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Abstract. A wavelet, in the generalized sense, is a vector in the Hilbert
space, Hπ , of a unitary representation, π, of a locally compact group, G, with

the property that the wavelet transform it defines is an isometry of Hπ into
L2(G). We study the image of this transform and how that image varies as the

wavelet varies. We obtain a version of the Peter-Weyl Theorem for the class

of groups for which the regular representation is a direct sum of irreducible
representations.
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1. Introduction

As the theory of wavelets emerged, it was recognized early, see [7], that the
reconstruction formula for the continuous wavelet transform on R is a direct conse-
quence of the abstract orthogonality relations for a square-integrable representation
of a locally compact group [3] when applied to the translation and dilation repre-
sentation of the group of all affine transformations of R. Here, we take the broad
point of view, developed in [6], that a continuous wavelet theory may be usefully
developed whenever one has a unitary representation of some locally compact group
and a vector in the Hilbert space of that representation such that an appropriate
analog of the classical reconstruction formula exists. The theory of the continuous
shearlet transform (see [12]) would be an example fitting within our concept of a
continuous wavelet transform. The details will be developed in section 3.

Our goal in this paper is to study, in a general setting, the image of a continuous
wavelet transform as a subspace of L2(G) or of the Fourier algebra A(G), where G is
the underlying group, and how the images created by different wavelets interrelate.
In particular, in Theorem 4.2 we show that the images of a linearly independent
pair of wavelets intersect trivially. In Section 5, a version of the Peter-Weyl Theo-
rem is established for [AR]-groups; that is, groups whose regular representation is a
direct sum of irreducible representations. We conclude by formulating the concept
of a complete K-orthogonal set of wavelets for a square-integrable irreducible rep-
resentation and exploring that concept for a particular kind of semi-direct product
group.
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2. General notations and definitions

Let G be a locally compact group equipped with left Haar integral
∫
G
·dx.

The modular function ∆ of G is a continuous homomorphism of G into R+, the
multiplicative group of positive real numbers and satisfies ∆(y)

∫
G
f(xy) dx =∫

G
f(x) dx whenever the integral on the right makes sense. We will also use that∫

G
f(x−1) dx =

∫
G
f(x)∆(x−1) dx.

Let π be a unitary representation of G in a Hilbert space Hπ. For vectors ξ
and η in Hπ, the continuous function

φπξ,η : G→ C, x 7→ 〈π(x)ξ, η〉

is called the coefficient function of G associated with the representation π and
vectors ξ, η ∈ Hπ. One can integrate π to create a non-degenerate norm-decreasing
∗-representation of the Banach ∗-algebra L1(G) in B(Hπ), the Banach algebra of
bounded linear operators on Hπ, via

〈π(f)ξ, η〉 =

∫
G

f(x)〈π(x)ξ, η〉dx,

for every f in L1(G) and vectors ξ and η in Hπ. We use the same symbol π to
denote the ∗-representation and the associated unitary representation.

For a locally compact group G, the Fourier-Stieltjes algebra of G is the set of
all the coefficient functions of G, and is denoted by B(G). Clearly B(G) is a subset
of Cb(G), the algebra of bounded continuous functions on G. Eymard [4] proved
that B(G) is actually a subalgebra of Cb(G) and, moreover, it can be identified with
the Banach space dual of C∗(G), the group C*-algebra of G. Thus, for ϕ ∈ B(G),

‖ϕ‖B(G) = sup

{∫
G

ϕ(x)f(x) dx : f ∈ L1(G), ‖f‖∗ ≤ 1

}
,

where, for f ∈ L1(G), ‖f‖∗ = sup{‖π(f)‖ : π is a representation of G}. The
Fourier-Stieltjes algebra together with this dual norm turns out to be a Banach
algebra. The Fourier algebra of G, denoted by A(G), is the closed subalgebra of
the Fourier-Stieltjes algebra generated by its compactly supported elements. In
the special case of locally compact Abelian groups, one can identify the Fourier
and Fourier-Stieltjes algebras with the L1-algebra and the measure algebra of the
dual group respectively. One can refer to [5] for a detailed discussion on repre-
sentation theory of locally compact groups, and [4] for the study of Fourier and
Fourier-Stieltjes algebras of locally compact groups.

Let π be a continuous unitary representation of G on a Hilbert space Hπ. Let
Aπ(G) denote the closed subspace of B(G) generated by the coefficient functions
of G associated with π, i.e.

