continuous wavelet transform
introduced in the next section. Let G be a locally compact group and H a Hilbert
space. Let U(H) denote the group of unitary operators on H. A representation
of G on H is a homomorphism σ : G → U(H) which is continuous if U(H) carries
the weak operator topology. The representation σ is called irreducible if {0} and
H are the only closed subspaces of H invariant under σ. For any ξ, η ∈ H, define
ϕσξ,η(x) = 〈η, σ(x)ξ〉 , for all x ∈ G. The requirement that σ be continuous when

U(H) is equipped with the weak operator topology means ϕσξ,η is a continuous func-
tion on G. The representation σ is irreducible if and only if ϕσξ,η = 0 implies at
least one of ξ or η is 0. If σ1 and σ2 are two representations of G on H1 and H2,
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respectively, we say σ1 is (unitarily) equivalent to σ2 if there exists a unitary trans-

formation U : H1 → H2 such that Uσ1(x) = σ2(x)U , for all x ∈ G. Let Ĝ denote
the space of equivalence classes of irreducible representations of G. An introduction
to the representation theory of locally compact groups can be found in [9].

An irreducible representation of G, say σ acting on H, is called square–integrable
if there exist nonzero ξ, η ∈ H such that ϕσξ,η ∈ L2(G). See Chapter 14 of [6] for the

basic theory of square–integrable representations. With ξ ∈ H \ {0} fixed, if there
exists one nonzero η′ ∈ H with ϕσξ,η′ ∈ L2(G), then ϕσξ,η ∈ L2(G) for any η ∈ H.
Such a vector ξ is called admissible and the set of admissible vectors is dense in H.

For the group A ⋊ H , we will give explicit definitions of three representations
ρ, π and τ of A⋊H , all of which turn out to be mutually equivalent.

The Hilbert space of ρ is L2(A) and ρ is the natural combination of translation
on A with dilation by members of H . For [x, h] ∈ A ⋊H , define ρ[x, h] on L2(A)
by, for g ∈ L2(A),

ρ[x, h]g(y) = δ(h)−1/2g(h−1(y − x)), (9)

for all y ∈ A.

The Hilbert space of π is L2(Â). For [x, h] ∈ A⋊H and ξ ∈ L2(Â),

π[x, h]ξ(χ) = δ(h)1/2χ(x)ξ(h−1 · χ), (10)

for all χ ∈ Â.
The Hilbert space of τ is L2(H). For [x, h] ∈ A⋊H and f ∈ L2(H),

τ [x, h]f(k) = (k · χI)(x)f(h−1 · k), (11)

for all k ∈ H . We leave the routine checks that each of ρ, π and τ satisfies all the
properties of a representation of A⋊H to the reader.

Proposition 4.1. The three representations ρ, π and τ , defined in (9), (10) and

(11) are pairwise mutually equivalent representations of A⋊H.

Proof. It is a simple matter to show that

π[x, h] = Pρ[x, h]P−1,

for all [x, h] ∈ A⋊H, where P : L2(A) → L2(Â) is the Plancherel transform. Since
P is a unitary map, π is equivalent to ρ.

By Proposition 3.1 (ii) and (iii), Cc(O) is dense in L2(Â). For ξ ∈ Cc(O), define
Wξ on H by

Wξ(h) = δ(h)−1/2ξ(h · χI),
for h ∈ H . Then W is a linear map of Cc(O) onto Cc(H) by Proposition 3.1
(iv). Moreover, ‖Wξ‖L2(H) = ‖ξ‖L2(Â) by Proposition 3.1 (v). Thus, W extends

to a unitary map of L2(Â) onto L2(H). One directly computes that τ [x, h] =
Wπ[x, h]W−1, for all [x, h] ∈ A⋊H.

Thus, any pair from {ρ, π, τ} are equivalent. �

Proposition 4.2. Each of ρ, π or τ is a square–integrable irreducible representation

of A⋊H.

