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COMPACT OPEN SETS IN DUAL SPACES AND

PROJECTIONS IN GROUP ALGEBRAS OF [FC]− GROUPS

EBERHARD KANIUTH AND KEITH F. TAYLOR

Abstract. The structure of a compact open set in the dual of an [FC]−

group G, a locally compact group with relatively compact conjugacy classes,
is given in terms of certain subsets which arise somewhat naturally. The
support in the dual of a projection in L1(G) is a compact open set. There-
fore, knowledge of the structure of such sets helps in identifying and con-
structing projections. We describe explicitly the compact open sets and
construct projections for some illustrative examples.

Introduction

In the theory of harmonic analysis on a nonabelian compact group G, pro-
jections (selfadjoint idempotents) in L1(G) play an essential role and are con-
structed as appropriate coefficient functions of irreducible representations. In
[5], an explicit construction of nontrivial projections in L1(Gaff), where Gaff is
the group of affine transformations of R, was given. In [8], and [13], techniques
were developed by which projections could be explicitly constructed in L1(G)
for special classes of noncompact locally compact G.

The key to identifying candidate groups for the existence of nontrivial pro-

jections is that the support, in the dual space Ĝ of G, of a projection in L1(G)

must be a compact open set in Ĝ. Open points in Ĝ were studied in [2], [18]
and [19] where connections were made to projections in L1(G) and C∗(G), the
group C∗-algebra. Projections in C∗-algebras of nilpotent groups were studied
in [12] by exploiting knowledge of the possible compact open subsets of their
duals. In [8] and [13], particular semidirect product groups were designed so
that nontrivial compact open subsets of the dual exist.

For f ∈ L1(G), the identities which make it a projection (f ∗ f ∗ = f = f ∗)
are sufficiently strong to suggest reconstruction formulas akin to the continu-
ous wavelet transform. In [16], two-dimensional continuous wavelet transforms
arising from irreducible representations of HoR, where H is the three dimen-
sional Heisenberg group and R acts on H by automorphic dilations, were pre-
sented. This was based on techniques for constructing projections in L1(HoR)
developed in [13]. See [17] for a recent survey which includes a discussion of the

interplay between compact open sets in Ĝ, projections in L1(G), and wavelet
transforms.

Key words: Locally compact group; relatively compact conjugacy class; dual space;
compact open set; group algebra; projection.
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The main purpose of this paper is to expand the class of groups G for which

the structure of compact open sets in Ĝ is known. The problem of identifying
the compact open sets in the dual of an [FC]− group is largely answered here.
Recall that a (discrete) group G is an FC-group if every conjugacy class in G
is finite. In analogy, a locally compact group G is said to be an [FC]− group if
each conjugacy class in G has a compact closure. This class of groups, which
of course includes all locally compact groups with relatively compact commu-
tator subgroup, has been thoroughly investigated in [9]. After collecting the
necessary technical preliminaries in Section 1, the main results are stated and
proven in Section 2. In Section 3 we comment on minimal compact open sub-

sets of Ĝ and determine all the compact open subsets for a class of illustrative
examples. In the final section, constructions are given for projections in L1(G)
for some examples of [FC]− groups G.

1. Preliminaries

Let G be a locally compact group. The term representation of G will mean a

weakly continuous unitary representation. The dual space of G is Ĝ, the set of
equivalence classes of irreducible representations of G. For any representation
ρ of G, the same symbol will be used for the associated ∗-representations
of L1(G) and C∗(G). Then ker ρ denotes its kernel in C∗(G). An ideal in
C∗(G) is called primitive if it is the kernel of an irreducible representation and
Prim(C∗(G)) denotes the space of such ideals. It is endowed with the hull-

kernel topology. The map ρ → ker ρ is used to pull this topology back to Ĝ.
Both [4] and [7] are good general references for these topics.

If H is a closed subgroup of G and π is a representation of G, then π|H
denotes the restriction of π to H. If σ is a representation of H, then indG

H σ
denotes the representation of G induced from σ (see [7]). If π is a representation
of G and S is some set of representations, then π ⊗ S = {π ⊗ ρ : ρ ∈ S}.

