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ABSTRACT. The multiresolution analysis (MRA) on certain non-abelian locally
compact groups G is considered. Characterizations for a refinable function to
generate an MRA in L2(G) are given. Here, no regularity properties or decay
conditions are placed on the scaling functions. MRAs for L?(G) generated by
a self-similar tile as a scaling function are shown and Haar-like wavelet bases
are constructed. Concrete examples related to Heisenberg group are provided

to illustrate the theorems.
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1. INTRODUCTION

The theory of wavelets in the Hilbert space L?(R%) has been studied extensively
in recent decades. The principal framework for constructing and understanding
wavelet bases for the Hilbert space L?(R?) is the concept of multiresolution analysis
(MRA) [4, 8, 10]. For a general Hilbert space H, the notion of MRA can be
formulated with respect to a distinguished affine structure (II, o) in the following

way [1]. Let II be a countable, discrete subgroup of the group of unitary operators
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on ‘H and o be another unitary operator on H satisfying o ~*IloCII and 1 < [II :
o Mo] < co. An MRA with the scaling vector (or function) ¢€H for the affine
structure (II, o) is a doubly infinite sequence {V; : j€Z} of closed subspaces of H
with the following properties:

) {u¢ : uell} is an orthonormal basis for Vp;

ii) V; = 07V, for all j€Z;

(i

(

(i) V; CV]_H, for all j€Z;

(iv) M;ez V5 = {0} (the triviality of the intersection);
(

V) UjEZ V; = 'H (the density of the union).

A scaling vector ¢€H is called refinable if pe< {o(u¢) : u€ll} >, the closure
of the finite linear combinations of the functions from < {o(u¢) : uecll} >. If ¢
is refinable, condition (iii) in the above definition is satisfied. Using the unitary
operator o and the space Vp, we get a sequence {V; : j€Z} of nested closed subspaces
of H. In order to construct an MRA, the triviality of the intersection and the
density of the union become two crucial conditions. We will see in section 3 that
the triviality of the intersection is a direct consequence of conditions (i), (ii), and
(iii). The question now is: when does the density of the union hold? To answer

this question, let us first take a look at the Hilbert space L?(R%).

In L?(RY), the above mentioned affine structure is I = {7}, : k€Z?} and
o = op, where T, is the translation operator defined by T, f(-) := f(- — z) for any
fEL?(RY) and op is the dilation operator defined by opf(-) = 61/2 f(D-) for any
feL?(R%) with D being the dilation matrix and §p = |det(D)|. A special dilation
matrix is D = 2I, where I is the identity matrix. Suppose ¢p€L?(R?). Define
V(4) as {Tx¢ : k€Z4}. Then V(¢) is the smallest closed shift invariant subspace
generated by ¢, that is, T}, f€V () for any f€V(¢) and any k€Z?. Now define
Vi = 0217V (¢) for any j€Z. The sequence of the closed subspaces {V; : jE€Z}
is nested if ¢ is refinable. A scaling function must be a refinable function. But
the other way around is not true. Boor, DeVore and Ron [2] showed that the
refinability of ¢ alone is not enough for ¢ to generate an MRA. For a refinable

function to generate an MRA, additional conditions are required. They proved
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that m = L2(R?) if and only if ¢ is refinable and Ujezsupp(@) = R? modulo
a null-set, where ¢;(-) 1= o27¢(:) = 29/2¢(27.), @ is the Fourier transform of
¢, and supp(g/b;) = {¢cR? . @(5)7&0 }. They also gave a sufficient condition
for the density of the union: m = L%(R%) if ¢ is refinable and gg is nonzero

a.e. in some neighborhood of the origin. This sufficient condition can be easily

proven. If (E is nonzero a.e. in some neighborhood of the origin, then we see that

UjeZSUpp(ng) = R because 745;() = ;ﬁ\(/QJ)

In this paper, we are interested in MRA defined over a more abstract Hilbert
space. More specifically, we are interested in MRA defined over Hilbert spaces of the
form L?(G), where G is some locally compact group. In the case that G is an abelian
locally compact group, Dahlke has successfully extended the concept of MRA to
L?(G) [38]. The main purpose of this paper is to develop some characterizations
of functions which can serve as scaling functions in the more general case where
the Hilbert space is L?(G), where G is a locally compact group, but may or may
not be abelian. From the abstract harmonic analysis point of view, [2] uses the
information on the Plancherel side to describe the qualities of a refinable function
that can generate an MRA for the space L2(R?). For a general locally compact
group G, it may be impossible to determine the Plancherel measure on the dual
space G. Thus, the information on the Plancherel side is not available in general
in this case. In contrast to [2], we only use the concepts coming within the space
L?(G) to develop characterizations of functions that can serve as scaling functions
without looking at the Plancherel side. Here, we note that we do not need to
assume that the scaling functions have regularity properties, nor impose any decay
conditions. To make the argument more general, we only assume that the scaling

functions are elements in the space L?(G).

Analogous to the construction of MRA in the space L%(R?), to build an MRA
on a general group G, the group G must have a uniform lattice subgroup I' and a
dilative automorphism « such that a(I')CT" and 1 < [I' : a(T')] < oo (see section
2 for the precise definition). We call (T', @) a scaling system. The corresponding

affine structure on L?(G) is then provided by (I, 0, ), where I = Ag(T'), Ag is the
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left regular representation of G, o, is the unitary operator defined by o f(x) =

Jg/Zf(a(x)) and d, is the factor by which « scales the Haar measure on G.

An important example is G = H, the three dimensional nilpotent Lie group.
H is realized as follows: H = {(p,q,t) : p,q,t€R} with group product given by
(p,q, )0, d',t') = (p+p,q+d t+t' +3(pd —qp')). A choice for a uniform lattice
in His I' = {(m,n,1/2) : m,n,l€Z} and a compatible dilative automorphism is
a(p,q,t) = (2p,2q,22%t), for all (p,q,t)€H. This example and variations on it will

be used to illustrate our main results later on.

For any locally compact group G and a subset FCL?(G), we say that the family
F is a left zero divisor in L?(G) if there exists a g€ L?(G), g#0, such that fxg = 0,
for all feF. If a is an automorphism of G, a single function f€L?(G) is called

a-substantial if {o2 f(-) : jEZ} is not a left zero divisor in L?(G).

