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1. INTRODUCTION

The theory of wavelets in the Hilbert space L2(Rd) has been studied extensively

in recent decades. The principal framework for constructing and understanding

wavelet bases for the Hilbert space L2(Rd) is the concept of multiresolution analysis

(MRA) [4, 8, 10]. For a general Hilbert space H, the notion of MRA can be

formulated with respect to a distinguished affine structure (Π, σ) in the following

way [1]. Let Π be a countable, discrete subgroup of the group of unitary operators
1
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on H and σ be another unitary operator on H satisfying σ−1Πσ⊆Π and 1 < [Π :

σ−1Πσ] < ∞. An MRA with the scaling vector (or function) φ∈H for the affine

structure (Π, σ) is a doubly infinite sequence {Vj : j∈Z} of closed subspaces of H

with the following properties:

(i) {uφ : u∈Π} is an orthonormal basis for V0;

(ii) Vj = σjV0, for all j∈Z;

(iii) Vj⊆Vj+1, for all j∈Z;

(iv)
⋂

j∈Z Vj = {0} (the triviality of the intersection);

(v)
⋃

j∈Z Vj = H (the density of the union).

A scaling vector φ∈H is called refinable if φ∈< {σ(uφ) : u∈Π} >, the closure

of the finite linear combinations of the functions from < {σ(uφ) : u∈Π} >. If φ

is refinable, condition (iii) in the above definition is satisfied. Using the unitary

operator σ and the space V0, we get a sequence {Vj : j∈Z} of nested closed subspaces

of H. In order to construct an MRA, the triviality of the intersection and the

density of the union become two crucial conditions. We will see in section 3 that

the triviality of the intersection is a direct consequence of conditions (i), (ii), and

(iii). The question now is: when does the density of the union hold? To answer

this question, let us first take a look at the Hilbert space L2(Rd).

In L2(Rd), the above mentioned affine structure is Π = {Tk : k∈Zd} and

σ = σD, where Tx is the translation operator defined by Txf(·) := f(· − x) for any

f∈L2(Rd) and σD is the dilation operator defined by σDf(·) = δ
1/2
D f(D·) for any

f∈L2(Rd) with D being the dilation matrix and δD = |det(D)|. A special dilation

matrix is D = 2I, where I is the identity matrix. Suppose φ∈L2(Rd). Define

V (φ) as {Tkφ : k∈Zd}. Then V (φ) is the smallest closed shift invariant subspace

generated by φ, that is, Tkf∈V (φ) for any f∈V (φ) and any k∈Zd. Now define

Vj = σ2I
jV (φ) for any j∈Z. The sequence of the closed subspaces {Vj : j∈Z}

is nested if φ is refinable. A scaling function must be a refinable function. But

the other way around is not true. Boor, DeVore and Ron [2] showed that the

refinability of φ alone is not enough for φ to generate an MRA. For a refinable

function to generate an MRA, additional conditions are required. They proved
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that
⋃

j∈ZVj = L2(Rd) if and only if φ is refinable and
⋃

j∈Zsupp(φ̂j) = Rd modulo

a null-set, where φj(·) := σ2I
jφ(·) = 2dj/2φ(2j ·), φ̂j is the Fourier transform of

φj , and supp(φ̂j) := {ξ∈Rd : φ̂j(ξ)6=0 }. They also gave a sufficient condition

for the density of the union:
⋃

j∈ZVj = L2(Rd) if φ is refinable and φ̂ is nonzero

a.e. in some neighborhood of the origin. This sufficient condition can be easily

proven. If φ̂ is nonzero a.e. in some neighborhood of the origin, then we see that⋃
j∈Zsupp(φ̂j) = Rd because φ̂j(·) = φ̂(·/2j).

In this paper, we are interested in MRA defined over a more abstract Hilbert

space. More specifically, we are interested in MRA defined over Hilbert spaces of the

form L2(G), whereG is some locally compact group. In the case thatG is an abelian

locally compact group, Dahlke has successfully extended the concept of MRA to

L2(G) [3]. The main purpose of this paper is to develop some characterizations

of functions which can serve as scaling functions in the more general case where

the Hilbert space is L2(G), where G is a locally compact group, but may or may

not be abelian. From the abstract harmonic analysis point of view, [2] uses the

information on the Plancherel side to describe the qualities of a refinable function

that can generate an MRA for the space L2(Rd). For a general locally compact

group G, it may be impossible to determine the Plancherel measure on the dual

space Ĝ. Thus, the information on the Plancherel side is not available in general

in this case. In contrast to [2], we only use the concepts coming within the space

L2(G) to develop characterizations of functions that can serve as scaling functions

without looking at the Plancherel side. Here, we note that we do not need to

assume that the scaling functions have regularity properties, nor impose any decay

conditions. To make the argument more general, we only assume that the scaling

functions are elements in the space L2(G).

Analogous to the construction of MRA in the space L2(Rd), to build an MRA

on a general group G, the group G must have a uniform lattice subgroup Γ and a

dilative automorphism α such that α(Γ)⊆Γ and 1 < [Γ : α(Γ)] < ∞ (see section

2 for the precise definition). We call (Γ, α) a scaling system. The corresponding

affine structure on L2(G) is then provided by (Π, σα), where Π = λG(Γ), λG is the
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left regular representation of G, σα is the unitary operator defined by σαf(x) =

δ
1/2
α f(α(x)) and δα is the factor by which α scales the Haar measure on G.

An important example is G = H, the three dimensional nilpotent Lie group.

H is realized as follows: H = {(p, q, t) : p, q, t∈R} with group product given by

(p, q, t)(p′, q′, t′) = (p+p′, q+ q′, t+ t′+ 1
2 (pq′− qp′)). A choice for a uniform lattice

in H is Γ = {(m,n, l/2) : m,n, l∈Z} and a compatible dilative automorphism is

α(p, q, t) = (2p, 2q, 22t), for all (p, q, t)∈H. This example and variations on it will

be used to illustrate our main results later on.

For any locally compact group G and a subset F⊆L2(G), we say that the family

F is a left zero divisor in L2(G) if there exists a g∈L2(G), g 6=0, such that f∗g = 0,

for all f∈F . If α is an automorphism of G, a single function f∈L2(G) is called

α-substantial if {σj
αf(·) : j∈Z} is not a left zero divisor in L2(G).

If G = R and F⊆L2(G), then F is a left zero divisor in L2(G) if and only

if there exists a measurable subset E of R, of positive Lebesque measure, such

that f̂(ω) = 0, for all f∈F and almost all ω∈E. If α is the automorphism given

by α(t) = 2t, for all t∈R, then a function f∈L2(R) is α-substantial if and only

if there exists a measurable subset A⊆R such that f̂(ω)6=0, for almost all ω∈A

and
⋃

j∈Z 2jA = R. In the particular case that f̂(ω)6=0 for almost all ω in a

neighborhood of the origin, then
⋃

j∈Z 2jsupp(f̂) = R. So any such function f is

α-substantial.

Despite the lack of tools from Fourier analysis to help us to recognize α-

substantial functions in the case of a general locally compact group G, we are

able to show that if α is dilative, f∈L2(G), f≥0, f 6=0 and is of compact support,

then f is α-substantial. This is done in section 3.