Aπ(G) = SpanC{φπξ,η : ξ, η ∈ Hπ}
‖·‖B(G)

.

It is easy to see that Aπ(G) is a left and right translation-invariant closed subspace
of B(G). Conversely, by Theorem (3.17) of [1], any closed subspace of B(G) which
is left and right translation-invariant, is of the form Aπ(G) for some continuous uni-
tary representation π. Moreover, the subspace Aπ(G) can be realized as a quotient
of Hπ ⊗γ Hπ, the projective tensor product of Hπ and its conjugate Hπ, through
the map P from Hπ⊗γHπ to Aπ(G) defined as

P : Hπ⊗γHπ → Aπ(G), P (ω)(x) = 〈ω, π(x)〉, ∀ω ∈ Hπ⊗γHπ, x ∈ G.
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Here, we identify Hπ⊗γHπ with the trace class operators on Hπ, the predual of
B(Hπ).

In the special case where π is irreducible, the above map defines an isometry
between Hπ⊗γHπ and Aπ(G) (See Theorem 2.2 and Remark 2.6 in [1]). We state
a consequence of this as a proposition.

Proposition 2.1. Let π be an irreducible representation of a locally compact
group G. Let ξ, η ∈ Hπ. Then ‖φπξ,η‖Aπ(G) = ‖ξ‖‖η‖.

Proof. It is clear that φπξ,η = P (ξ ⊗ η). Therefore,

‖φπξ,η‖Aπ(G) = ‖P (ξ ⊗ η)‖B(G) = ‖ξ ⊗ η‖Hπ⊗γHπ = ‖ξ‖‖η‖,
as required. �

Let λG denote the left regular representation of G. The Hilbert space of λG is
L2(G) and, for x ∈ G and f ∈ L2(G), λG(x)f(y) = f(x−1y), for almost all y ∈ G.

It was shown in [4] that AλG(G) = {φλGf,g : f, g ∈ L2(G)} = A(G).

3. Wavelets and square-integrable representations

Let G be a locally compact group, π be a unitary representation of G on a
Hilbert space Hπ and η ∈ Hπ a nonzero vector. Define the linear map Vη : Hπ →
Cb(G) by, for each ξ ∈ Hπ and x ∈ G,

Vη(ξ)(x) = 〈ξ, π(x)η〉.
If the operator Vη forms an isometry of Hπ into L2(G) (that is, if the range of Vη
consists of square-integrable functions and ‖Vη(ξ)‖L2(G) = ‖ξ‖, for all ξ ∈ Hπ),
then the vector η is called a wavelet for π. Thus, as an isometry, Vη preserves inner
products. So 〈Vη(ξ), Vη(ξ′)〉 = 〈ξ, ξ′〉, for all ξ, ξ′ ∈ Hπ. Writing out the inner
product on the left hand side yields∫

G

〈ξ, π(x)η〉〈π(x)η, ξ′〉dx = 〈ξ, ξ′〉,

for all ξ, ξ′ ∈ Hπ. This leads to the reconstruction formula, for any ξ ∈ Hπ,

(3.1)

∫
G

〈ξ, π(x)η〉π(x)ηdx = ξ,

weakly in Hπ. In fact η is a wavelet exactly when (3.1) holds and, in that case, Vη
is called a continuous wavelet transform.

If the operator Vη is just a nonzero bounded operator from Hπ to L2(G) then
the vector η is called an admissible vector. The following propositions list some
basic and easily demonstrated properties of admissible vectors and wavelets. See
[6] for a comprehensive introduction to this theory.

Proposition 3.1. Let η be a nonzero admissible vector for a unitary repre-
sentation π of a locally compact group G.

(i) If π is irreducible, then η is a nonzero multiple of a wavelet for π.
(ii) If π′ is a subrepresentation of π and Q is the orthogonal projection from
Hπ to Hπ′ , then Qη is either zero or an admissible vector for π′.

Proposition 3.2. Let η be a wavelet for a unitary representation π of a locally
compact group G. Then

(i) the vector η is a cyclic vector for π.
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(ii) λG(x)Vη = Vηπ(x) for every x ∈ G.
(iii) if π′ is a subrepresentation of π then Qη is a wavelet for π′, where Q is

the orthogonal projection from Hπ to Hπ′ .