If G = R and FCL?(G), then F is a left zero divisor in L?(G) if and only
if there exists a measurable subset F of R, of positive Lebesque measure, such
that f(w) = 0, for all feF and almost all weE. If « is the automorphism given
by «a(t) = 2t, for all t€R, then a function feL?(R) is a-substantial if and only

if there exists a measurable subset ACR such that f(w)#£0, for almost all weA

and (J..,2A = R. In the particular case that f(w);«éo for almost all w in a

jEZ

neighborhood of the origin, then ;.4 27supp(f) = R. So any such function f is

a-substantial.

Despite the lack of tools from Fourier analysis to help us to recognize a-
substantial functions in the case of a general locally compact group G, we are
able to show that if « is dilative, feL?(G), f>0, f#0 and is of compact support,

then f is a-substantial. This is done in section 3.

Consider a locally compact group G. A subspace X of L?(G) is called left shift
invariant if Ag(v)XCX, for all v€l'. For ¢€L?(G), let V(¢) denote the smallest
left shift invariant closed subspace of L?(G) containing ¢. Define V; = o7, V(¢),
for all j€Z. Then the fact that ¢ is refinable implies that V,CV; (then V;CVj4q,
for all j€Z). Define ¢;(z) = od,p(z) = 55/2¢(aj(x)), for any z€G, j€EZ.
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The main results of this paper are summarized in the following theorems.

Theorem 3.1(Triviality of the intersection): Let G be a locally compact group
with a scaling system (T,a). Let ¢ be a refinable function of L*(G) and V;, j€EZ
defined as above. Suppose that the shifts of ¢, that is, {Ly¢ : v€I' }, constitute an
orthonormal basis for Vo, then (;c5V; = {0}.

Theorem 3.5 (Density of the union): Let ¢ be a refinable function in L?(G)
and Vj, jEZ defined as above. Then the following are equivalent:

(a) UjezVi = L*(G)

(b) {¢j}jez is a left nonzero divisor in L*(G)

(¢c) ¢ is a—substantial.

Theorem 4.3: Let G be a locally compact group and (T',«) a scaling system
on G. Suppose that there exists a self-similar tile T for (I',«) on G. Then ¢ = xr
will generate an MRA for the space L?(G).

Theorem 4.6: The MRA generated by a self-similar tile will always guarantee

a Haar-like orthonormal wavelet basis for the space L*(G).

The rest of the paper is arranged as follows. Section 2 provides the basic
concepts, definitions of the terms and some basic results on a scaling system and its
corresponding affine structure. In section 3, we first prove the intersection triviality
theorem. Then we prove several propositions that lead to the proof of theorem 3.5
as stated above. Section 4 concerns with refinable functions of self-similar tile in
the space L?(G), MRAs generated by using these refinable functions as scaling
functions, and Haar-like wavelet bases associated with these MRAs. In section 5,
we turn to the examples of the Heisenberg group. We draw upon the idea of [12]
to give an explicit construction of refinable function on the Heisenberg group. This
construction will provide examples to illustrate our theorems established in sections

3 and 4.

2. BASIC CONCEPTS

Let G be a locally compact group with left Haar measure m¢g. Integration

with respect to mg will be denoted simply by fG f(x) dzx, for any appropriate
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complex-value function f on G. Let L?(G) denote the Hilbert space of (equivalence
classes of) square integrable complex-valued functions on G with inner product:
< f,9>= |5 f(x)g(x) dz, for f,geL?(G). The left regular representation of G
is the faithful homomorphism A\g of G into the unitary group on L?(G) given by
Aa(2)f(y) = f(x~Yy), Y,y € G, fEL?*(G). If the group of unitary operators on
L?(G) is endowed with the strong operator topology, then \g is continuous. If « is
an automorphism (topological homomorphism and algebraic automorphism) of G,
then f— [ f(a(x)) dz is a left invariant integral so there exists a positive constant
0« SO that fG f(x) dz =6, fG f(a(z)) dz, for any appropriate function f on G. This
means that a induces a unitary operator o, on L?(G) by oo f(z) = 6é/2f(a(w)),

for all x€G, feL?*(G). Note that, for any j€Z, o/ is an automorphism of G and
oo’ flx) =67/ f(ad (x)), for all ze@G, feL?(Q).

An automorphism « of G is called dilative if, for any compact KCG and any
neighborhood U of the identity e of G, there exists an ng€N such that KCa™(U),
for all n>ng. Note that « is dilative implies that é, > 1 but the converse is not

true.

A subgroup T of G is called a uniform lattice in G if T" is discrete, countable
and G/T is compact. Suppose I' is a uniform lattice in G and « is a dilative
automorphism of G such that a(I')CT" and 1 < [I' : o(T")] < 0o. Then we will call

(T, ) a scaling system (based on G).

For many of the results of this paper, we assume that (I, o) is a scaling system.
This condition imposes strong restrictions on the group G and the discrete subgroup
I'. We will not fully investigate these restrictions here, but we need to make a few

observations.

PROPOSITION 2.1. Let (T', @) be a scaling system. Then the following conditions
hold.

(a) G is a unimodular group;

(b) T is not an open subgroup of G;

(¢) ma(l') = 0;
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(d) For any jo€Z, | a=I(T) is dense in G.

J=Jjo

PRrROOF. (a) follows from numbers 1.8 to 1.11 on page 21 in [11] for example.
To see (b), suppose I' were an open subgroup of G. Then it is a neighborhood
containing the e. Since «(T")CT, if n>1, then o™(T")CT. Since 1 < [I": a(T")] and «
is an automorphism of G, I is not all of G. Taking U =T and K = {z} for some
x€G\I', then we would have that K = {z}Ca™(I')CT" by the dilative property of

«, which is a contradiction to the fact that z€G\I'. Then (c) follows from (b).

For (d), choose a compact subset K of G such that G = U’yeF K; this is
possible because T' is a uniform lattice in G. For any x€G and any neighborhood
W of x, let U be a symmetric (U~! = U) neighborhood of e such that UzCW.
Since « is dilative, there exists ng€N such that j>ng implies KCa(U); that is,
a™J(K)CU. Then
G=a7(@)= a7 (Ky)=Ja P (K)a ()] Ua™ (7).
~er ~er ~er

Thus, there exists a y€I such that zeUa ™7 (). Hence, z = ua~ (), for some ueU
and a7 (y) = u~teeUxCW. Therefore, W(a =7 (I')#0, for any j>ng. Because

a () Ca~U+t(T) for all j, |J,~, a7(I') is dense in G for any fixed jo€Z. O

Jj=Jo

If (T',a) is a scaling system and ¢€L?(G), we use ¢ to generate a family of
closed subspaces of L?(G) in analogy with the role played by a scaling vector in an
MRA. Let V(¢) denote the closed linear span of {Ag(7)¢ : v€I'}. For each j€Z, let
Vi = 0,7V (4). A function of the form Ag(7)¢ is called a shift of ¢, so the shifts of
¢ forms an orthonormal basis exactly when {Ag(y)¢ : v€l'} forms an orthonormal
basis of V(¢). Moreover, the fact that ¢ is refinable exactly means V,CV;. So
V;CVjqq, for all jeZ.