Consider a locally compact group G. A subspace X of L2(G) is called left shift

invariant if λG(γ)X⊆X, for all γ∈Γ. For φ∈L2(G), let V (φ) denote the smallest

left shift invariant closed subspace of L2(G) containing φ. Define Vj = σj
α V (φ),

for all j∈Z. Then the fact that φ is refinable implies that V0⊆V1 (then Vj⊆Vj+1,

for all j∈Z). Define φj(x) = σj
αφ(x) = δ

j/2
α φ(αj(x)), for any x∈G, j∈Z.
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The main results of this paper are summarized in the following theorems.

Theorem 3.1(Triviality of the intersection): Let G be a locally compact group

with a scaling system (Γ, α). Let φ be a refinable function of L2(G) and Vj, j∈Z

defined as above. Suppose that the shifts of φ, that is, {Lγφ : γ∈Γ }, constitute an

orthonormal basis for V0, then
⋂

j∈ZVj = {0}.

Theorem 3.5 (Density of the union): Let φ be a refinable function in L2(G)

and Vj, j∈Z defined as above. Then the following are equivalent:

(a)
⋃

j∈ZVj = L2(G)

(b) {φj}j∈Z is a left nonzero divisor in L2(G)

(c) φ is α−substantial.

Theorem 4.3: Let G be a locally compact group and (Γ, α) a scaling system

on G. Suppose that there exists a self-similar tile T for (Γ, α) on G. Then φ = χT

will generate an MRA for the space L2(G).

Theorem 4.6: The MRA generated by a self-similar tile will always guarantee

a Haar-like orthonormal wavelet basis for the space L2(G).

The rest of the paper is arranged as follows. Section 2 provides the basic

concepts, definitions of the terms and some basic results on a scaling system and its

corresponding affine structure. In section 3, we first prove the intersection triviality

theorem. Then we prove several propositions that lead to the proof of theorem 3.5

as stated above. Section 4 concerns with refinable functions of self-similar tile in

the space L2(G), MRAs generated by using these refinable functions as scaling

functions, and Haar-like wavelet bases associated with these MRAs. In section 5,

we turn to the examples of the Heisenberg group. We draw upon the idea of [12]

to give an explicit construction of refinable function on the Heisenberg group. This

construction will provide examples to illustrate our theorems established in sections

3 and 4.

2. BASIC CONCEPTS

Let G be a locally compact group with left Haar measure mG. Integration

with respect to mG will be denoted simply by
∫

G
f(x) dx, for any appropriate
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complex-value function f on G. Let L2(G) denote the Hilbert space of (equivalence

classes of) square integrable complex-valued functions on G with inner product:

< f, g >=
∫

G
f(x)g(x) dx, for f, g∈L2(G). The left regular representation of G

is the faithful homomorphism λG of G into the unitary group on L2(G) given by

λG(x)f(y) = f(x−1y), ∀x, y ∈ G, f∈L2(G). If the group of unitary operators on

L2(G) is endowed with the strong operator topology, then λG is continuous. If α is

an automorphism (topological homomorphism and algebraic automorphism) of G,

then f→
∫

G
f(α(x)) dx is a left invariant integral so there exists a positive constant

δα so that
∫

G
f(x) dx = δα

∫
G
f(α(x)) dx, for any appropriate function f onG. This

means that α induces a unitary operator σα on L2(G) by σαf(x) = δ
1/2
α f(α(x)),

for all x∈G, f∈L2(G). Note that, for any j∈Z, αj is an automorphism of G and

σα
jf(x) = δj/2

α f(αj(x)), for all x∈G, f∈L2(G).

An automorphism α of G is called dilative if, for any compact K⊆G and any

neighborhood U of the identity e of G, there exists an n0∈N such that K⊆αn(U),

for all n≥n0. Note that α is dilative implies that δα > 1 but the converse is not

true.

A subgroup Γ of G is called a uniform lattice in G if Γ is discrete, countable

and G/Γ is compact. Suppose Γ is a uniform lattice in G and α is a dilative

automorphism of G such that α(Γ)⊆Γ and 1 < [Γ : α(Γ)] < ∞. Then we will call

(Γ, α) a scaling system (based on G).

For many of the results of this paper, we assume that (Γ, α) is a scaling system.

This condition imposes strong restrictions on the group G and the discrete subgroup

Γ. We will not fully investigate these restrictions here, but we need to make a few

observations.

Proposition 2.1. Let (Γ, α) be a scaling system. Then the following conditions

hold.

(a) G is a unimodular group;

(b) Γ is not an open subgroup of G;

(c) mG(Γ) = 0;
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(d) For any j0∈Z,
⋃

j≥j0
α−j(Γ) is dense in G.

Proof. (a) follows from numbers 1.8 to 1.11 on page 21 in [11] for example.

To see (b), suppose Γ were an open subgroup of G. Then it is a neighborhood

containing the e. Since α(Γ)⊆Γ, if n≥1, then αn(Γ)⊆Γ. Since 1 < [Γ : α(Γ)] and α

is an automorphism of G, Γ is not all of G. Taking U = Γ and K = {x} for some

x∈G\Γ, then we would have that K = {x}⊆αn(Γ)⊆Γ by the dilative property of

α, which is a contradiction to the fact that x∈G\Γ. Then (c) follows from (b).

For (d), choose a compact subset K of G such that G =
⋃

γ∈ΓKγ; this is

possible because Γ is a uniform lattice in G. For any x∈G and any neighborhood

W of x, let U be a symmetric (U−1 = U) neighborhood of e such that Ux⊆W .

Since α is dilative, there exists n0∈N such that j≥n0 implies K⊆αj(U); that is,

α−j(K)⊆U . Then

G = α−j(G) =
⋃
γ∈Γ

α−j(Kγ) =
⋃
γ∈Γ

α−j(K)α−j(γ)⊆
⋃
γ∈Γ

Uα−j(γ).

Thus, there exists a γ∈Γ such that x∈Uα−j(γ). Hence, x = uα−j(γ), for some u∈U

and α−j(γ) = u−1x∈Ux⊆W . Therefore, W
⋂
α−j(Γ)6=∅, for any j≥n0. Because

α−j(Γ)⊆α−(j+1)(Γ) for all j,
⋃

j≥j0
α−j(Γ) is dense in G for any fixed j0∈Z. �

If (Γ, α) is a scaling system and φ∈L2(G), we use φ to generate a family of

closed subspaces of L2(G) in analogy with the role played by a scaling vector in an

MRA. Let V (φ) denote the closed linear span of {λG(γ)φ : γ∈Γ}. For each j∈Z, let

Vj = σα
jV (φ). A function of the form λG(γ)φ is called a shift of φ, so the shifts of

φ forms an orthonormal basis exactly when {λG(γ)φ : γ∈Γ} forms an orthonormal

basis of V (φ). Moreover, the fact that φ is refinable exactly means V0⊆V1. So

Vj⊆Vj+1, for all j∈Z.

Proposition 2.2. Let (Γ, α) be a scaling system and φ∈L2(G). Then the

following conditions hold.

(a) σα
jλG(γ)σα

−j = λG(α−j(γ)), for all j∈Z, γ∈Γ,

(b) If Π = λG(Γ), then (Π, σα) is an affine structure on L2(G),

(c) Vj = < {λG(ν)σα
jφ : ν∈α−j(Γ)} >, for j∈Z.
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Proof. For f∈L2(G) and x∈G, compute

σα
jλG(γ)σα

−jf(x) = δj/2
α λG(γ)σα

−jf(αj(x)) = δj/2
α σα

−jf(γ−1αj(x))

= f(α−j(γ−1)x) = λG(α−j(γ))f(x).