Let L and H be locally compact groups and G = L×H. If σ, respectively
ρ, is a representation of L, resp. H, on the Hilbert space Hσ, resp. Hρ, then
(σ × ρ)(l, h) = σ(l) ⊗ ρ(h), for (l, h) ∈ G, defines a representation of G on

Hσ ⊗ Hρ. If π ∈ Ĝ and if L is a Type I group, then there exist σ ∈ L̂ and

ρ ∈ Ĥ such that π = σ × ρ (see [4], 13.1.8).
If S and T are sets of unitary representations of G, then S is weakly con-

tained in T (S ≺ T ) if ∩σ∈S ker σ ⊇ ∩τ∈T ker τ , and S and T are weakly
equivalent (S ∼ T ) if S ≺ T and T ≺ S. For a representation π of G, the

support of π is the closed subset supp π = {ρ ∈ Ĝ : ρ ≺ π} of Ĝ. Let N
be a closed normal subgroup of G. The action of G on representations of N

(in particular on N̂) is written as (x, τ) → x · τ , where x · τ(n) = τ(x−1nx)
for x ∈ G and n ∈ N , and G(τ) and Gτ will denote the G-orbit under this
action and the stability group of τ , respectively. Representations of G/N will
frequently be viewed as representations of G, by composing with the quotient

homomorphism G → G/N . In particular, in this manner the dual space Ĝ/N
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of G/N will be regarded as a closed subset of Ĝ. If K is a compact normal
subgroup of G and π is a representation of G, let

ĜK,π = {ρ ∈ Ĝ : ρ|K ∼ π|K}.
Since K̂ is discrete, supp(π|K) is open. Thus ĜK,π is an open subset of Ĝ by
continuity of restriction [6].

Let G be an [FC]− group. Then it is known (see [9]) that (i) the set Gc

of compact elements, that is, elements x of G such that the closed subgroup
generated by x is compact, form a closed normal subgroup of G; (ii) G/Gc is
abelian and (G/Gc)c = {Gc}; (iii) each compact subset of G is contained in a
compact, conjugation invariant set; and (iv) if G is compactly generated, then
Gc is compact. Moreover, Prim(C∗(G)) is a Hausdorff space (see [15] and [11]).
It is worth mentioning that, conversely, if G is a connected locally compact

group and Ĝ is a Hausdorff space then G is an extension of a vector group by
a compact connected group [1].

Example 1.1. A motivating family of examples is formed as follows. Let A

be any abelian locally compact group and let its dual group Â act on T × A

by χ · (z, a) = (χ(a)z, a), for (z, a) ∈ T×A and χ ∈ Â. Let G = (T×A)o Â.
Elements of G are written as (z, a, χ) with group product

(z1, a1, χ1)(z2, a2, χ2) = (χ1(a2)z1z2, a1a2, χ1χ2).

If A = R, then G is isomorphic to the reduced Heisenberg group obtained by
taking the three dimensional Heisenberg group modulo a nontrivial discrete
central subgroup. Note also that, by Pontryagin duality, there is complete

symmetry in the roles of A and Â. In particular, (T × A) o Â is isomorphic

to (T × Â) o A. The commutator subgroup of G is T. Thus, G is an [FC]−

group.
Since T is a compact normal subgroup of G, T ⊆ Gc and

Gc/T = (G/T)c = Ac × (Â)c.

Thus, Gc = {(z, a, χ) : z ∈ T, a ∈ Ac, χ ∈ (Â)c}. It is known that (Â)c =

Â/A0, where A0 is the connected component of the identity in A (see Theorem
(24.17) of [10]).

2. Compact open sets in Ĝ

To a certain extent, sets of the form ĜK,π are the building blocks of arbitrary

compact open sets in Ĝ when G is an [FC]− group. This is formulated precisely
in two theorems.

Theorem 2.1. Let G be an [FC]− group and S a compact open subset of Ĝ.

Then S is closed in Ĝ and there exist a compact normal subgroup K of G which
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is open in Gc and finitely many elements π1, . . . , πn of Ĝ such that

S =
n⋃

j=1

ĜK,πj
.

Let K and N be closed normal subgroups of an [FC]− group G such thatK
is compact, K ⊆ N and N/K is connected and contained in the centre of

G/K. Then, as we shall see in Lemma 2.4, the G-orbit closures G(τ), τ ∈ N̂ ,

are minimal closed G-invariant subsets of N̂ . We can therefore define an
equivalence relation ∼ on N̂ by setting ω1 ∼ ω2 if and only if G(ω1) = G(ω2).

Let N̂/G denote the quotient space and equip it with the quotient topology.

Moreover, for each ρ ∈ Ĝ, the support supp(ρ|N) equals G(τ) for some τ ∈ N̂

(Lemma 2.5) and hence can be regarded as an element of N̂/G.