PROPOSITION 2.2. Let (I',a) be a scaling system and ¢€L*(G). Then the
following conditions hold.

(a) 0uAa (Voo™ = Aa(a™9(¥)), for all jE€Z, ~€T,

(b) If 11 = A\g(T), then (I1,04) is an affine structure on L*(G),

(c) Vi = <{Ac(W)oal¢: vea I (T)} >, for jEL.
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ProoF. For feL?(G) and z€G, compute
oo’ Aa(V)oa 7 f(x) = 61 Aa(Moa ™ (e (x)) = 672007 f(y 0 ()

= fla™(yN)z) = Aa(a™ (7)) f (@)
This establishes (a). In particular, o, 'Ag(7)oa = Ag(a(7)). So, if IT = Ag(T),
then o, “Tlo, = Ag(a(T)). Since Ag is a faithful homomorphism, [II : ¢, ~!Io,] =
[ : ()] and (II, 0,) is an affine structure in the sense of [1]. So (b) holds and (c)

also follows from (a) and the definition of Vj. O

3. THE CHARACTERIZATIONS OF A SCALING FUNCTION

In this section, the first two theorems stated in the introduction are proven.
We first prove the triviality of the intersection because it is the direct consequence
of refinability and orthogonal shifts. Then we establish the density of the union by
considering several propositions. Finally, we show that the space L?(G) provides

an abundant supply of a-substantial functions.

THEOREM 3.1. (Triviality of the intersection) Let G be a locally compact group
with scaling system (I',«). Let ¢ be a refinable function of L?(G) and define
V; = 02V (¢) for jEZ. Suppose that the shifts of ¢, that is, {T'y¢ : v€L'}, constitutes
an orthogonal basis for Vp, then (,, V; = {0}.

PROOF. Since ¢ is refinable, V;CV;1, for all j€Z, so

(V=1 V-

JEZ neN

Since ¢ is a unit vector with orthogonal shifts and o is unitary, for each j€Z,
{67(Ag(7)¢) : v€l'} is a orthonormal basis for V;. The orthogonal projection P; of
L?(G) onto V; is given by

Pif =) < f,0'(Aa(7)0) > 0 (Aa(7)$), VFEL*(G).

yel’

Let fe ﬂjeZVj? so Pjf = f, for all j€Z. Let € > 0 be arbitrary. Select a
continuous function of compact support, fi, so that ||f — fi|l < e. Then ||f —

Pifille = 1P5(f = f)lla < € and so [|f[[2<[|P; f1ll2 + ¢, for any jEZ.



QINGDE YANG AND KEITH F. TAYLOR 9

Let K be a compact subset of G so that supp(f1)CK and let M = sup{|fi(z)| :
x€K}. Let W be a neighborhood of e in G such that WI' = {e}. Let U be
another neighborhood of e such that UU~'CW. Then, for any vi, v2€L, y1%v2
implies v, 'UMy, 'U = 0.

Since « is dilative, there exists ng€N such that KCa™(U) for any n>ng; that
is a™™(K)CU if n>ng. Therefore, for 1, 7€', with y17#v2 and n>ng, we have
yita M (K) g e ™(K) = 0. Let E_, = U,erv™ La=(K). If n>ng, we have
additivity of the characteristic functions,

XE =D Xt (k)

yel

Now, fix a point z€G\I'. Since I is discrete in the relative topology of G, it is
a closed subgroup. Thus, there exists a symmetric neighborhood V of e such that
2V = (. Then x is not in v~V for any v€l'. Using the dilative nature of «
again, there exists n;>ng such that n>n implies o~ (K)CV. So, for any n>nq,
XE_, (x) = 0. Therefore, the sequence (xg_, )52, converges to 0 pointwise on G\T',

so it converges to 0 pointwise almost everywhere on G, since ma(I') = 0. For n>n;,

IP-nfils = D 1< fio "(Aa(v)e) >

yel’
= Y 6" | h@eé(yTa(x)) daf?
Ry
< San @t e @) do?
yel’
< Y s /|XK Jllo(r Lo~ (@))] da)?
< KPS 5" [ Jotr @) do
_ 2
- Z/ g IS

= MPmg(K)? / X (@) dy—0, as n—oo,
G

by the Lebesque Dominated Convergence Theorem. The last inequality in the above

calculation is an application of the Cauch-Schartz inequality. Since || f||2<||P-n f1ll2+
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€, for all n, || f|l2<e and € > 0 being arbitrary, we conclude that f = 0. Therefore,
ﬂjez V; ={o0}. ([l

REMARK 3.2. In Theorem 3.1, one can replace the assumption of orthogonal
shifts with the assumption that the shifts of ¢ constitute a frame in V}, as for
the L2(R?) situation, but we preferred to write out the clearer argument with the

stronger assumption since we need orthogonal shifts elsewhere.

A subspace X of L?(G) is called left translation invariant if Ag(z)f€X, for all
f€X and x€G. For a family of functions FCL?(G). Let X (F) denote the smallest

closed left translation invariant subspace of L?(G) which contains F. Obviously,

X(F) = < Da@)f : 2€G, fEF} > = {Aa(2)f : 2€G, feFY- .

Recall that we call F a left zero divisor in L?(G) if there exists a nonzero g in L?(G)

such that fxg =0, for all feF.

PROPOSITION 3.3. Let G be a unimodular locally compact group and let FCL*(G).
Then X(F) = L*(G) if and only if F is not a left zero divisor in L*(G).

PrOOF. For geL?(G), let g*(z) = g(x~1), for all z€G. Then g—g* is a norm
preserving conjugate linear bijection of L?(G) (this is where unimodularity of G is

used). Now, for f,geL?(G) and €@, the following is a standard calculation,
frg(z) = /Gf(y)g(y‘lw) dy

- / f)7 @ Tg) dy
G

/ f(zy)a* () dy
G

= <Xgl@™Nf,g">.