Using the above properties, one sees that the operator Vη forms a unitary equiv-
alence of π with a subrepresentation of λG whenever η is a wavelet for π. It is not
hard to show that this is a sufficient condition when the unitary representation is
irreducible. Namely, an irreducible unitary representation of G admits a wavelet
if and only if it is unitarily equivalent to a subrepresentation of λG. We refer the
reader to [6] for more details. The study of wavelets for irreducible unitary repre-
sentations connects naturally to square-integrable representations. An irreducible
representation π is called a square-integrable representation if it admits a nonzero
square-integrable coefficient function φπξ1,ξ2 for some ξ1, ξ2 ∈ Hπ. It has been shown

in [6] that for an irreducible representation π with a nonzero square-integrable co-
efficient function φπξ0,ξ0 , the operator Vξ0 is a multiple of an isometry, thus ξ0 is a
multiple of a wavelet.

In this article, we will use the following “orthogonality relations” for square-
integrable representations shown in [3]. Note that ∆ denotes the modular function
on G.

Theorem 3.3. [Duflo-Moore [3]] Let π be a square-integrable irreducible rep-
resentation of a locally compact group G. Then there is a unique densely defined
self-adjoint and positive operator K on Hπ which satisfies the following conditions.

(i) For every x ∈ G, π(x)Kπ(x)−1 = ∆(x)−1K (semi-invariant with weight
∆−1).

(ii) 〈ξ, π(·)η〉 is square integrable if and only if η ∈ domK−
1
2 .

(iii) Let ξ, ξ′ ∈ Hπ and η, η′ ∈ domK−
1
2 . Then

〈〈ξ, π(·)η〉, 〈ξ′, π(·)η′〉〉L2(G) = 〈ξ, ξ′〉〈K− 1
2 η′,K−

1
2 η〉.

Corollary 3.4. Let π be an irreducible unitary representation, and η ∈ Hπ.
Then, η is a wavelet if and only if η ∈ domK−

1
2 and ‖K− 1

2 η‖ = 1. Moreover, for

every x ∈ G, the vector
√

∆(x)π(x)η is a wavelet as well.

Definition 3.5. The operator K of Theorem 3.3 is called the Duflo-Moore
operator of π.

4. Inside Aπ(G) for an irreducible π

Throughout this section, let π be a square-integrable irreducible unitary repre-
sentation of a locally compact group G, and η ∈ Hπ. Define Aη := Vη(Hπ). This
section concerns decomposing Aπ(G) into blocks of the form Aη.

Lemma 4.1. Let π, η, and Aη be as above. Suppose η is a wavelet for π. Then
Aη is a ‖ · ‖2-closed subspace of L2(G) which is left-invariant. The subspace Aη is
not right-invariant if G is non-unimodular. In addition, Aη is a ‖ · ‖B(G)-closed
subspace of Aπ(G), where π is the representation conjugate to π in the Hilbert space
Hπ.

Proof. It is clear that Aη is a ‖ · ‖2-closed subspace of L2(G), since η is
a wavelet for π. Also, the subspace Aη is left-invariant by Proposition 3.2. Now
suppose that G is non-unimodular, and let y be an element of G such that ∆(y) 6= 1.
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Let ξ ∈ Hπ be a nonzero vector. Then for f = Vη(ξ) with fy denoting the right
translation of f by y,

‖fy‖22 =

∫
G

|f(xy)|2dx =

∫
G

|f(x)|2∆(y−1)dx = ∆(y−1)‖f‖22 = ∆(y−1)‖ξ‖2,

since η is a wavelet. Moreover, using Proposition 2.1,

‖fy‖B(G) = ‖Vπ(y)η(ξ)‖B(G) = ‖π(y)η‖‖ξ‖ = ‖η‖‖ξ‖.

Now assume that fy is an element of Aη, i.e. there exists ξ′ in Hπ such that
fy = Vη(ξ′). Then, ‖fy‖B(G) = ‖η‖‖ξ′‖. Hence ‖ξ‖ = ‖ξ′‖, and ‖fy‖2 6= ‖ξ′‖. But
this is a contradiction with η being a wavelet.

To prove the last statement note that f = φπη,ξ. Since π is irreducible, so is π.
Therefore, by Proposition 2.1,

‖f‖B(G) = ‖φπη,ξ‖B(G) = ‖η ⊗ ξ‖Hπ⊗γHπ = ‖η‖‖ξ‖.