Proof. This is Theorem 1 in [2]. However, the insight of Proposition 3.1 allows us
to avoid introducing the Radon-Nikodym derivative that moves integration over H
to Lebesgue integration on the H-orbit.
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Since all three representations are equivalent, we will work with π. Let ξ, η ∈
L2(Â). Note that

∫
H

∣∣ξ
(
h−1 · χ

)∣∣2 dh is independent of χ ∈ O by (vi) of Proposition

3.1. Moreover, h−1 · χI = χh, for all h ∈ H , so
∫
H

∣∣ξ
(
h−1 · χ

)∣∣2 dh =
∫
H

|ξ (χh)|2 dh,

for almost all χ ∈ Â. The following calculation is similar to (2.13) in [2]. Let

ωh(χ) = η(χ)ξ(h−1 · χ), for almost all χ ∈ Â and let ω∨
h denote its inverse Fourier

transform. Then
∫

A⋊H

∣∣ϕπξ,η([x, h])
∣∣2 d[x, h] =

∫

H

∫

A

∣∣∣∣
∫

Â

η(χ)δ(h)1/2 χ(x) ξ(h−1 · χ) dχ
∣∣∣∣
2

δ(h)−1dx dh

=

∫

H

∫

A

∣∣∣∣
∫

Â

ωh(χ)χ(x) dχ

∣∣∣∣
2

dx dh =

∫

H

∫

A

|ω∨
h (x)|

2
dx dh

=

∫

H

∫

Â

|ωh(χ)|2 dχ dh =

∫

Â

|η(χ)|2
∫

H

|ξ(h−1 · χ)|2dχ dh

= ‖η‖22
∫

H

|ξ (χh)|2 dh.
(12)

If ξ 6= 0, then
∫
H
|ξ (χh)|2 dh 6= 0 by Proposition 3.1 (iv). Thus, ϕπξ,η 6= 0 if ξ and

η are both nonzero. Therefore, π is irreducible.

Moreover, if ξ ∈ Cc(O), then
∫
H |ξ (χh)|2 dh <∞. So

∫
A⋊H

|ϕπξ,η([x, h])|2d[x, h] <

∞, for any ξ ∈ Cc(O), and η ∈ L2(Â). Thus, π is square-integrable. �

Remark 4.3. Using the equivalence of ρ with π, (12) says that, for f, g ∈ L2(A),
∫

A⋊H

|〈f, ρ[x, h]g〉|2 d[x, h] = ‖f‖22
∫

H

|ĝ (χh)|2 dh. (13)

5. the general continuous wavelet transform

As usual, (13) forms the basis of a continuous wavelet transform (CWT) for
which we now provide the details.

Definition 5.1. A function ψ ∈ L2(A) is said to satisfy the wavelet condition if
∫

H

|ψ̂(χh)|2dh = 1. (14)

If ψ ∈ L2(A) is a fixed function satisfying the wavelet condition, define the linear
transformation Vψ : L

2(A) → L2(A⋊H) by

Vψf [x, h] = 〈f, ρ[x, h]ψ〉 , (15)

for f ∈ L2(A), [x, h] ∈ A⋊H . By (13), Vψ is an isometry of L2(A) into L2(A⋊H).
Thus, Vψ is a unitary map onto its range. This implies that

〈f, g〉 =
∫

A⋊H

〈f, ρ[x, h]ψ〉 〈ρ[x, h]ψ, g〉 d[x, h],

for any f, g ∈ L2(A). For a fixed f , g is an arbitrary element of L2(A), resulting
in the forward implication in the following proposition. The reverse implication is
immediate from (13).



A FOUR DIMENSIONAL CONTINUOUS WAVELET TRANSFORM 8

Proposition 5.2. Let ψ ∈ L2(A). Then ψ satisfies the wavelet condition if and

only if, for any f ∈ L2(A),

f =

∫

A⋊H

〈f, ρ[x, h]ψ〉 ρ[x, h]ψ d[x, h] (16)

weakly in L2(A).

To put Proposition 5.2 more in the style of wavelet analysis, introduce the no-
tation

ψx,h(y) = ρ[x, h]ψ(y) = | det(h)|−n/2ψ(h−1(y − x)),

for y, x ∈Mn(R) and h ∈ GLn(R). The wavelet condition (14) becomes
∫

R

∫

R

· · ·
∫

R

∣∣∣ψ̂(h11, h12 · · · , hnn)
∣∣∣
2 dh11dh12 · · · dhnn

| det(h)|n = 1, (17)

where h = (hij)
n
i,j=1. Proposition 5.2 says ψ ∈ L2(Rn

2

) satisfies (17) if and only if,

for any f ∈ L2(Rn
2

)

f =

∫

R

∫

R

· · ·
∫

R

(∫

R

∫

R

· · ·
∫

R

〈f, ψx,h〉ψx,h dx11dx12 · · · dxnn
)
dh11dh12 · · · dhnn

| det(h)|2n ,

(18)

weakly in L2(Rn
2

), where both x and h in Rn
2

are indexed as if they are arranged
as a square matrix.

Letting n = 2, writing x =

(
x1 x2
x3 x4

)
, h =

(
h1 h2
h3 h4

)
and computing the

matrix inversion and products yields Theorem 2.1.