Thus, fxg = 0, for all f€F if and only if g*€{\g(2)f : 2€G, fEF}+ = X(F)*.
Therefore, X (F) = L?(G) if and only if F' is not a left zero divisor in L?(G). O

We are most concerned about the nature of X (F) where F = {0,7¢ : jEZ}

and ¢ is a refinable function associated with a scaling system.
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PROPOSITION 3.4. Let (T', «) be a scaling system and let ¢ be a refinable func-

tion in L*(G). Then X ({07 ¢ : jEZ}) = m

PROOF. According to Proposition 2.2 (c), for any k€Z, V} is generated by
DeW)ake : vea™ ()}, Thus, ViCX({oa’¢ : jEZY}), for all k€Z. There-
fore, mgX({aoﬂ(b t jEZ}). Let fel;czVj. Then f€eVj, for some k, so
A (V) fEVL, for all vEa™*(T'). But then feVj, for any j>k, so A\a(v)f€e Ujsk Vi
for any ve UjZk a~7(T). Because of the nesting properties, | J ez Vj 1s invariant un-

der left translations from (J;c a7 (T). Therefore, (J,;_, V; is also invariant under

JEZL

left translations from (J,, a™(T).

Now, for any felJ.., V; V; and any xz€G, use Proposition 2.1 (d) to select a net

JEL
(v3) of elements from (J;c4 a™J(T') such that vg—x in G. Since A\ is continu-
ous with respect to the strong operator topology, Ag(vg)f—Ag(x)f. Therefore,

Ac(z )fGU]Ez V;, for all z€G. Hence, X ({0,7¢ : jEZ}) = Ujez Vi O

We are now ready for the main theorem characterizing scaling functions for a
scaling system (T, a). Recall that, for p€L2(G) and j€Z, 0,0 (z) = 62/ 2p(ad (z))
and ¢ is a-substantial if and only if {o,7¢ : jEZ} is not a left zero divisor in L?(G).
Combining Proposition 3.3 and 3.4 gives us that UJEZ V; = L*(G) if and only if ¢

is refinable and a-substantial. Thus we have the following theorem.

THEOREM 3.5. (Density of the union) Let ¢ be a refinable function in L?(G)
and Vj, j€Z defined as above. Then the following are equivalent:

(2) UjezVi = L*(G)

(b) {¢;}jez is a left nonzero divisor in L*(G)

(¢c) ¢ is a-substantial.

Next we show that the condition of being a-substantial is not really that im-

posing.

PROPOSITION 3.6. Let G be a locally compact group with a dilative automor-
phism a. Let f€L?(G) satisfy f>0, f#0 and there exists a compact subset K of G
such that f(x) =0, for almost all e G\K. Then f is a-substantial.
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PROOF. Since f is compactly supported, it is actually in L(G). Without loss
of generality, assume |/f|y; = 1. For each neN, define f,(z) = 1 f(a"(x)) =
JS/QUQ"f(x), for all zeG. Then [, fu(zx) dz = 1, for all neN. Therefore, for any
geL*(G),

fnxg(y) —gly) = /an(SC)[AG(I)g(y) - g(y)ldz,

for all ye@G. Using a version of Minkowski’s inequality for integrals instead of sum,

see [5], VI.11.13 on page 530, we get

kg —gllz = { /G Furg(y) — 9(y) Py}

{ /G | /G No(@)9() — 9w)]fu () daPdy}V/?

IN

/ { / e (@)g(y) — 9()Pdy} 2 fu()de
G G
- / M (@)g — gllzfulz)de.

G

For any € > 0, there exists a neighborhood U of e such that ||[Ag(z)g — g2 < €,
for all z€U (this is just the strong operator continuity of Ag again). Since « is
dilative, there exists noeN such that o™ (K)CU, for all n>ng. The support of
fn is contained in a~"(K), so n>ng and fy,(z)#0 implies ||Ag(x)g — g]l2 < €, for

almost every x€G. Therefore, n>ng implies

g =< | Wo(@ls = alafula) drse [ fu(w) do =

Thus, {f, :n=1,2,3,---} forms a left approximate identity for the module action

of L?(G) on L*(G) by convolution.
Clearly o," fxg = 0 implies f,*g = 0. So g," fxg = 0, for all neN implies
g = 0, for all geL?>(G). Thus, {o,7f : jEZ} is not a left zero divisor in L?*(G).

That is, f is a-substantial. O

4. MRAS GENERATED BY SELF-SIMILAR TILES AND
HAAR-LIKE WAVELET BASES

This section concerns refinable functions that arise from self-similar tiles in

the space L?(G), the MRAs generated by a self-similar tile as its scaling function
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and Haar-like wavelet bases associated with the MRAs. Groéchenig and Madych
[7] considered the scaling system (Z?, D) on the group R?, where D is a matrix
with integer entries with all eigenvalues of which have absolute values bigger than
1. They established a connection between self-similar tilings and MRAs that are
generated by a characteristic function for its scaling function. Besides developing
the basic properties of self-similar tiles for (Z?, D), they looked at a variety of

interesting examples by choosing different integer matrices in R?. For example,

1 -1
the matrix D = has the fractal set known as the twin dragon as a
1 1

self-similar tile. Self-similar tiles are very often fractal in nature. Following Meyer’s
recipe, [7] also constructed Haar-like wavelet bases using the MRAs generated by
self-similar tiles. We have been very much inspired by the results in [7].

Let I" be a uniform lattice in a locally compact group G. A measurable subset
T of G is called a tile for G if mg(T) < 00, G =, cp 7T and me(yINT) =0, for
v€I'\{e}. SinceI'is countable, the last condition is equivalent to » . - xr (v lz) =
1, for almost all x€G, where x4 denotes the characteristic function of a subset A

of G. The next proposition contains useful observations about tiles.

PRrROPOSITION 4.1. Let I' be a uniform lattice in a locally compact group G. Let
T be a tile in G and S a measurable subset of G such that G = J, cpvS. Then (a)
ma(T) >0, (b) S is a tile if and only if ma(S) = ma(T).