This establishes (a). In particular, σα
−1λG(γ)σα = λG(α(γ)). So, if Π = λG(Γ),

then σα
−1Πσα = λG(α(Γ)). Since λG is a faithful homomorphism, [Π : σα

−1Πσα] =

[Γ : α(Γ)] and (Π, σα) is an affine structure in the sense of [1]. So (b) holds and (c)

also follows from (a) and the definition of Vj . �

3. THE CHARACTERIZATIONS OF A SCALING FUNCTION

In this section, the first two theorems stated in the introduction are proven.

We first prove the triviality of the intersection because it is the direct consequence

of refinability and orthogonal shifts. Then we establish the density of the union by

considering several propositions. Finally, we show that the space L2(G) provides

an abundant supply of α-substantial functions.

Theorem 3.1. (Triviality of the intersection) Let G be a locally compact group

with scaling system (Γ, α). Let φ be a refinable function of L2(G) and define

Vj = σj
αV (φ) for j∈Z. Suppose that the shifts of φ, that is, {Γγφ : γ∈Γ}, constitutes

an orthogonal basis for V0, then
⋂

j∈Z Vj = {0}.

Proof. Since φ is refinable, Vj⊆Vj+1, for all j∈Z, so⋂
j∈Z

Vj =
⋂
n∈N

V−n.

Since φ is a unit vector with orthogonal shifts and σ is unitary, for each j∈Z,

{σj(λG(γ)φ) : γ∈Γ} is a orthonormal basis for Vj . The orthogonal projection Pj of

L2(G) onto Vj is given by

Pjf =
∑
γ∈Γ

< f, σj(λG(γ)φ) > σj(λG(γ)φ), ∀f∈L2(G).

Let f∈
⋂

j∈Z Vj ; so Pjf = f , for all j∈Z. Let ε > 0 be arbitrary. Select a

continuous function of compact support, f1, so that ‖f − f1‖2 < ε. Then ‖f −

Pjf1‖2 = ‖Pj(f − f1)‖2 < ε and so ‖f‖2≤‖Pjf1‖2 + ε, for any j∈Z.
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Let K be a compact subset of G so that supp(f1)⊆K and let M = sup{|f1(x)| :

x∈K}. Let W be a neighborhood of e in G such that W
⋂

Γ = {e}. Let U be

another neighborhood of e such that UU−1⊆W . Then, for any γ1, γ2∈Γ, γ1 6=γ2

implies γ−1
1 U

⋂
γ−1
2 U = ∅.

Since α is dilative, there exists n0∈N such that K⊆αn(U) for any n≥n0; that

is α−n(K)⊆U if n≥n0. Therefore, for γ1, γ2∈Γ, with γ1 6=γ2 and n≥n0, we have

γ−1
1 α−n(K)

⋂
γ−1
2 α−n(K) = ∅. Let E−n =

⋃
γ∈Γ γ

−1α−n(K). If n≥n0, we have

additivity of the characteristic functions,

χE−n =
∑
γ∈Γ

χγ−1α−n(K).

Now, fix a point x∈G\Γ. Since Γ is discrete in the relative topology of G, it is

a closed subgroup. Thus, there exists a symmetric neighborhood V of e such that

xV
⋂

Γ = ∅. Then x is not in γ−1V , for any γ∈Γ. Using the dilative nature of α

again, there exists n1≥n0 such that n≥n1 implies α−n(K)⊆V . So, for any n≥n1,

χE−n
(x) = 0. Therefore, the sequence (χE−n

)∞n=1 converges to 0 pointwise on G\Γ,

so it converges to 0 pointwise almost everywhere on G, since mG(Γ) = 0. For n≥n1,

‖P−nf1‖2
2 =

∑
γ∈Γ

| < f1, σ
−n(λG(γ)φ) > |2

=
∑
γ∈Γ

δ−n
α |

∫
G

f1(x)φ(γ−1α−n(x)) dx|2

≤
∑
γ∈Γ

δ−n
α (

∫
G

|f1(x)||φ(γ−1α−n(x))| dx)2

≤ M2
∑
γ∈Γ

δ−n
α (

∫
G

|χK(x)||φ(γ−1α−n(x))| dx)2

≤ M2mG(K)2
∑
γ∈Γ

δ−n
α

∫
K

|φ(γ−1α−n(x))|2 dx

= M2mG(K)2
∑
γ∈Γ

∫
γ−1α−n(K)

|φ(y)|2 dy

= M2mG(K)2
∫

G

χE−n(x)|φ(y)|2 dy−→0, as n→∞,

by the Lebesque Dominated Convergence Theorem. The last inequality in the above

calculation is an application of the Cauch-Schartz inequality. Since ‖f‖2≤‖P−nf1‖2+
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ε, for all n, ‖f‖2≤ε and ε > 0 being arbitrary, we conclude that f = 0. Therefore,⋂
j∈Z Vj = {0}. �

Remark 3.2. In Theorem 3.1, one can replace the assumption of orthogonal

shifts with the assumption that the shifts of φ constitute a frame in V0, as for

the L2(Rd) situation, but we preferred to write out the clearer argument with the

stronger assumption since we need orthogonal shifts elsewhere.

A subspace X of L2(G) is called left translation invariant if λG(x)f∈X, for all

f∈X and x∈G. For a family of functions F⊆L2(G). Let X(F ) denote the smallest

closed left translation invariant subspace of L2(G) which contains F . Obviously,

X(F ) = < {λG(x)f : x∈G, f∈F} > = {λG(x)f : x∈G, f∈F}⊥
⊥
.

Recall that we call F a left zero divisor in L2(G) if there exists a nonzero g in L2(G)

such that f∗g = 0, for all f∈F .

Proposition 3.3. Let G be a unimodular locally compact group and let F⊆L2(G).

Then X(F ) = L2(G) if and only if F is not a left zero divisor in L2(G).

Proof. For g∈L2(G), let g∗(x) = g(x−1), for all x∈G. Then g−→g∗ is a norm

preserving conjugate linear bijection of L2(G) (this is where unimodularity of G is

used). Now, for f, g∈L2(G) and x∈G, the following is a standard calculation,

f∗g(x) =
∫

G

f(y)g(y−1x) dy

=
∫

G

f(y)g∗(x−1y) dy

=
∫

G

f(xy)g∗(y) dy

= < λG(x−1)f, g∗ > .

Thus, f∗g = 0, for all f∈F if and only if g∗∈{λG(z)f : z∈G, f∈F}⊥ = X(F )⊥.

Therefore, X(F ) = L2(G) if and only if F is not a left zero divisor in L2(G). �

We are most concerned about the nature of X(F ) where F = {σα
jφ : j∈Z}

and φ is a refinable function associated with a scaling system.
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Proposition 3.4. Let (Γ, α) be a scaling system and let φ be a refinable func-

tion in L2(G). Then X({σα
jφ : j∈Z}) =

⋃
j∈Z Vj.