6. A discrete frame

In this section, we construct a discrete frame in L2(R4) based on the recon-
struction formula of Theorem 2.1. For this, we follow the method presented in [2],
modified to take advantage of detailed structural knowledge of H = GL2(R).

We begin with a decomposition for GL2(R), which is an extension of the Iwasawa
decomposition for SL2(R) (see [15]). To be self-contained, we include a proof in this

article. Let K =

{(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ [0, 2π)

}
denote the compact subgroup

of GL2(R) consisting of rotations and define two abelian subgroups D and N by

D =

{(
r 0
0 s

)
: r ∈ R

+, s ∈ R
∗
}
, and N =

{(
1 x
0 1

)
: x ∈ R

}
,

where R
+ = {t ∈ R : t > 0} and R

∗ = {t ∈ R : t 6= 0}.
Proposition 6.1. Every element of GL2(R) can be uniquely decomposed as an

ordered product of elements in K, D, and N . That is, GL2(R) = KDN .

Proof. Let

(
a b
c d

)
∈ GL2(R) be given. We will find the unique solution to the

equation
(
a b
c d

)
=

(
cos θ − sin θ
sin θ cos θ

)(
r 0
0 s

)(
1 x
0 1

)
. (19)
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Indeed, multiplying both sides of the equation by

(
1
0

)
and computing the norms,

we get r =
√
a2 + c2, which is greater than zero as ad− bc 6= 0. Moreover, we can

write Equation (19) as
(

cos θ sin θ
− sin θ cos θ

)(
a b
c d

)
=

(
r rx
0 s

)
,

which implies that 



r = a cos θ + c sin θ
0 = −a sin θ + c cos θ
rx = b cos θ + d sin θ
s = −b sin θ + d cos θ

.

Thus,

θ =





π/2 if a = 0 and c > 0
3π/2 if a = 0 and c < 0
0 if c = 0 and a > 0
π if c = 0 and a < 0

tan−1(c/a) if a 6= 0, c 6= 0, and a cos(tan−1(c/a)) + c sin(tan−1(c/a)) > 0
tan−1(c/a) + π if a 6= 0, c 6= 0, and a cos(tan−1(c/a)) + c sin(tan−1(c/a)) < 0,

(20)

where tan−1 is the inverse function of tan in the interval [0, π) \ {π2 }. It is easy to

check that θ defined in Equation (20) and r =
√
a2 + c2 satisfy r = a cos θ+ c sin θ.

Finally, we have x = b cos θ+d sin θ√
a2+c2

and s = −b sin θ + d cos θ. Clearly, s 6= 0. From

the above discussion, it is clear that this solution is unique. �

Let GL+
2 (R) (respectively GL−

2 (R)) denote the subset of elements of GL2(R) with
positive (respectively negative) determinants. Note that GL+

2 (R) is the connected
component of the identity in GL2(R) and, as such, is a closed normal subgroup.
Define the following additional three closed subgroups of GL2(R) :

B =

{(
a x
0 a−1

)
: a ∈ R

+, x ∈ R

}
,

T =

{(
r x
0 s

)
: r ∈ R

+, s ∈ R
∗, x ∈ R

}
= DN,

and

T+ =

{(
r x
0 s

)
: r, s ∈ R

+, x ∈ R

}
.

Since, for r, s ∈ R+, x ∈ R,

(
r x
0 s

)
=

√
rs

( √
r/s x/

√
rs

0
√
s/r

)
, we have T+ =

R+B. Let u =

(
1 0
0 −1

)
. Then T+ and uT+ are the two cosets of T+ in T . So

T = T+ ∪ uT+ and by Proposition 6.1, GL2(R) = KT and K ∩ T consists of the
identity only.

Where it is notationally convenient, we continue to use A for R4 with elements
arranged as 2× 2 matrices, H = GL2(R), and A⋊H , and O as defined in Section

3. Recall that O is an H-orbit in Â and, by Proposition 3.1(i), O = {χh : h ∈ H}.
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Definition 6.2. Let P be a countable subset of H, and let F be a measurable

relatively compact subset of O. The pair (F, P ) is called a tiling system for the
orbit O if the following two conditions are satisfied:

(i) p · F ⋂
q · F = ∅ for every pair p 6= q in P .

(ii) O =
⋃{p · F : p ∈ P}.

Let (F, P ) be a tiling system for O. For each p ∈ P , let L2(p · F ) denote the

closed subspace of L2(Â) consisting of functions that are zero almost everywhere

on Â \ p · F . Noting that O is a co-null subset of Â, we have that

L2(Â) =
∑

p∈P
⊕L2(p · F ).