PRrROOF. Since I' is countable, ma(G) = > cpma(T). So mg(T) > 0. For

(b), let

f@) = xs(v ') = xys(@)>1,

yel’ yel’
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for almost all z€G. Then, for any v/ €T,

mag(T) = /W,T 1dz< [WT f(x)dx
= /GX'y/T(z) > xs(vla)da

yel

= /GZXT(VHW)Xs(x)dw

= /Xs(fﬂ)dx:mc(s)~
e

Thus, ma(T)<mg(S) and ma(T) = ma(S) if and only if f(x) = 1, for almost all

x€v'T, for each v'€T, so, if and only if S is a tile. O

Suppose « is an automorphism of G so that (I', ) is a scaling system and 7T is a
tile for G. If a(T') = U, e, 7T, for some subset I'oCT', then we call T" a self-similar
tile for (T, a).

PROPOSITION 4.2. Let (T', ) be a scaling system of a locally compact group G.
Suppose that there exists a self-similar tile T for (I', &), then the following properties
hold:

(a) If DoCL' is such that o(T) = U, ep, YT, then Lo is a complete set of right

coset representatives for a(l') in T,
(b) [I': a(I)] = da,
(c) ¢ = ma(T)~Y?xr is a refinable function in L*(G).

PROOF. We begin by proving (b). Let 71, - - /7% be a complete set of right coset

representations for o(T") in I'. So I is the disjoint union Ule a(T)y;.

Since T is a tile for G,

k
a= a(W)[U %Y.

yel’

L we get

k
G= U vofl[U vT] = U V[U o ().

~yel

Applying o~
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Ifts = Ule a~1(y;T), then one easily checks that mg(7SNS) = 0 if y#e. Thus S is
a tile. So mg(S) = mg(T). On the other hand, mg(S) = kd, 'me(T). Therefore,
[[': ()] =k =, and (b) holds.

For (a), suppose T'g is the subset of I' such that o(T) = U, cp, 7. Then
Xa(T)(%) = D cr, Xo'r (), for almost all z. Since G is “tiled” by the sets {71 :
v€l'}, the {xy7 : v€I'} are mutually orthogonal projections in the commutative von
Newmann algebra L>°(G) (at least, that is a fancy way of thinking for the following

calculation). Each of the following equalities is true for almost every z€G.

1 = waT(x):ZXVT(afl(:c))

yer yer

= ZX&('}I)&(T Z Xua(T)
yel vea(l)

R R T Al B S P
vea(l) vea(l') v’ €l

Z Z X(V"//)T(x)

vea(I') v €To
Thus, > cr X47(2) = 22, caqr) (22, ery X(r)T(2)), for almost every z€G. This
implies that each v€T" has a unique expression of the form v/, with v€a(T") and
~v'€lg. In other words, T'g is a complete set of right coset representations for «(T")
inT.
Finally, we prove part (c). If ¢ = mg(T)~'/?xr, then ||¢|l» = 1, then ¢ has

orthogonal shifts and we can see that ¢ is refinable as follows. For any z€G,

o to(x) = 6 %p(a " (2))
= 0. Pma(T)"Pxr(a™ (z))
= 0, ma(T) " xar(x)

_ Z 5 1/2 —-1/2 X'yT( )

v€Tlo

_ Z 5 I/ZmG 1/2XT(771£E)
vE€To

= > 5P Ac()é(2).

Y€l



16 MRA ON LOCALLY COMPACT GROUPS

S0l d =Y cp, 0a/* A (7)¢ which implies ¢ = Y2 . da ' 27a[AG(7)¢]. There-
fore ¢ is refinable. O

From the proof above, we see that the number of right coset representatives for

«(T") in T is equal to d,. This number will appear later on.

Boor, DeVore and Ron in [2] showed that refinability is not enough to generate
an MRA in the space L?(R%). Using the results from section 3, we see that whenever
we have a refinable function of self-similar tile, an MRA can always be produced

by this function as a scaling function in the space L?(G).

THEOREM 4.3. Let G be a locally compact group and (T, ) a scaling system
on (. Suppose that there exists a self-similar tile 7" for (', &) on G. Then ¢ = xr

is a scaling function, that is, it will generate an MRA for the space L?(G).

PROOF. The refinability of ¢ guarantees that condition (iii) in the definition
holds. Define Vj = V(¢), the closure of {A\g(y)¢ : v € T'}. It is clear that
{A¢(7)¢ : v € T} is an orthonormal basis for V5. Thus condition (i) holds. Using
the unitary operator o,, a sequence of closed subspaces V; = a4V, are constructed.
Condition (iv) is trivial by Theorem 3.1. By Proposition 3.6, ¢ is a-substantial.
Thus the density of the union (v) is also satisfied. Therefore, an MRA for L?(G)

is generated by the self-similar tile y7 as a scaling function. (|

Once an MRA has been built up in the space L?(G), next we want to construct

wavelet basis using the structure provided by the MRA.

Let {V; : j€Z} be an MRA in the space L?(G) with a self-similar tile x7
as its scaling function for the scaling system (I',a). Let W; be the orthogonal
complement V; in V1, that is, Vj41 = V;@W,, j€Z. Then we can decompose
L*(G) as P ez Wj. To construct an orthogonal wavelet basis for L*(G), all we need
is to construct an orthogonal basis for Wy. If an orthogonal basis for Wy can be
constructed, then o7 will send this orthogonal basis for Wy to an orthogonal basis
for W, jeZ. Therefore the union of all these bases would give an orthogonal basis

for L*(G) because L*(G) = @, W;. In the space L?(R%) with a scaling system
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(Z4, D), if ¢ is a scaling function of an MRA and ¢ = |det(D)|, [9] showed that
there exist ¢ — 1 functions 91, -+ , 1,1 such that {Tj¢; : k€Z4,i =1,--- ¢ — 1}

is an orthogonal basis of Wy, where ¢;,i =1,--- ,q — 1 satisfy

(4.1) vi(x) = Y aildet(D)|'?¢(Dx — k),

kezd

with some sequences {a;.},i = 1,---,q — 1 in [2(Z%). Therefore, {aijkz/Ji :
k€74 je€Z,i = 1,--- ,q— 1} forms an orthogonal wavelet basis for L?(R?). Since

VoC Vi, there must exist a sequence {ay} in I2(Z9) such that

(4.2) o(x) = Z aropTro(z) = Z ax|det(D)|*?¢(Dx — k).

kezd kezd
To construct a wavelet basis following Meyer’s recipe, one first begins with an MRA
with a scaling function ¢ satisfying equation (4.2) and then look for wavelet basis
satisfying equation (4.1). For the MRA in L2(R?) generated by a self-similar tile
as a scaling function, [7] constructed a piecewise constant wavelet basis associated
with the scaling system (Z¢, D) following Meyer’s recipe (See [9]). It turns out that
Meyer’s recipe still works in the space L?(G) if an MRA generated by a scaling

function of self-similar tile is available.