Proof. According to Proposition 2.2 (c), for any k∈Z, Vk is generated by

{λG(ν)σα
kφ : ν∈α−k(Γ)}. Thus, Vk⊆X({σα

jφ : j∈Z}), for all k∈Z. There-

fore,
⋃

j∈Z Vj⊆X({σα
jφ : j∈Z}). Let f∈

⋃
j∈Z Vj . Then f∈Vk, for some k, so

λG(ν)f∈Vk, for all ν∈α−k(Γ). But then f∈Vj , for any j≥k, so λG(ν)f∈
⋃

j≥k Vj ,

for any ν∈
⋃

j≥k α
−j(Γ). Because of the nesting properties,

⋃
j∈Z Vj is invariant un-

der left translations from
⋃

j∈Z α
−j(Γ). Therefore,

⋃
j∈Z Vj is also invariant under

left translations from
⋃

j∈Z α
−j(Γ).

Now, for any f∈
⋃

j∈Z Vj and any x∈G, use Proposition 2.1 (d) to select a net

(νβ) of elements from
⋃

j∈Z α
−j(Γ) such that νβ→x in G. Since λG is continu-

ous with respect to the strong operator topology, λG(νβ)f−→λG(x)f . Therefore,

λG(x)f∈
⋃

j∈Z Vj , for all x∈G. Hence, X({σα
jφ : j∈Z}) =

⋃
j∈Z Vj . �

We are now ready for the main theorem characterizing scaling functions for a

scaling system (Γ, α). Recall that, for φ∈L2(G) and j∈Z, σα
jφ(x) = δ

j/2
α φ(αj(x))

and φ is α-substantial if and only if {σα
jφ : j∈Z} is not a left zero divisor in L2(G).

Combining Proposition 3.3 and 3.4 gives us that
⋃

j∈Z Vj = L2(G) if and only if φ

is refinable and α-substantial. Thus we have the following theorem.

Theorem 3.5. (Density of the union) Let φ be a refinable function in L2(G)

and Vj , j∈Z defined as above. Then the following are equivalent:

(a)
⋃

j∈ZVj = L2(G)

(b) {φj}j∈Z is a left nonzero divisor in L2(G)

(c) φ is α-substantial.

Next we show that the condition of being α-substantial is not really that im-

posing.

Proposition 3.6. Let G be a locally compact group with a dilative automor-

phism α. Let f∈L2(G) satisfy f≥0, f 6=0 and there exists a compact subset K of G

such that f(x) = 0, for almost all x∈G\K. Then f is α-substantial.
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Proof. Since f is compactly supported, it is actually in L1(G). Without loss

of generality, assume ‖f‖1 = 1. For each n∈N, define fn(x) = δn
αf(αn(x)) =

δ
n/2
α σα

nf(x), for all x∈G. Then
∫

G
fn(x) dx = 1, for all n∈N. Therefore, for any

g∈L2(G),

fn∗g(y)− g(y) =
∫

G

fn(x)[λG(x)g(y)− g(y)]dx,

for all y∈G. Using a version of Minkowski’s inequality for integrals instead of sum,

see [5], VI.11.13 on page 530, we get

‖fn∗g − g‖2 = {
∫

G

|fn∗g(y)− g(y)|2dy}1/2

= {
∫

G

|
∫

G

[λG(x)g(y)− g(y)]fn(x) dx|2dy}1/2

≤
∫

G

{
∫

G

|λG(x)g(y)− g(y)|2dy}1/2fn(x)dx

=
∫

G

‖λG(x)g − g‖2fn(x)dx.

For any ε > 0, there exists a neighborhood U of e such that ‖λG(x)g − g‖2 < ε,

for all x∈U (this is just the strong operator continuity of λG again). Since α is

dilative, there exists n0∈N such that α−n(K)⊆U , for all n≥n0. The support of

fn is contained in α−n(K), so n≥n0 and fn(x)6=0 implies ‖λG(x)g − g‖2 < ε, for

almost every x∈G. Therefore, n≥n0 implies

‖fn∗g − g‖2≤
∫

G

‖λG(x)g − g‖2fn(x) dx≤ε
∫

G

fn(x) dx = ε.

Thus, {fn : n = 1, 2, 3, · · · } forms a left approximate identity for the module action

of L2(G) on L2(G) by convolution.

Clearly σα
nf∗g = 0 implies fn∗g = 0. So σα

nf∗g = 0, for all n∈N implies

g = 0, for all g∈L2(G). Thus, {σα
jf : j∈Z} is not a left zero divisor in L2(G).

That is, f is α-substantial. �

4. MRAS GENERATED BY SELF-SIMILAR TILES AND

HAAR-LIKE WAVELET BASES

This section concerns refinable functions that arise from self-similar tiles in

the space L2(G), the MRAs generated by a self-similar tile as its scaling function
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and Haar-like wavelet bases associated with the MRAs. Gröchenig and Madych

[7] considered the scaling system (Zd, D) on the group Rd, where D is a matrix

with integer entries with all eigenvalues of which have absolute values bigger than

1. They established a connection between self-similar tilings and MRAs that are

generated by a characteristic function for its scaling function. Besides developing

the basic properties of self-similar tiles for (Zd, D), they looked at a variety of

interesting examples by choosing different integer matrices in R2. For example,

the matrix D =

 1 −1

1 1

 has the fractal set known as the twin dragon as a

self-similar tile. Self-similar tiles are very often fractal in nature. Following Meyer’s

recipe, [7] also constructed Haar-like wavelet bases using the MRAs generated by

self-similar tiles. We have been very much inspired by the results in [7].

Let Γ be a uniform lattice in a locally compact group G. A measurable subset

T of G is called a tile for G if mG(T ) <∞, G =
⋃

γ∈Γ γT and mG(γT
⋂
T ) = 0, for

γ∈Γ\{e}. Since Γ is countable, the last condition is equivalent to
∑

γ∈Γ χT (γ−1x) =

1, for almost all x∈G, where χA denotes the characteristic function of a subset A

of G. The next proposition contains useful observations about tiles.

Proposition 4.1. Let Γ be a uniform lattice in a locally compact group G. Let

T be a tile in G and S a measurable subset of G such that G =
⋃

γ∈Γ γS. Then (a)

mG(T ) > 0, (b) S is a tile if and only if mG(S) = mG(T ).

Proof. Since Γ is countable, mG(G) =
∑

γ∈ΓmG(T ). So mG(T ) > 0. For

(b), let

f(x) =
∑
γ∈Γ

χS(γ−1x) =
∑
γ∈Γ

χγS(x)≥1,
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for almost all x∈G. Then, for any γ′∈Γ,

mG(T ) =
∫

γ′T

1 dx≤
∫

γ′T

f(x)dx

=
∫

G

χγ′T (x)
∑
γ∈Γ

χS(γ−1x)dx

=
∫

G

∑
γ∈Γ

χT (γ′−1
γx)χS(x)dx

=
∫

G

χS(x)dx = mG(S).

Thus, mG(T )≤mG(S) and mG(T ) = mG(S) if and only if f(x) = 1, for almost all

x∈γ′T , for each γ′∈Γ, so, if and only if S is a tile. �

Suppose α is an automorphism of G so that (Γ, α) is a scaling system and T is a

tile for G. If α(T ) =
⋃

γ∈Γ0
γT , for some subset Γ0⊆Γ, then we call T a self-similar

tile for (Γ, α).

Proposition 4.2. Let (Γ, α) be a scaling system of a locally compact group G.

Suppose that there exists a self-similar tile T for (Γ, α), then the following properties

hold:

(a) If Γ0⊆Γ is such that α(T ) =
⋃

γ∈Γ0
γT , then Γ0 is a complete set of right

coset representatives for α(Γ) in Γ,

(b) [Γ : α(Γ)] = δα,

(c) φ = mG(T )−1/2χT is a refinable function in L2(G).