Proposition 6.3. Let P =

{(
2l+k 2l+kj
0 2l−k

)
: k, l, j ∈ Z

}
,

E =

{(
cos θ − sin θ
sin θ cos θ

)(
αw αy
0 ±αw−1

)
: 0 ≤ θ < 2π, 1 ≤ w < 2, 1 ≤ α < 2, 0 ≤ y < w

}

and F = {χb : b ∈ E}. Then (F, P ) forms a tiling system for O.

Proof. For every subset L ⊆ H , let OL denote the set {χh : h ∈ L}. Clearly
p · OL = OLp−1 for every L ⊆ H and p ∈ H . Thus, to find a tiling system (OE , P )
for O it is enough to find a countable subset P of H and a relatively compact subset
E of H such that

(i) Ep−1
⋂
Eq−1 = ∅ for all p, q ∈ P, p 6= q,

(ii) H =
⋃
p∈P Ep

−1.

We will use the decomposition stated in Proposition 6.1 to construct a tiling system
of O in three steps.

Claim 6.4. Let P1 =

{(
2k 2kj
0 2−k

)
: k, j ∈ Z

}
and E1 =

{(
w y
0 w−1

)
: 1 ≤ w < 2, 0 ≤ y < w

}
.

Then E1 is a relatively compact subset of H such that

(i) E1p
−1

⋂
E1q

−1 = ∅ for every p 6= q in P1.

(ii) B =
⋃
p∈P1

E1p
−1.

Proof of claim. Clearly E1 is relatively compact. To prove (i) and (ii), we show

that for every

(
a x
0 a−1

)
in B, the equation

(
a x
0 a−1

)
=

(
w y
0 w−1

)(
2−k −2kj
0 2k

)

has a unique solution with constraints k, j ∈ Z, 1 ≤ w < 2, and 0 ≤ y < w.
Indeed, k = −⌊log2 a⌋ and w = a2−⌊log

2
a⌋ are uniquely determined. Finally, since

R = ∪i∈Z[−wi,−w(i − 1)), there exist unique j ∈ Z and y ∈ [0, w) such that
x2−k = −wj + y. Thus the above matrix equation has a unique solution, which
finishes the proof of the claim.

Let E2 = JE1, where J =

{(
α 0
0 α

)
: 1 ≤ α < 2

}
.Note that R+ =

⋃
l∈Z

2l[1, 2),

which is a disjoint union.

Claim 6.5. With P as in Proposition 6.3,

(i) E2p
−1 ∩ E2q

−1 = ∅ for every p 6= q in P .
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(ii) T+ =
⋃
p∈P E2p

−1.

Proof of claim. Note thatE2 =

{(
αω αy
0 αω−1

)
: 1 ≤ α < 2, 1 ≤ ω < 2, 0 ≤ y < ω

}
.

We need to show that, for any

(
r x
0 s

)
∈ T+, the equation

(
r x
0 s

)
=

(
α 0
0 α

)(
ω y
0 ω−1

)(
2−l−k −2−l+kj
0 2−l+k

)
= α2−l

(
ω y
0 ω−1

)(
2−k −2kj
0 2k

)

has a unique solution with, 1 ≤ α < 2, 1 ≤ ω < 2, 0 ≤ y < ω, l, k, j ∈ Z. By taking
determinants we get

√
rs = α2−l which implies l = −⌊log2

√
rs⌋ and α =

√
rs2−l.

The unique determination of ω, y, j and k follows from Claim 6.4.
The set E as defined in the statement of the Proposition is K(E2 ∪ uE2). By

Claim 6.5, the fact that an element of GL2(R) factors uniquely as the product of
an element of K times an element of T , and T = T+ ∪ uT+, we have that

(i) Ep−1
⋂
Eq−1 = ∅ for all p, q ∈ P, p 6= q,

(ii) GL2(R) =
⋃
p∈P Ep

−1.