PROPOSITION 4.4. Let xr be a self-similar tile associated with a scaling system
(T, ) and {V; : jEZ} be an MRA generated by xr. Let Tg = {~,7v2, - ,7s,} be
a complete set of right coset representatives for a(I') in I'. Then the subspace Wy
is a set of functions satisfying f(x) = >_ cp aroarc(V)xr(z) with {ay} in I2(T)

satisfying 3. cr, Qa(y)y =0 for all v€T.

PROOF. A function feW,CV; can be written as

f@) =" ayoada(xr(@) = a0 *xr(y a(x)),
vel ~el
for some sequence {a,} in [?(T'). A function geV; can be written as

9(x) = > byra(¥)xr(x) = D byxr(y 'a),

vy el vy el



18 MRA ON LOCALLY COMPACT GROUPS

for some sequence {b,/} in [*(T). Then

<fvg> = /Za’y(; /2XT fY 1a wa XT / 193 dx

G ~er vy'erl
52 S b [ o @
~yel'~'el
023D aybyma(a” () ()V'T)
yel'y'el
5&/2 Z Z a'yb'y’mG(Oéil('y)ail(T) ﬂ’}/T).
yel'y'el

Since I' = U?;l a(T")y;, which is a union of disjoint right cosets, a sum over the set
T is equal to the sum over the set Uf;l a(T")7;. Thus the above equals

651/2 Z Z avbv’mG(a_l(’V)O‘_l(T) ﬂ 7/T>

yel' v'el

0o
= 651/2 Z Z Z aa(v)viEmG(a_l(a(’Y)P)’i)a_l(T) nPyIT)

~€ET i=1 /€T

- 51/2222% (i byrma(a (a(wT [ aly

vel' i=1 v’€l’

Sa
_ 51/2zzza iy ma(a” (@) uT (aly') %))

vel' i=1 v’€l’

Oo

S anometa (U ot )

vel' i=1 v’€l Jj=1

= 61/222%(7)%5 me (o (a(y)vT))

yeli=1
50 _
= 62> ) aagyybymala (1))
vel' i=1

= 62 ebymalaT (1)),

yel

where ¢y = Z‘s The third last equality is due to the following basic fact:

i=1 Ga(y)yi-
me (™ (a(y)vT N a(y)v;T)) is either equal to 0 or me (o™ (a(y)v;T)) because T
is a tile. The second last equality holds because G is unimodular. Thus, (f,g) =
6(1,/2<c, byot = 5_1/2(0 b). Therefore, feWy if and only if f can be written as

F@) = Y er ay00 xr(v (@) and ¢ = 5202, a(y)y, = 0, O
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PROPOSITION 4.5. Suppose that xr, (I',a), {V; : j€Z}, and Ty are the same
as in Proposition 4.4. Suppose that U = (u;;) is a §o X do unitary matriz with all
entries on the first row being the same constant 5;1/2. Then the set of functions

{1,929, ,¥s_1} defined by
Yio1(z) = ma(T) V2 0 uioada (v)xr(x),i =2, b4

is a set of mother wavelets for the MRA. That is, the following set
F={\()i:yelyi=1,-- 00 — 1}

is a complete orthonormal basis for the space Wy.

PRrROOF. We first show that the set F' is an orthogonal system and then prove
it is complete.
In the following, we will use Proposition 2.2 (a): Ag(7)oa = dara(a(y)). For
Ac(Y)Vi-1, Aa(v")Yj-1€F, then
Aa(Y)bi-1, Aa (V)i -1)

S 0o
= <)‘G (Vl)mG (T)il/Q Z uimo'oz/\G (’Ym)XTv /\G (’Yl/)mG (T)il/Q Z UjnO« /\G (77L)XT>

m=1 n=1
S Ou
= ma(T)' Y timln (Aa(Y)oa e (m)x1, Aa (V) oara (1) xT)
m=1n=1
6(! 6(){.
= mg(T)™! UimTjn (Aa(Y)oaAa(Ym) X1 Aa(Y')oada (9n) xT)
m=1n=1
da  Oa

UimTjn (Taa (V) Aa(Ym)XT, Tada(@(v")Aa (vn)XT)
Ui T (Aa(@(v)Ae (ym)xrs Aa(@(v")) Aa (Yn) xT)
= ma(T)™' Y ) wimn(Aa(@(¥ ) vm)xrs Aa (v )vn)xr)

= mg(T)™* UimTnma(a(Y)ymT Na(y")yT)

0o
= ma(1)7'8(y =) D wimWmma(T)

m=1

= 0(v' =178 - j).
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Next we show that the set F is complete in Wy. For any feW,, we want to
prove that if (f, Ag(y)¥i—1) = 0 for any v€l', i = 2,3, ,d4, then f = 0. We see
that

e
(FAce) = (O ayoara(Y)xr, Aa()ma(T)™ > uijoada(vi)xr)

vy'el j=1

5o
= ma(T)? YN ayiii(oara(Y)xr, Aa(Voare(v;)xr)
y'el j=1

O
= ma(T)7? DY ayt(oada (V)X cada(a(y)Aa(1)xT)
Jer j=1

Oa
= ma(T)7? >N ayii;(Aa(Y)xr Aa(a(1)y)xr)
Jer j=1

Oo
= ma(T) 23N apamgme (T () e(y)yT)

el j=1

da  Oa
= ma() 23NN oy, Tme (@Y ) 1mT () a(v)3T)

y'elm=1 j=1

O
= mG(T)il/Q Z aa(“/)’ymme(O‘('}/)%nT)

m=1
0o
= mg(T)"/? Z Qo(y)prm Wimn -
m=1
. b —_

Thus, (f, A\g(7)i—1) = 0 for any y€l', i = 2,3,--- 0, means » | *_, Ga(y)y,, im =
0 for any vel', i = 2,3,--- ,0,. Since feW, and all entries on the first row of the
unitary matrix U = (u;;) are constant, proposition 4.4 implies that ng‘:l Aoy (y )y Ul =
0 for any y€I'. Thus, Zfr‘jzl Aoy (y)y Ui = 0 for any v€l', i = 1,2,3,--- 4. This
shows that, for any €I, the vector (@a (1), @a(y)yes " »da(y)vs, ) 18 Perpendicu-

lar to all rows in the unitary matrix U. So, @q(y)y, must be 0 for any v€I' and

m=1,2,---,0,. Therefore, a, = 0 for any v€I'. Hence f = 0. That is, The set F'

is complete in Wy. O
THEOREM 4.6. Given ;1,7 = 2,--- ,d, that are defined in Proposition 4.5,
the set {0l : j€Z,i = 1,2,--- ,§, — 1} forms a complete orthonormal basis for