Proof. We begin by proving (b). Let γ1,· · · ,γk be a complete set of right coset

representations for α(Γ) in Γ. So Γ is the disjoint union
⋃k

i=1 α(Γ)γi.

Since T is a tile for G,

G =
⋃
γ∈Γ

α(γ)[
k⋃

i=1

γiT ].

Applying α−1, we get

G =
⋃
γ∈Γ

γα−1[
k⋃

i=1

γiT ] =
⋃
γ∈Γ

γ[
k⋃

i=1

α−1(γiT )].
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If S =
⋃k

i=1 α
−1(γiT ), then one easily checks thatmG(γS

⋂
S) = 0 if γ 6=e. Thus S is

a tile. So mG(S) = mG(T ). On the other hand, mG(S) = kδ−1
α mG(T ). Therefore,

[Γ : α(Γ)] = k = δα and (b) holds.

For (a), suppose Γ0 is the subset of Γ such that α(T ) =
⋃

γ∈Γ0
γT . Then

χα(T )(x) =
∑

γ′∈Γ0
χγ′T (x), for almost all x. Since G is “tiled” by the sets {γT :

γ∈Γ}, the {χγT : γ∈Γ} are mutually orthogonal projections in the commutative von

Newmann algebra L∞(G) (at least, that is a fancy way of thinking for the following

calculation). Each of the following equalities is true for almost every x∈G.

1 =
∑
γ∈Γ

χγT (x) =
∑
γ∈Γ

χγT (α−1(x))

=
∑
γ∈Γ

χα(γ)α(T )(x) =
∑

ν∈α(Γ)

χνα(T )(x)

=
∑

ν∈α(Γ)

χα(T )(ν−1x) =
∑

ν∈α(Γ)

∑
γ′∈Γ0

χγ′T (ν−1x)

=
∑

ν∈α(Γ)

∑
γ′∈Γ0

χ(νγ′)T (x).

Thus,
∑

γ∈Γ χγT (x) =
∑

ν∈α(Γ)(
∑

γ′∈Γ0
χ(νγ′)T (x)), for almost every x∈G. This

implies that each γ∈Γ has a unique expression of the form νγ′, with ν∈α(Γ) and

γ′∈Γ0. In other words, Γ0 is a complete set of right coset representations for α(Γ)

in Γ.

Finally, we prove part (c). If φ = mG(T )−1/2χT , then ‖φ‖2 = 1, then φ has

orthogonal shifts and we can see that φ is refinable as follows. For any x∈G,

σ−1
α φ(x) = δ−1/2

α φ(α−1(x))

= δ−1/2
α mG(T )−1/2χT (α−1(x))

= δ−1/2
α mG(T )−1/2χαT (x)

=
∑
γ∈Γ0

δ−1/2
α mG(T )−1/2χγT (x)

=
∑
γ∈Γ0

δ−1/2
α mG(T )−1/2χT (γ−1x)

=
∑
γ∈Γ0

δ−1/2
α λG(γ)φ(x).
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So σα
−1φ =

∑
γ∈Γ0

δ
−1/2
α λG(γ)φ which implies φ =

∑
γ∈Γ0

δ
−1/2
α σα[λG(γ)φ]. There-

fore φ is refinable. �

From the proof above, we see that the number of right coset representatives for

α(Γ) in Γ is equal to δα. This number will appear later on.

Boor, DeVore and Ron in [2] showed that refinability is not enough to generate

an MRA in the space L2(Rd). Using the results from section 3, we see that whenever

we have a refinable function of self-similar tile, an MRA can always be produced

by this function as a scaling function in the space L2(G).

Theorem 4.3. Let G be a locally compact group and (Γ, α) a scaling system

on G. Suppose that there exists a self-similar tile T for (Γ, α) on G. Then φ = χT

is a scaling function, that is, it will generate an MRA for the space L2(G).

Proof. The refinability of φ guarantees that condition (iii) in the definition

holds. Define V0 = V (φ), the closure of {λG(γ)φ : γ ∈ Γ}. It is clear that

{λG(γ)φ : γ ∈ Γ} is an orthonormal basis for V0. Thus condition (i) holds. Using

the unitary operator σα, a sequence of closed subspaces Vj = σj
αV0 are constructed.

Condition (iv) is trivial by Theorem 3.1. By Proposition 3.6, φ is α-substantial.

Thus the density of the union (v) is also satisfied. Therefore, an MRA for L2(G)

is generated by the self-similar tile χT as a scaling function. �

Once an MRA has been built up in the space L2(G), next we want to construct

wavelet basis using the structure provided by the MRA.

Let {Vj : j∈Z} be an MRA in the space L2(G) with a self-similar tile χT

as its scaling function for the scaling system (Γ, α). Let Wj be the orthogonal

complement Vj in Vj+1, that is, Vj+1 = Vj

⊕
Wj , j∈Z. Then we can decompose

L2(G) as
⊕

j∈Z Wj . To construct an orthogonal wavelet basis for L2(G), all we need

is to construct an orthogonal basis for W0. If an orthogonal basis for W0 can be

constructed, then σj
α will send this orthogonal basis for W0 to an orthogonal basis

for Wj , j∈Z. Therefore the union of all these bases would give an orthogonal basis

for L2(G) because L2(G) =
⊕

j∈Z Wj . In the space L2(Rd) with a scaling system
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(Zd, D), if φ is a scaling function of an MRA and q = |det(D)|, [9] showed that

there exist q − 1 functions ψ1, · · · , ψq−1 such that {Tkψi : k∈Zd, i = 1, · · · , q − 1}

is an orthogonal basis of W0, where ψi, i = 1, · · · , q − 1 satisfy

(4.1) ψi(x) =
∑
k∈Zd

aik|det(D)|1/2φ(Dx− k),

with some sequences {aik}, i = 1, · · · , q − 1 in l2(Zd). Therefore, {σj
DTkψi :

k∈Zd, j∈Z, i = 1, · · · , q − 1} forms an orthogonal wavelet basis for L2(Rd). Since

V0⊂V1, there must exist a sequence {ak} in l2(Zd) such that

(4.2) φ(x) =
∑
k∈Zd

akσDTkφ(x) =
∑
k∈Zd

ak|det(D)|1/2φ(Dx− k).

To construct a wavelet basis following Meyer’s recipe, one first begins with an MRA

with a scaling function φ satisfying equation (4.2) and then look for wavelet basis

satisfying equation (4.1). For the MRA in L2(Rd) generated by a self-similar tile

as a scaling function, [7] constructed a piecewise constant wavelet basis associated

with the scaling system (Zd, D) following Meyer’s recipe (See [9]). It turns out that

Meyer’s recipe still works in the space L2(G) if an MRA generated by a scaling

function of self-similar tile is available.

Proposition 4.4. Let χT be a self-similar tile associated with a scaling system

(Γ, α) and {Vj : j∈Z} be an MRA generated by χT . Let Γ0 = {γ1, γ2, · · · , γδα
} be

a complete set of right coset representatives for α(Γ) in Γ. Then the subspace W0

is a set of functions satisfying f(x) =
∑

γ∈Γ aγσαλG(γ)χT (x) with {aγ} in l2(Γ)

satisfying
∑

γ′∈Γ0
aα(γ)γ′ = 0 for all γ∈Γ.