On the other hand, ‖f‖2 = ‖Vη(ξ)‖2 = ‖ξ‖. Thus,

‖f‖B(G) = ‖f‖2‖η‖.

That is, the L2-norm and the Fourier-Sieltjes norm are equivalent on Aη. Hence
Aη is a ‖ · ‖B(G)-closed subspace of Aπ(G). �

Observe that for each x ∈ G, the subspace Aπ(x)η = {〈ξ, π(·)π(x)η〉 : ξ ∈ Hπ}
is the right x-translation of Aη, and is a ‖ · ‖B(G)-closed subspace of Aπ(G). Note
that the proof of Lemma 4.1 implies that the subspaces Aπ(x)η and Aη intersect
trivially whenever ∆(x) 6= 1, if η is a wavelet. The following theorem generalizes
this fact, and shows that two subspaces Aη1 and Aη2 , for admissible η1 and η2,
either coincide or intersect trivially.

Theorem 4.2. Let π be a square-integrable irreducible unitary representation of
a locally compact group G. Let η1 and η2 be admissible vectors in Hπ. Then either
Aη1 ∩Aη2 = {0}, or Aη1 ∩Aη2 = Aη1 = Aη2 and the latter case happens if and only
if η1 = αη2 for some α ∈ C. If η1 and η2 are both wavelets and Aη1 ∩ Aη2 6= {0},
then η1 = αη2 for some α ∈ T

Proof. Assume that Aη1 ∩ Aη2 6= {0}; that is, there exist nonzero vectors ξ
and ξ′ in Hπ such that 0 6= f(·) = 〈ξ, π(·)η1〉 = 〈ξ′, π(·)η2〉. Note that

〈ξ, π(·)η1〉 = Vη1(ξ) and 〈ξ′, π(·)η2〉 = Vη2(ξ′).

Hence by orthogonality relations stated in Theorem 3.3, we have

‖f‖22 = 〈Vη1(ξ), Vη1(ξ)〉 = ‖K− 1
2 η1‖2‖ξ‖2,

‖f‖22 = 〈Vη2(ξ′), Vη2(ξ′)〉 = ‖K− 1
2 η2‖2‖ξ′‖2,

‖f‖22 = 〈Vη1(ξ), Vη2(ξ′)〉 = 〈K− 1
2 η2,K

− 1
2 η1〉〈ξ, ξ′〉.

Thus,

〈K− 1
2 η2,K

− 1
2 η1〉〈ξ, ξ′〉 = ‖K− 1

2 η1‖‖K−
1
2 η2‖‖ξ‖‖ξ′‖.

Since all of the above quantities must be nonzero, by the Cauchy-Schwarz inequality,
we have

|〈K− 1
2 η2,K

− 1
2 η1〉| = ‖K−

1
2 η1‖‖K−

1
2 η2‖ and |〈ξ, ξ′〉| = ‖ξ‖‖ξ′‖,
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which implies that

K−
1
2 η2 = α1K

− 1
2 η1 and ξ′ = α2ξ

for scalars α1 and α2 in C\{0}. Recall that K−
1
2 is injective, so η2 = α1η1. Clearly,

each set Aη forms a vector subspace of L2(G). Hence

Aη2 = Aα1η1 = α1Aη1 = Aη1 ,

which proves the first statements of the theorem.
Moreover, if η1 and η2 are wavelets, we have ‖K− 1

2 η1‖ = ‖K− 1
2 η2‖ = 1, which

implies that |α1| = 1. �

Corollary 4.3. Let π be a square-integrable irreducible unitary representation
of a locally compact group G and let η be an admissible vector for π. Let x ∈ G be
such that Aπ(x)η ∩ Aη 6= {0}. Then π(x)η = αη, for some α ∈ T.

Proof. By Theorem 4.2, π(x)η = αη for some α ∈ C. But π(x) is a unitary,
so |α| = 1. �

Theorem 4.4. Let π be a square-integrable irreducible unitary representation
of a locally compact group G and let η be a wavelet for π. Then Σx∈GAπ(x)η is
‖ · ‖B(G)-dense in Aπ(G)

Proof. Observe that Σx∈GAπ(x)η is a left and right translation invariant sub-

space of Aπ(G). Therefore, Σx∈GAπ(x)η
‖·‖B(G)

is of the form Aσ(G) for a unitary
representation σ of G. Since Aσ(G) ⊆ Aπ(G), the representation σ is a subrepresen-
tation of π by Corollary (3.14) of [1]. This implies that Σx∈GAπ(x)η is ‖·‖B(G)-dense
in Aπ(G), as π is irreducible and has no proper subrepresentation. �

Example 4.5. Let G be the group of orientation preserving affine transforma-
tions of the real line. Then G is the semidirect product RoR+, where R+ acts on
R by multiplication. In [11], it has been shown that

A(G) = Aπ+(G)⊕`1 Aπ−(G),

where π± are inequivalent, irreducible unitary representations of G on the Hilbert
space L2(R∗+, dt/t) defined by, for (b, a) ∈ G and ξ ∈ L2(R∗+, dt/t),

π±(b, a)ξ(t) := e∓2πibtξ(at),

for almost all t ∈ R∗+. Consider a continuous compactly supported function η on

R+ which is 1 on [ 12 , 1] and nonnegative everywhere else. It is known, see [10] for
details, that η is a multiple of a wavelet. By normalizing if necessary, we assume
that η is a wavelet. Clearly, if π±(b, a)η = αη for some α ∈ T, then a = 1 and
b = 0. Thus, by Corollary 4.3, Aπ±(x1)η ∩ Aπ±(x2)η = {0} whenever x1 6= x2 in G.

Note that π+ and π− are unitarily equivalent, respectively, to the two irre-
ducible subrepresentations of the classical wavelet representation ρ acting on L2(R),
where

ρ(b, a)f(t) = a−1/2f

(
t− b
a

)
,

for t ∈ R, (b, a) ∈ G, and f ∈ L2(R).

In fact, the phenomenon illustrated by Example 4.5 is somewhat general.
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Theorem 4.6. Let π be a square-integrable irreducible unitary representation of
a locally compact group G and suppose that G has no nontrivial compact subgroup.
Let η be any wavelet for π. Then Aπ(x1)η ∩Aπ(x2)η = {0} for any x1, x2 ∈ G, x1 6=
x2.

Proof. Let x ∈ G be such that Aπ(x)η ∩ Aη 6= {0}. Then, by Theorem 4.2,
Aπ(xn)η = Aη for all n ∈ Z. Let K denote the closed subgroup of G generated by
x. Since π is equivalent to a subrepresentation of the regular representation, Vηη
vanishes at infinity. On the other hand, Corollary 4.3 and continuity implies that

|Vηη(y)| = |〈η, π(y)η〉| = ‖η‖2,

for all y ∈ K. Therefore K is compact and hence K = {e}, since G is compact
free. If x1, x2 ∈ G satisfy Aπ(x1)η ∩ Aπ(x2)η 6= {0}, then Aπ(x1)η = Aπ(x2)η, which
implies Aπ(x1x

−1
2 )η = Aη. So x1 = x2. �

5. The Aη as subspaces of L2(G)

We continue with the assumption that π is a square-integrable irreducible rep-
resentation of a locally compact group G. If η is a nonzero admissible vector for
π, then η is a scalar multiple of a wavelet η′ and Aη = Aη′ is a closed subspace of
L2(G). Let Kπ denote the smallest closed subspace of L2(G) that contains Aη for
every admissible vector η for π. Fix any wavelet ω for π. Since π is irreducible,

{π(x)ω : x ∈ G} is total in Hπ. Thus Kπ = 〈∪{Aπ(x)ω : x ∈ G}〉
L2(G)

. There-

fore, Kπ is a closed subspace of L2(G) that is invariant under both left and right
translations.

If G happens to be compact, any irreducible representation is finite dimensional
and square-integrable. In that case, let dπ denote the dimension of Hπ. From
the classical orthogonality relations, one sees that the operator K of Theorem 3.3
is simply dπI, where I is the identity operator of Hπ. Let {ν1, · · · , νdπ} be an

orthonormal basis of Hπ. For 1 ≤ j ≤ dπ, let ηj = d
1/2
π νj . So each ηj is a

wavelet for π. Moreover, the orthogonality relations also tell us that Aηj ⊥ Aηk if
1 ≤ j 6= k ≤ dπ. Since the linear span of {η1, · · · , ηdπ} is Hπ,

Kπ = ⊕dπj=1Aηj .

Moreover, L2(G) = ⊕π∈ĜKπ. This is the essential content of the Peter–Weyl
Theorem.

With the appropriate interpretation, this generalizes to a class of non-compact
groups G, under the assumption of separability.