L2(G).
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5. EXAMPLES ON THE HEISENBERG GROUP

The theorems in sections 3 and 4 hold for general space L*(G), where G is
a locally compact group which includes the Heisenberg group as an important
example. In this section, we show examples to illustrate those theorems. All we
need to do is to construct the refinable functions of self-similar tile on the Heisenberg
group. According to the theorems in sections 3 and 4, the existence of refinable
functions of self-similar tile will automatically lead us to build MRAs, hence to

create Haar-like wavelet bases on the Heisenberg group.

Let G be the 2d + 1 dimensional Heisenberg group H¢, which is a nilpotent
Lie group with underlying manifold R??*!. We denote points in H? by (g,p,1)
with ¢, peR?, t€R, and define the group operation by (g¢,p,t)(¢,p’,t") = (¢ +
¢, p+p,t+t +1(pd —pq). Let T be the following uniform lattice subgroup
in H: T' = { (m,n,1/2) : m, n€Z? 1€Z}. And let a be a dilative automorphism
given by a(g,p,t) := (2¢,2p,2%t). Then (I, o) forms a scaling system on H? with
§=[[: )] =220+,

It is known (Folland [6]) that every automorphism a of H? can be uniquely de-
composed as a product of four factors ayasagay, with a;€G; (j = 1,2,3,4), where
G, is defined as follows: G denotes the symplectic group ps(d,R); G2 consists of
inner automorphisms: (a,b, ¢)(¢,p,t)(a,b,¢)™" = (¢,p, ¢+ a-p — b-q); G5 consists of
dilations d[r] defined by 6[r](g, p,t) = (rq, rp,7*t); and G4 consists of two elements,
the identity and the automorphism i defined by i(q,p,t) = (p,q, —1).

We restrict ourself to constructing special self-similar tiles for (I, ) on H¢,
where a can be written as ayazay. That is, a(g,p,t) = (Da(q, p), 7at), Where 7 is
some integer and D,, is a dilative automorphism from R?¢ to R2¢. The fundamental
idea to construct such self-similar tiles for (T', «) is the following. We decompose
the process of construction into two steps: first constructing in the direction R2¢,
that is, constructing self-similar tiles for the scaling system (Z2?, D,). The work
in [7] provides us details for this. Then, based on the self-similar tile obtained

for (2?4, D,,), we construct a self-similar tile in the direction R for (T',a). Such
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a self-similar tile is called a self-similar stacked tile due to the obvious geometric

reason.

For simple notation reason, let’s use (z,t) to denote the element (gq,p,t) in
the Heisenberg group, that is, z = (g, B)GRQd. Then the group law becomes
(Qv t)(i7 t/) = (g+£7t+t/+5(£,£)) where S(£7 QI) = ((%B)ﬂ (1/7]1)) = 1/2(8'1_

¢-p') is a skew-symmetric bilinear form from R??xR?? to R.

Let A be a self-similar tile for the scaling system (Z2?, D,) on R??. The exis-
tence of A is confirmed by [7]. Such an A is measurable. Without loss of generality,

we can assume that

(k+4) =R, and Do(A) =

i=1

A((k+A) = 0 for k£0, keZ>* and Uk (k;+A)

€z2d

where ki, ko, ---, ks are lattice points that are representatives of distinct cosets
in Z2?/D,(Z??). Thus, the Lebesgue measure of A must be 1, see lemma 1 in
[7]. Since the measure of A is 1 and the disjoint union J,cz24(k + A) fill out the
whole space R??, we could arrange a one to one correspondence between the lattice
points in Z2? and the tiles. Or simply speaking, we can assume that each tile only
contains one lattice point. For z€R??, we use [z]4 to denote the lattice point that

corresponds to the tile which contains z. Let < z >a=xz — [z]4€A.

Let F be a bounded measurable real-valued function defined first on A and then
extended periodically to the whole space R??. Thus, we have F(z) = F(< x >4).
We are going to produce a self-similar tile, denoted by T, for the scaling system
(T, ) as follows: T = { (z,t)eH? : z€A,0<t — F(z) < 1/2 }, where F is to be
determined later. We can view F'(x) as a piece of surface over A and think of T'
as a solid over A bounded between two surfaces F(z) and F(z) + 1/2. Thus the
volume of T' is equal to 1/2. So we can think of the “thickness” (in the direction

of t-axis) of tile T" as 1/2.

For an element v = (a,1/2)€T, the image of T under the left translation by ~
is given by /T = { (z,t)eH? : z—acA,0<t —1/2 - S(a,z —a) — F(z) < 1/2 }.
To show that |, 7 is a tiling of H?, we need to check two things. (a) UyerT
is a disjoint union. (b) J,cpy7 fills out the whole space H9. For (a), if a#a’, then
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(a,1/2)TN(a’,1/2)T = ) since the image (a,l/2)T of T is in a stack of tiles lying over
the tile (@,0)7. If [ and I’ are different integers, then (a,!/2)T and (a,l’/2)T are
two different tiles in one stack located at tile (a,0)T, but (a,1/2)T(\(a,!'/2)T =0
since the thickness for each tile is 1/2. As for (b), for any (z,t)€H?, there exists a
unique element a€Z2?¢ such that  — a€A. And also there exists a unique element

I€Z with the property 0<t —1/2 — S(a,z —a) — F(z —a) < 1/2.

Now, we can start constructing a self-similar stacked tiling related to the tile
A in R??. From the explanation above, we know that the key point is to determine

the surface described by the equation ¢t = F(z) on A. We start by choosing
To={(ki,c) : i=1,2,---,s, and ¢=0,1/2,1,3/2,---,(|ra] = 1)/2 }.
Then we have

PROPOSITION 5.1. T is a self-similar stacked tile for (I',«) with the above
choice of the finite set Tg if and only if the function F(x) on A satisfies

L S([Da(@) 4, < Dalz) > ).

|7l

Fz) = WFKD a(z) >a) +

PrOOF. By the choice of I'g, we have

U ~T (disjoint finite union)
Y€l

= {(z,t) er (ki + A) Oﬁt—S([Q]A,<§>A)—F(<$>A)<%}
1

|7l

1
= {(z,?) er (ki + A), it—LS([g]A,<§>A) F(<x>A)<2}.