Proof. A function f∈W0⊂V1 can be written as

f(x) =
∑
γ∈Γ

aγσαλG(γ)χT (x) =
∑
γ∈Γ

aγδ
1/2
α χT (γ−1α(x)),

for some sequence {aγ} in l2(Γ). A function g∈V0 can be written as

g(x) =
∑
γ′∈Γ

bγ′λG(γ′)χT (x) =
∑
γ′∈Γ

bγ′χT (γ′−1
x),
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for some sequence {bγ′} in l2(Γ). Then

〈f, g〉 =
∫

G

∑
γ∈Γ

aγδ
1/2
α χT (γ−1α(x))

∑
γ′∈Γ

bγ′χT (γ′−1x)dx

= δ1/2
α

∑
γ∈Γ

∑
γ′∈Γ

aγbγ′

∫
G

χα−1(γT )(x)χγ′T (x)dx

= δ1/2
α

∑
γ∈Γ

∑
γ′∈Γ

aγbγ′mG(α−1(γT )
⋂
γ′T )

= δ1/2
α

∑
γ∈Γ

∑
γ′∈Γ

aγbγ′mG(α−1(γ)α−1(T )
⋂
γ′T ).

Since Γ =
⋃δα

i=1 α(Γ)γi, which is a union of disjoint right cosets, a sum over the set

Γ is equal to the sum over the set
⋃δα

i=1 α(Γ)γi. Thus the above equals

δ1/2
α

∑
γ∈Γ

∑
γ′∈Γ

aγbγ′mG(α−1(γ)α−1(T )
⋂
γ′T )

= δ1/2
α

∑
γ∈Γ

δα∑
i=1

∑
γ′∈Γ

aα(γ)γi
bγ′mG(α−1(α(γ)γi)α−1(T )

⋂
γ′T )

= δ1/2
α

∑
γ∈Γ

δα∑
i=1

∑
γ′∈Γ

aα(γ)γi
bγ′mG(α−1(α(γ)γiT

⋂
α(γ′)α(T )))

= δ1/2
α

∑
γ∈Γ

δα∑
i=1

∑
γ′∈Γ

aα(γ)γi
bγ′mG(α−1(α(γ)γiT

⋂
α(γ′)

δα⋃
j=1

γjT ))

= δ1/2
α

∑
γ∈Γ

δα∑
i=1

∑
γ′∈Γ

aα(γ)γi
bγ′mG(α−1(

δα⋃
j=1

(α(γ)γiT
⋂
α(γ′)γjT )))

= δ1/2
α

∑
γ∈Γ

δα∑
i=1

aα(γ)γi
bγmG(α−1(α(γ)γiT ))

= δ1/2
α

∑
γ∈Γ

δα∑
i=1

aα(γ)γi
bγmG(α−1(T ))

= δ1/2
α

∑
γ∈Γ

cγbγmG(α−1(T )),

where cγ =
∑δα

i=1 aα(γ)γi
. The third last equality is due to the following basic fact:

mG(α−1(α(γ)γiT
⋂
α(γ)γjT )) is either equal to 0 or mG(α−1(α(γ)γiT )) because T

is a tile. The second last equality holds because G is unimodular. Thus, 〈f, g〉 =

δ
1/2
α 〈c, b〉δ−1

α = δ
−1/2
α 〈c, b〉. Therefore, f∈W0 if and only if f can be written as

f(x) =
∑

γ∈Γ aγδ
1/2
α χT (γ−1α(x)) and cγ =

∑δα

i=1 aα(γ)γi
= 0. �
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Proposition 4.5. Suppose that χT , (Γ, α), {Vj : j∈Z}, and Γ0 are the same

as in Proposition 4.4. Suppose that U = (uij) is a δα × δα unitary matrix with all

entries on the first row being the same constant δ−1/2
α . Then the set of functions

{ψ1, ψ2, · · · , ψδ−1} defined by

ψi−1(x) = mG(T )−1/2
∑δα

j=1 uijσαλG(γj)χT (x), i = 2, · · · , δα

is a set of mother wavelets for the MRA. That is, the following set

F = {λG(γ)ψi : γ∈Γ, i = 1, · · · , δα − 1}

is a complete orthonormal basis for the space W0.

Proof. We first show that the set F is an orthogonal system and then prove

it is complete.

In the following, we will use Proposition 2.2 (a): λG(γ)σα = σαλG(α(γ)). For

λG(γ′)ψi−1, λG(γ′′)ψj−1∈F , then

〈λG(γ′)ψi−1, λG(γ′′)ψj−1〉

= 〈λG(γ′)mG(T )−1/2
δα∑

m=1

uimσαλG(γm)χT , λG(γ′′)mG(T )−1/2
δα∑

n=1

ujnσαλG(γn)χT 〉

= mG(T )−1
δα∑

m=1

δα∑
n=1

uimujn〈λG(γ′)σαλG(γm)χT , λG(γ′′)σαλG(γn)χT 〉

= mG(T )−1
δα∑

m=1

δα∑
n=1

uimujn〈λG(γ′)σαλG(γm)χT , λG(γ′′)σαλG(γn)χT 〉

= mG(T )−1
δα∑

m=1

δα∑
n=1

uimujn〈σαλG(α(γ′))λG(γm)χT , σαλG(α(γ′′))λG(γn)χT 〉

= mG(T )−1
δα∑

m=1

δα∑
n=1

uimujn〈λG(α(γ′))λG(γm)χT , λG(α(γ′′))λG(γn)χT 〉

= mG(T )−1
δα∑

m=1

δα∑
n=1

uimujn〈λG(α(γ′)γm)χT , λG(α(γ′′)γn)χT 〉

= mG(T )−1
δα∑

m=1

δα∑
n=1

uimujnmG(α(γ′)γmT ∩ α(γ′′)γnT )

= mG(T )−1δ(γ′ − γ′′)
δα∑

m=1

uimujmmG(T )

= δ(γ′ − γ′′)δ(i− j).
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Next we show that the set F is complete in W0. For any f∈W0, we want to

prove that if 〈f, λG(γ)ψi−1〉 = 0 for any γ∈Γ, i = 2, 3, · · · , δα, then f = 0. We see

that

〈f, λG(γ)ψi〉 = 〈
∑
γ′∈Γ

aγ′σαλG(γ′)χT , λG(γ)mG(T )−1/2
δα∑

j=1

uijσαλG(γj)χT 〉

= mG(T )−1/2
∑
γ′∈Γ

δα∑
j=1

aγ′uij〈σαλG(γ′)χT , λG(γ)σαλG(γj)χT 〉

= mG(T )−1/2
∑
γ′∈Γ

δα∑
j=1

aγ′uij〈σαλG(γ′)χT , σαλG(α(γ))λG(γj)χT 〉

= mG(T )−1/2
∑
γ′∈Γ

δα∑
j=1

aγ′uij〈λG(γ′)χT , λG(α(γ)γj)χT 〉

= mG(T )−1/2
∑
γ′∈Γ

δα∑
j=1

aγ′uijmG(γ′T
⋂
α(γ)γjT )

= mG(T )−1/2
∑
γ′∈Γ

δα∑
m=1

δα∑
j=1

aα(γ′)γm
uijmG(α(γ′)γmT

⋂
α(γ)γjT )

= mG(T )−1/2
δα∑

m=1

aα(γ)γm
uimmG(α(γ)γmT )

= mG(T )1/2
δα∑

m=1

aα(γ)γm
uim.