Definition 5.1. Let G be a locally compact group, π be a square-integrable
irreducible representation of G and K the Duflo-Moore operator of π. A collection
{ηj : j ∈ J} of vectors in domK−1/2 is called a complete K-orthogonal set of

wavelets for π if {ηj : j ∈ J} is total in Hπ and {K−1/2ηj : j ∈ J} is orthonormal.

If {ηj : j ∈ J} is a complete K-orthogonal set of wavelets for π then, by
Theorem 3.3, the Aηj are mutually orthogonal closed subspaces of Kπ whose unions
span Kπ. Thus

Kπ = ⊕j∈JAηj .
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Theorem 5.2. Let G be a separable locally compact group, π be a square-
integrable irreducible representation of G and K the Duflo-Moore operator of π.
There exists a countable set {ηj : j ∈ J} which is a complete K-orthogonal set of
wavelets for π. Moreover, if η is a fixed wavelet, each ηj can be constructed as a
finite linear combination of {π(x)η : x ∈ G}.

Proof. Fix a wavelet η for π. Let {xj : j ∈ J ′} be a countable dense subset

of G. Then {π(xj)η : j ∈ J ′} is total in Hπ. Recall that domK−1/2 consists of

exactly the admissible vectors for π and that π(xj)η ∈ domK−1/2 for each j ∈ J ′.
Moreover, K−1/2 is injective on its domain. Perform the Gram–Schmidt process on
the countable set {K−1/2π(xj)η : j ∈ J ′} and pull the resulting linear combinations

back through K−1/2 to produce a countable set {ηj : j ∈ J} of vectors in domK−1/2

which is total in Hπ and such that {K−1/2ηj : j ∈ J} is orthonormal. �

Remark 5.3. The above theorem appears as Theorem 2.33 in [6] without the
assumption of separability. However, the sketch of the proof in [6] overlooks the
fact that Gram–Schmidt requires the initial set of vectors to be countable. That is
why we have included the argument here.

A locally compact group G is called an [AR]-group if the left regular repre-
sentation, λG, is the direct sum of irreducible representations (see [16] and [17]).
Let

Ĝr = {π ∈ Ĝ : π is equivalent to a subrepresentation of λG}.
We use the symbol π for both an equivalence class of irreducible representations
and a particular member of that class. When λG is a direct sum of irreducibles, we

have left invariant closed subspaces Lπ, π ∈ Ĝr, of L2(G) such that λG restricted

to Lπ is equivalent to a multiple of π, for each π ∈ Ĝr, and L2(G) = ⊕π∈ĜrLπ. In

light of Theorem 5.2, Lπ = Kπ, for each π ∈ Ĝr. This amounts to a Peter–Weyl
theory for separable [AR]-groups.

An example will demonstrate the concrete nature of the conditions the ηj ap-
pearing in Theorem 5.2 must satisfy.

Example 5.4. Fix c ∈ R, c 6= 0. Let

Hc =

{(
a 0
b ac

)
: a, b ∈ R, a > 0

}
act on R2 with the natural matrix action. Form the semidirect product

Gc = R2 oHc = {[x, h] : x ∈ R2, h ∈ Hc},
equipped with the group product [x, h][y, k] = [x + hy, hk], for [x, h], [y, k] ∈ G.
When c = 1/2, this is the shearlet group [12]. For general c, this family of groups
was investigated in [15]. From [15], or using elementary Mackey theory [13], [14],

or [10], it is easy to show that Gc is an [AR]-group and Ĝc
r

= {ρ+, ρ−}, were
ρ+ can be realized as follows. There is an analogous description of ρ− with the
upper half plane replaced by the lower half plane. The Hilbert space of ρ+ is

Hρ+ = {f ∈ L2(R2) : suppf̂ ⊆ O+}, where O+ is the upper half plane and

ρ+

[(
x1
x2

)
,

(
a 0
b ac

)]
f

(
y1
y2

)
=

1√
ac+1

f

(
(y1 − x1)/a

y2−x2−a−1b(y1−x1)
ac

)
,
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for

(
y1
y2

)
∈ R2,

[(
x1
x2

)
,

(
a 0
b ac

)]
∈ Gc, and f ∈ Hρ+ .

Admissibility conditions for ρ+ were worked out in [15]. This determines the
Duflo–Moore operator, K, for this representation. Theorem 5.2 in this setting gives
the following method for decomposing the left regular representation of Gc into an
infinite multiple of ρ+ plus an infinite multiple of ρ−.