I7al 7al
Geometrically speaking, there are s stacks of tiles in | J 'yGFo/yT' For each stack there
are |r| tiles with the “thickness” for each tile 1/2, so the “thickness” for each stack

is |ra|x1/2. On the other hand,

ol = of (z,t)eH? : z€A,0<t — F(z) < 1/2}
= {(Du(z),rot)eH? : z€A,0<t — F(z) <1/2}

= {(z,t)eH? : D, '(z)€A, 0<— F(D Y z) <1/2}

[7al

{(@ el : 2D (4) = J_ (ki +4) and 0<— — F(D;*(2)) < 1/2}.

7l
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These two sets are equal if and only if

1

|7'a|

—F(<z>a)+ —5([z]a, <z >4).

74l
Or equivalently

L F(< Dofz) >a) +

7ol

F(z) = L S(Da(@) 4, < Dalz) > ).

|7l

This proposition yields the following theorem.

THEOREM 5.2. For the choice of T’y given above, there exists a unique self-

similar stacked tile T for (I, ). The function F(z) is given explicitly by
Z b |m (2)]amod (Da(Z*%)), < D (z) >4),

where a lattice point £ mod (D, (Z??)) equals the representative of the coset which

contains element k.

PROOF. Define a mapping M from L>(A) to L>°(A) by

1

|7l

L S([Da(@) amod (Do (Z24)), < Do) >4),

|7l

Mf(z) = —F(< Da(z) >4) +

where L>°(A) is a Banach space with the supermum norm. Given f, ge L>°(A), we

have

1

IMf = Mglloeay = |l (< Da(z) >4) = =—9(< Dalz) >a)llLoe )

7ol [ral?

< 7||f gl (a)-

7ol
So M is a contractive mapping. There exists a unique fixed point, denoted by F'(z).

Especially, we have F' = lim,,, oo M"0. Thus,

Z ] (z)]amod (Dq(Z2)), < D (z) >.4)-

m=1

Now we can provide the first example based on Theorem 5.2.
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EXAMPLE 5.3. Consider o from H? to H? defined by a(g,p,t) = (2q,2p, 22¢).
It is clear that o is in G3. We can write a(g,p,t) = (Da(q,p),7at) = (2(g,p), 4t).
Thus, r4 = 4 and D, is the dilative automorphism on R??. Let A = { z€R?¢
0<z; < 1,j = 1,2,---,2n } denote the “half open and half closed” standard tile
in the Euclidean space R??, where x; denotes the jth component of . Then it is
obvious that J,cz24(A + a) (disjoint union) fills out the whole space R24. Clearly,
A is a self-similar tile. If we choose Iy = { (a,b) : a; = 0or 1,1<j<2n,b =
0,1/2,1 or 3/2 }, then by Theorem 5.2, T = { (z,t)€H? : z€A,0<t—F(z) <1/2}
is a self similar-tile for (I, &) with F' defined by

Fla) = Z4m5([ o (z)]amod (D (Z%7)), < Dy (z) >4)

Z %S([ng]modz < 2™z >),

m=1

where [2"z]mod 2 means ([2™z1]mod 2, [2™25]mod 2, - - |, [2™xg,]mod 2).

ExXAMPLE 5.4. In this example, we choose a different dilative automorphism
on H? which is defined as follows. a(q, p,t) := (2q,3p,6t). This o can be de-
composed as a = ajaz, where ay(gq,p,t) = \/7q, fp, and as(gq,p,t) =
(vV6g, V6p, (V6)*t) = (v/6q,V6p,6t). Further, o can be written as a(g,p,t) =
(Da(g,p), 6t), where D, is a dilative automorphism from R?? to R?*® defined by
Da(q,p) = (2¢,3p). Thus, we have 7, = 6. Still using the same I' as the one
used in Example 5.3, we choose I'y as the set I'y = {(a, c)}, where a; = 0 or 1 for
1<j<d, aj = 0, 1 or 2 for d<j<2d and ¢ = 0, 1/2, 1,---,5/2. So the set A in
Example 5.3 is a self-similar tile for the scaling system (Z2?, D,,) with dilated tile
by D, consisting of 6 original tiles. With this self similar tile in R?¢, by Theorem

5.2 we obtain a self-similar stacked tile in H%:
T = {(z,t)cH? : z€A,0<t — F(z) < 1/2}
with F(z) constructed by

= 1
=> G S([Da"z] amod (Do (Z21), < D™z > 4),

m=1
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where [D"z] smod (D, (Z*?)) means [2™x1] mod 2, [2™x5] mod 2, ..., [2™z,,] mod

2 and [3™xy41] mod 3, [3™ @y 42| mod 3, ..., [3"x2,] mod 3.

Generally speaking, whenever an automorphism o from H?? to H?? can be
decomposed as a(g,p,t) = (Da(q,p),7at) and there exists a self similar tile A in
R2? associated with D,, then with this A, we can always construct a self similar

tile in H¢ associated with a.

The above functions F' serve as scaling functions to generate MRAs for the
space L?(H?%). Since F' > 0 has compact support, Proposition 3.6 shows that
F is a-substantial. Therefore, F' will generate MRAs for L?(H?) by Theorem
3.5. Theorem 4.6 guarantees the existence of Haar-like wavelet bases for the space

L2(HY).

6. CONCLUSION

In this paper we are able to give the characterizations for a refinable function
that is capable of generating an MRA in the space L?(G), where G is a locally
compact group that does not have to be abelian. In deriving these characterizations,
we did not use any information from the Plancherel side. In fact, for a general
locally compact group, we may not be able to build the Fourier transform on it.
However, in the case that the Fourier transform can be built up in the space L?(G)
for some non-abelian locally compact groups, how can we characterize a refinable
function to have a scaling function using the information from the Plancherel side?
In particular, if G is a second countable, type I, unimodular locally compact group,
do those results obtained by [2] in the space L?(R?) mentioned in the introduction
still hold in the space L?(G)? The authors intend to explore these questions in

their future study.
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