Thus, 〈f, λG(γ)ψi−1〉 = 0 for any γ∈Γ, i = 2, 3, · · · , δα means
∑δα

m=1 aα(γ)γm
uim =

0 for any γ∈Γ, i = 2, 3, · · · , δα. Since f∈W0 and all entries on the first row of the

unitary matrix U = (uij) are constant, proposition 4.4 implies that
∑δα

m=1 aα(γ)γm
u1m =

0 for any γ∈Γ. Thus,
∑δα

m=1 aα(γ)γm
uim = 0 for any γ∈Γ, i = 1, 2, 3, · · · , δα. This

shows that, for any γ∈Γ, the vector (aα(γ)γ1 , aα(γ)γ2 , · · · , aα(γ)γδα
) is perpendicu-

lar to all rows in the unitary matrix U . So, aα(γ)γm
must be 0 for any γ∈Γ and

m = 1, 2, · · · , δα. Therefore, aγ = 0 for any γ∈Γ. Hence f = 0. That is, The set F

is complete in W0. �

Theorem 4.6. Given ψi−1, i = 2, · · · , δα that are defined in Proposition 4.5,

the set {σj
αψi : j∈Z, i = 1, 2, · · · , δα − 1} forms a complete orthonormal basis for

L2(G).



QINGDE YANG AND KEITH F. TAYLOR 21

5. EXAMPLES ON THE HEISENBERG GROUP

The theorems in sections 3 and 4 hold for general space L2(G), where G is

a locally compact group which includes the Heisenberg group as an important

example. In this section, we show examples to illustrate those theorems. All we

need to do is to construct the refinable functions of self-similar tile on the Heisenberg

group. According to the theorems in sections 3 and 4, the existence of refinable

functions of self-similar tile will automatically lead us to build MRAs, hence to

create Haar-like wavelet bases on the Heisenberg group.

Let G be the 2d + 1 dimensional Heisenberg group Hd, which is a nilpotent

Lie group with underlying manifold R2d+1. We denote points in Hd by (q, p, t)

with q, p∈Rd, t∈R, and define the group operation by (q, p, t)(q′, p′, t′) = (q +

q′, p + p′, t + t′ + 1
2 (p·q′ − p′·q)). Let Γ be the following uniform lattice subgroup

in Hd: Γ = { (m,n, l/2) : m, n∈Zd , l∈Z}. And let α be a dilative automorphism

given by α(q, p, t) := (2q, 2p, 22t). Then (Γ, α) forms a scaling system on Hd with

δ = [Γ : α(Γ)] = 22(d+1).

It is known (Folland [6]) that every automorphism α of Hd can be uniquely de-

composed as a product of four factors α1α2α3α4, with αj∈Gj (j = 1, 2, 3, 4), where

Gj is defined as follows: G1 denotes the symplectic group ps(d,R); G2 consists of

inner automorphisms: (a, b, c)(q, p, t)(a, b, c)−1 = (q, p, c+ a·p− b·q); G3 consists of

dilations δ[r] defined by δ[r](q, p, t) = (rq, rp, r2t); and G4 consists of two elements,

the identity and the automorphism i defined by i(q, p, t) = (p, q,−t).

We restrict ourself to constructing special self-similar tiles for (Γ, α) on Hd,

where α can be written as α1α3α4. That is, α(q, p, t) = (Dα(q, p), rαt), where rα is

some integer and Dα is a dilative automorphism from R2d to R2d. The fundamental

idea to construct such self-similar tiles for (Γ, α) is the following. We decompose

the process of construction into two steps: first constructing in the direction R2d,

that is, constructing self-similar tiles for the scaling system (Z2d, Dα). The work

in [7] provides us details for this. Then, based on the self-similar tile obtained

for (Z2d, Dα), we construct a self-similar tile in the direction R for (Γ, α). Such
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a self-similar tile is called a self-similar stacked tile due to the obvious geometric

reason.

For simple notation reason, let’s use (x, t) to denote the element (q, p, t) in

the Heisenberg group, that is, x = (q, p)∈R2d. Then the group law becomes

(x, t)(x′, t′) = (x+x′, t+ t′+S(x, x′)) where S(x, x′) = ((q, p), (q′, p′)) = 1/2(p·q′−

q·p′) is a skew-symmetric bilinear form from R2d×R2d to R.

Let A be a self-similar tile for the scaling system (Z2d, Dα) on R2d. The exis-

tence of A is confirmed by [7]. Such an A is measurable. Without loss of generality,

we can assume that

A
⋂

(k+A) = ∅ for k 6=0, k∈Z2d and
⋃

k∈Z2d
(k+A) = R2d, and Dα(A) =

⋃s

i=1
(ki+A)

where k1, k2, · · ·, ks are lattice points that are representatives of distinct cosets

in Z2d/Dα(Z2d). Thus, the Lebesgue measure of A must be 1, see lemma 1 in

[7]. Since the measure of A is 1 and the disjoint union
⋃

k∈Z2d(k + A) fill out the

whole space R2d, we could arrange a one to one correspondence between the lattice

points in Z2d and the tiles. Or simply speaking, we can assume that each tile only

contains one lattice point. For x∈R2d, we use [x]A to denote the lattice point that

corresponds to the tile which contains x. Let < x >A=x− [x]A∈A.

Let F be a bounded measurable real-valued function defined first on A and then

extended periodically to the whole space R2d. Thus, we have F (x) = F (< x >A).

We are going to produce a self-similar tile, denoted by T , for the scaling system

(Γ, α) as follows: T = { (x, t)∈Hd : x∈A, 0≤t − F (x) < 1/2 }, where F is to be

determined later. We can view F (x) as a piece of surface over A and think of T

as a solid over A bounded between two surfaces F (x) and F (x) + 1/2. Thus the

volume of T is equal to 1/2. So we can think of the “thickness” (in the direction

of t-axis) of tile T as 1/2.

For an element γ = (a, l/2)∈Γ, the image of T under the left translation by γ

is given by γT = { (x, t)∈Hd : x − a∈A, 0≤t − l/2 − S(a, x − a) − F (x) < 1/2 }.

To show that
⋃

γ∈ΓγT is a tiling of Hd, we need to check two things. (a)
⋃

γ∈ΓγT

is a disjoint union. (b)
⋃

γ∈ΓγT fills out the whole space Hd. For (a), if a6=a′, then
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(a, l/2)T
⋂

(a′, l/2)T = ∅ since the image (a, l/2)T of T is in a stack of tiles lying over

the tile (a, 0)T . If l and l′ are different integers, then (a, l/2)T and (a, l′/2)T are

two different tiles in one stack located at tile (a, 0)T , but (a, l/2)T
⋂

(a, l′/2)T = ∅

since the thickness for each tile is 1/2. As for (b), for any (x, t)∈Hd, there exists a

unique element a∈Z2d such that x − a∈A. And also there exists a unique element

l∈Z with the property 0≤t− l/2− S(a, x− a)− F (x− a) < 1/2.

Now, we can start constructing a self-similar stacked tiling related to the tile

A in R2d. From the explanation above, we know that the key point is to determine

the surface described by the equation t = F (x) on A. We start by choosing

Γ0 = { (ki, c) : i = 1, 2, · · ·, s, and c = 0, 1/2, 1, 3/2, · · ·, (|rα| − 1)/2 }.