Construct {ηj : j ∈ J} as a total set in L2(O+, da db) such that {ηj : j ∈ J}
is orthonormal in the weighted L2-space, L2

(
O+, da dbac

)
. For each j ∈ J , let wj ∈

L2(R2) satisfy ŵj = ηj . Then

Vwjf [x, h] =

∫
R2

f(y)ρ+[x, h]wj(y) dy,

for [x, h] ∈ Gc, f ∈ Hρ+ . If we let Awj = VwjHρ+ , then λGc restricted to Awj is
equivalent to ρ+, for each j ∈ J , and we have Kρ+ = ⊕j∈JAwj . Similarly for ρ−
and L2(Gc) = Kρ+ ⊕Kρ− .

We conclude by formulating the construction of Example 5.4 in a more general
setting. Let G be a locally compact group of the form AoH, where A is an abelian
locally compact group and H is a σ-compact locally compact group acting on A

via (h, a) → h · a, for h ∈ H, a ∈ A. Then H acts on the dual group Â by, for

h ∈ H,χ ∈ Â, (h · χ)(a) = χ(h−1 · a), for all a ∈ A. Further, assume that there

exists an open free H-orbit O in Â. Then for fixed ω ∈ O, the map h → h−1 · ω
is a homeomorphism of H onto O. See [9] and Sections 7.2 and 7.3 of [10] for a
treatment of this situation.

Let δ denote the homomorphism of H into R∗+ such that, for any integrable
function g on A and any h ∈ H, we have δ(h)

∫
A
g(h ·a) da =

∫
A
g(a) da. There is a

square-integrable irreducible representation πO of G associated with O which can
be realized as follows. The Hilbert space of πO is L2(O,m), where the measure m

on O is the restriction of the Haar measure of Â, and, for (a, h) ∈ G, ξ ∈ L2(O,m),

πO(a, h)ξ(χ) = δ(h)1/2χ(a)ξ(h−1 · χ),

for all χ ∈ O (Proposition 7.17, [10]).

Thus, there are two relevant measures on the orbit O, the Haar measure of Â
restricted toO and the left Haar measure onH, moved toO via the homeomorphism
h→ h−1 · ω. Let µ denote the latter measure. Then

(5.1)

∫
O
ϕ(χ) dµ(χ) =

∫
H

ϕ(h−1 · ω) dh,

for any ϕ ∈ Cc(O). Note that the right hand side of (5.1) is independent of the
choice of ω ∈ O. We use L2(O, µ) to denote the L2-space when µ is the measure
on O.

The computation in the proof of Theorem 7.19 of [10], after adjusting the
notation, shows that, for ξ, η ∈ L2(O,m),

(5.2) ‖Vηξ‖22 =

∫
O
|ξ(χ)|2dχ

∫
O
|η(χ)|2dµ(χ).

This implies that ‖K−1/2η‖2 =
∫
O |η(χ)|2dµ(χ) and, via polarization, that

(5.3) 〈K−1/2η1,K−1/2η2〉 =

∫
O
η1(χ)η2(χ)dµ(χ) =

∫
H

η1(h−1 · ω)η2(h−1 · ω)dh,
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for all admissible η1 and η2 in L2(O,m). Note that the set of admissible vectors in
L2(O,m) is exactly L2(O,m)∩L2(O, µ) and this intersection makes sense because
the two measures in question are mutually absolutely continuous. Observe that a
complete K-orthogonal set of wavelets for πO is a collection {ηj : j ∈ J} of functions
in L2(O,m) ∩ L2(O, µ) which is total in L2(O,m) and orthonormal in L2(O, µ).

Remark 5.5. In all the examples known to the authors where a σ-compact
locally compact group H acts on an abelian locally compact group A in such a

manner that there exists an open free H-orbit in Â, the union of all of the open

free H-orbits is co-null in Â and, as a result, AoH is an [AR]-group.
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[1] G. Arsac: Sur l’espace de Banach engendré par les coefficients d’une représentation unitaire.

Publ. Dép. Math. (Lyon) 13 (1976), 1–101.
[2] D. Bernier and K. Taylor: Wavelets from Square-Integrable Representations. SIAM J. Math.

Anal., 27 (1996), 594–608.

[3] M. Duflo and C.C. Moore: On the regular representation of a nonunimodular locally compact
group. J. Functional Analysis 21 (1976), 209–243.
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