This completes the proof that (F, P ) forms a tiling system for the orbit O, where
F = {χb : b ∈ E}. �

( 1 ,0) ( 2 ,0)

( 1 ,1)

( 2 ,2)

w

y

Figure 1. Tiles of the form E1p sharing a boundary point with E1

In Figure 1, the trapezoid with vertices (1, 0), (2, 0), (1, 1) and (2, 2) in w − y
space is E1 defined in the proof of Proposition 6.3.
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Let P0 = {p ∈ P : p · F∩F 6= ∅} = {p ∈ P : Ep−1∩E 6= ∅}. Then {p·F : p ∈ P0}
consists of F and the shifts of F by elements of P that are contiguous to F . Figure
1 shows that 11 matrices from P1 are needed to move E1 to all adjacent positions
(counting the identity matrix). Once the α dimension is added one needs to factor
in three intervals of α (1/2 ≤ α < 1, 1 ≤ α < 2 and 2 ≤ α < 4) for each of the
tiles in Figure 1 to get 33 members of P0 in total. Forming E = K(E2 ∪ uE2) and
its adjacent pieces does not add to P0. For future use, we list P0 in the following
lemma.

Lemma 6.6. Let

Γ = {(0, 0), (0,−1), (0, 1), (1, 0), (1, 1), (−1,−4), (−1,−3), (−1,−2), (−1,−1), (−1, 0), (−1, 1)}.

Then P0 =

{(
2l+k 2l+kj
0 2l−k

)
: l ∈ {−1, 0, 1}, (k, j) ∈ Γ

}
.

Let D = ∪{p · F : p ∈ P0}. Let D◦ denote the interior of D. This compact set
D has a somewhat irregular boundary but F ⊆ D◦. Let

M = card{p ∈ P : D◦
⋂
p ·D◦ 6= ∅}. (21)

It is clear that M <∞.

Lemma 6.7. For each b =

(
b1 b2
b3 b4

)
∈ M2(R), χb ∈ D implies |bi| ≤ 88, for

1 ≤ i ≤ 4.

Proof. If χb ∈ D, then
(
b1 b2
b3 b4

)
=

(
cos θ − sin θ
sin θ cos θ

)(
αw αy
0 ±αw−1

)(
2−l−k −2−l+kj
0 2−l+k

)
,

with the ranges of α, y, w, j, k, and l given in Proposition 6.3 and Lemma 6.6. Thus,
for example,

|b2| = | cos θ 2−l+k(−jαw+αy)∓sin θ 2−l+kαw−1| ≤ 21+1(4·2·2+2·2)+21+12 = 88.

A similar estimate applies to |b4| while |b1| and |b3| are in fact bounded by 16. �

Let R =

{
χb : b =

(
b1 b2
b3 b4

)
, |bi| ≤ 88, 1 ≤ i ≤ 4

}
. Then the Lebesgue vol-

ume of R in Â is |R| = 1764. Let L2(R) = {ξ ∈ L2(Â) : 1Rξ = ξ}, where 1R is

the characteristic function of R. That is, L2(R) is the closed subspace of L2(Â)
consisting of all the elements supported on R. We can construct an orthonormal

basis of L2(R) by letting Λ =

{
λ =

(
λ1 λ2
λ3 λ4

)
: λi ∈ 1

176Z, 1 ≤ i ≤ 4

}
and, for

each λ ∈ Λ, defining

eλ(χ) =

{
0 if χ ∈ Â \R

|R|−1/2χ(λ) if χ ∈ R.
(22)

It is straightforward to show that {eλ : λ ∈ Λ} is an orthonormal basis of L2(R).

That is, for any η ∈ L2(Â) such that η(χ) = 0 almost everywhere on Â \R,
∑

λ∈Λ

∣∣∣∣
∫

Â

|R|−1/2χ(λ)η(χ) dχ

∣∣∣∣
2

=
∑

λ∈Λ

|〈eλ, η〉|2 = ‖η‖22. (23)
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The concept of a discrete frame was introduced in [7] and provides the appro-
priate setting for the discretization of the 4D CWT.

Definition 6.8. A discrete frame in a Hilbert space H, with frame bounds 0 <
C1 ≤ C2 <∞, is a subset F of H such that, for all η ∈ H,

C1‖η‖2 ≤
∑

ξ∈F
|〈η, ξ〉|2 ≤ C2‖η‖2.

Note that the pair (P, F ) forms a frame generator in the sense of [2]. As a result,
Theorem 3 of [2] yields the following.

Proposition 6.9. Let g ∈ L2(A) satisfy 1F ≤ ĝ ≤ 1D. Then {ρ(λ, p)−1g : (λ, p) ∈
Λ× P} is a discrete frame in L2(A) with frame bounds C1 = |R| and C2 = |R|M .

Although M is quite large, so the frame bounds are far from tight, we note that
a discrete frame as in Proposition 6.9 can be extremely useful in characterizing
function spaces via the methods of [8]. In this regard, observe that there exist
Schwartz class functions g satisfying the hypothesis of Proposition 6.9.
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