Then we have

Proposition 5.1. T is a self-similar stacked tile for (Γ, α) with the above

choice of the finite set Γ0 if and only if the function F (x) on A satisfies

F (x) =
1
|rα|

F (< Dα(x) >A) +
1
|rα|

S([Dα(x)]A, < Dα(x) >A).

Proof. By the choice of Γ0, we have⋃
γ∈Γ0

γT (disjoint finite union)

= { (x, t) : x∈
⋃s

i=1
(ki +A), 0≤t− S([x]A, < x >A)− F (< x >A) <

|rα|
2

}

= {(x, t) : x∈
⋃s

i=1
(ki +A), 0≤ 1

|rα|
t− 1

|rα|
S([x]A, < x >A)− 1

|rα|
F (< x >A) <

1
2
}.

Geometrically speaking, there are s stacks of tiles in
⋃

γ∈Γ0
γT . For each stack there

are |rα| tiles with the “thickness” for each tile 1/2, so the “thickness” for each stack

is |rα|×1/2. On the other hand,

αT = α{ (x, t)∈Hd : x∈A, 0≤t− F (x) < 1/2 }

= { (Dα(x), rαt)∈Hd : x∈A, 0≤t− F (x) < 1/2 }

= { (x, t)∈Hd : Dα
−1(x)∈A, 0≤ t

|rα|
− F (D−1

α (x)) < 1/2 }

= { (x, t)∈Hd : x∈Dα(A) =
⋃s

i=1
(ki +A) and 0≤ t

|rα|
− F (D−1

α (x)) < 1/2 }.
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These two sets are equal if and only if

F (D−1
α (x)) =

1
|rα|

F (< x >A) +
1
|rα|

S([x]A, < x >A).

Or equivalently

F (x) =
1
|rα|

F (< Dα(x) >A) +
1
|rα|

S([Dα(x)]A, < Dα(x) >A).

�

This proposition yields the following theorem.

Theorem 5.2. For the choice of Γ0 given above, there exists a unique self-

similar stacked tile T for (Γ, α). The function F (x) is given explicitly by

F (x) =
∞∑

m=1

1
|rα|m

S([Dm
α (x)]Amod (Dα(Z2d)), < Dm

α (x) >A),

where a lattice point k mod (Dα(Z2d)) equals the representative of the coset which

contains element k.

Proof. Define a mapping M from L∞(A) to L∞(A) by

Mf(x) =
1
|rα|

F (< Dα(x) >A) +
1
|rα|

S([Dα(x)]Amod (Dα(Z2d)), < Dα(x) >A),

where L∞(A) is a Banach space with the supermum norm. Given f, g∈L∞(A), we

have

‖Mf −Mg‖L∞(A) = ‖ 1
|rα|

f(< Dα(x) >A)− 1
|rα|

g(< Dα(x) >A)‖L∞(A)

≤ 1
|rα|

‖f − g‖L∞(A).

So M is a contractive mapping. There exists a unique fixed point, denoted by F (x).

Especially, we have F = limm→∞M
m0. Thus,

F (x) =
∞∑

m=1

1
|rm

α |
S([Dm

α (x)]Amod (Dα(Z2d)), < Dm
α (x) >A).

�

Now we can provide the first example based on Theorem 5.2.
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Example 5.3. Consider α from Hd to Hd defined by α(q, p, t) := (2q, 2p, 22t).

It is clear that α is in G3. We can write α(q, p, t) = (Dα(q, p), rαt) = (2(q, p), 4t).

Thus, rα = 4 and Dα is the dilative automorphism on R2d. Let A = { x∈R2d :

0≤xj < 1, j = 1, 2, · · ·, 2n } denote the “half open and half closed” standard tile

in the Euclidean space R2d, where xj denotes the jth component of x. Then it is

obvious that
⋃

a∈Z2d(A+ a) (disjoint union) fills out the whole space R2d. Clearly,

A is a self-similar tile. If we choose Γ0 = { (a, b) : aj = 0 or 1, 1≤j≤2n, b =

0, 1/2, 1 or 3/2 }, then by Theorem 5.2, T = { (x, t)∈Hd : x∈A, 0≤t−F (x) < 1/2 }

is a self similar-tile for (Γ, α) with F defined by

F (x) =
∞∑

m=1

1
4m

S([Dm
α (x)]Amod (Dm

α (Z2d)), < Dm
α (x) >A)

=
∞∑

m=1

1
4m

S([2mx]mod2, < 2mx >),

where [2mx]mod 2 means ([2mx1]mod 2, [2mx2]mod 2, · · · , [2mx2n]mod 2).

Example 5.4. In this example, we choose a different dilative automorphism

on Hd which is defined as follows. α(q, p, t) := (2q, 3p, 6t). This α can be de-

composed as α = α1α3, where α1(q, p, t) := (
√

2
3q,

√
3
2p, t) and α3(q, p, t) :=

(
√

6q,
√

6p, (
√

6)2t) = (
√

6q,
√

6p, 6t). Further, α can be written as α(q, p, t) =

(Dα(q, p), 6t), where Dα is a dilative automorphism from R2d to R2d defined by

Dα(q, p) := (2q, 3p). Thus, we have rα = 6. Still using the same Γ as the one

used in Example 5.3, we choose Γ0 as the set Γ0 = {(a, c)}, where aj = 0 or 1 for

1≤j≤d, aj = 0, 1 or 2 for d<j≤2d and c = 0, 1/2, 1, · · ·, 5/2. So the set A in

Example 5.3 is a self-similar tile for the scaling system (Z2d, Dα) with dilated tile

by Dα consisting of 6 original tiles. With this self similar tile in R2d, by Theorem

5.2 we obtain a self-similar stacked tile in Hd:

T = {(x, t)∈Hd : x∈A, 0≤t− F (x) < 1/2}

with F (x) constructed by

F (x) =
∞∑

m=1

1
6m

S([Dα
mx]Amod (Dα(Z2d)), < Dα

mx >A),
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where [Dm
α x]Amod (Dα(Z2d)) means [2mx1] mod 2, [2mx2] mod 2, ..., [2mxn] mod

2 and [3mxn+1] mod 3, [3mxn+2] mod 3, ..., [3mx2n] mod 3.

Generally speaking, whenever an automorphism α from H2d to H2d can be

decomposed as α(q, p, t) = (Dα(q, p), rαt) and there exists a self similar tile A in

R2d associated with Dα, then with this A, we can always construct a self similar

tile in Hd associated with α.

The above functions F serve as scaling functions to generate MRAs for the

space L2(Hd). Since F > 0 has compact support, Proposition 3.6 shows that

F is α-substantial. Therefore, F will generate MRAs for L2(Hd) by Theorem

3.5. Theorem 4.6 guarantees the existence of Haar-like wavelet bases for the space

L2(Hd).

6. CONCLUSION

In this paper we are able to give the characterizations for a refinable function

that is capable of generating an MRA in the space L2(G), where G is a locally

compact group that does not have to be abelian. In deriving these characterizations,

we did not use any information from the Plancherel side. In fact, for a general

locally compact group, we may not be able to build the Fourier transform on it.

However, in the case that the Fourier transform can be built up in the space L2(G)

for some non-abelian locally compact groups, how can we characterize a refinable

function to have a scaling function using the information from the Plancherel side?

In particular, if G is a second countable, type I, unimodular locally compact group,

do those results obtained by [2] in the space L2(Rd) mentioned in the introduction

still hold in the space L2(G)? The authors intend to explore these questions in

their future study.
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