Theorem 2.2. Let G be an [FC]− group and let K be a compact normal

subgroup of G such that K is open in Gc. Then, for π ∈ Ĝ, the set ĜK,π is
compact if and only if there exist closed subgroups N and M of G with the
following properties:

(i) K ⊆ M ⊆ N , N is open in G, N/K is a vector group and contained in
the centre of G/K, and M/K is discrete.

(ii) There exists a homeomorphism between M̂/K and the subset of N̂/G

consisting of all elements supp(ρ|N), ρ ∈ ĜK,π.

Proof. (Of Theorem 2.1) We observe first that S is closed in Ĝ. To see this,

consider the mapping k : Ĝ → Prim(C∗(G)) defined by k(σ) = ker σ, and recall

that Ĝ carries the weak topology with respect to k. Hence S = k−1(k(S)) as
S is open. Moreover, k(S) is compact and hence closed in Prim(C∗(G)) since
Prim(C∗(G)) is a Hausdorff space [11]. Consequently, S = k−1(k(S)) is closed

in Ĝ.
Notice next that if π ∈ S, then π⊗Ĝ/Gc ⊆ S. In fact, since G/Gc is abelian

and compact-free, Ĝ/Gc is connected and hence so is π ⊗ Ĝ/Gc. Since S is

open and closed in Ĝ, the statement follows.
Let K denote the collection of all compact normal subgroups of G which are

open in Gc. Since every compact subset of G is contained in a G-invariant
compact set and since a compact set consisting of compact elements generates
a compact subgroup, it follows that Gc =

⋃{K : K ∈ K}.
We claim that given σ ∈ S, there exists K ∈ K such that ĜK,σ ⊆ S. Towards

a contradiction, assume that for each K ∈ K there exists σK ∈ Ĝ such that

σK |K ∼ σ|K , but nevertheless σK 6∈ S. Then, by the above, (σK⊗Ĝ/Gc)∩S =
∅ for each K ∈ K. Now

σK ⊗ Ĝ/Gc ∼ σK ⊗ indG
Gc 1Gc = indG

Gc(σK |Gc),

so that, since S is open in Ĝ,

supp
(
indG

Gc(σK |Gc)
) ∩ S = ∅
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for each K ∈ K. On the other hand, since any compact subset of Gc is
contained in K, for some K ∈ K,

Cc(G
c) ⊆

⋃
{C∗(K) : K ∈ K}.

Thus,
⋃{C∗(K) : K ∈ K} is dense in C∗(Gc). Since σ|K ∼ σK |K for every

K ∈ K, it follows that

σ|Gc ≺ {σK |Gc : K ∈ K}.
This in turn implies, by continuity of inducing and since G/Gc is amenable,

σ ≺ indG
Gc(σ|Gc) ≺ {indG

Gc(σK |Gc) : K ∈ K}.
Now, for each K ∈ K, indG

Gc(σK |Gc) is weakly contained in Ĝ \ S. Since S is

open, we conclude that σ ∈ Ĝ \ S.
This contradiction shows that given any σ ∈ S, there exists K ∈ K such

that ĜK,σ ⊆ S. Since the sets ĜK,σ are open in Ĝ and S is compact, we find

K1, . . . , Km ∈ K and σ1, . . . , σm ∈ Ĝ such that S =
⋃m

i=1 ĜKi,σi
.

Let now K denote the subgroup generated by
⋃m

i=1 Ki. Then K is compact
and open in Gc, and each Ki has finite index in K. Let K0 be any one of the

Ki and σ = σi. There exist finitely many τ1 . . . , τr ∈ Ĝ such that

indG
K0

(σ|K0) ∼ {indG
K(τ1|K), . . . , indG

K(τr|K)}.
For any τ ∈ Ĝ, we then have τ |K0 ∼ σ|K0 if and only if τ |K ∼ τi|K for some
i ∈ {1, . . . r, }. Thus

ĜK0,σ =
r⋃

i=1

ĜK,τi
.

Since S =
⋃m

i=1 ĜKi,σi
, it follows that there exist finitely many π1, . . . πn ∈ Ĝ

such that S =
⋃n

i=1 ĜK,πi
. This finishes the proof of Theorem 2.1. ¤

The proof of Theorem 2.2 is much more involved and requires a number of
preliminary results.

Lemma 2.3. Let N be an open normal subgroup of the locally compact group

G and let τ ∈ N̂ such that {τ} is open in N̂ . Then the set

Sτ = {π ∈ Ĝ : π|N 6≺ N̂ \G(τ)}
is open and compact in Ĝ.

Proof. Since {τ} is open in N̂ , there exists f ∈ L1(N) such that σ(f) = 0 for

all σ ∈ N̂ , σ 6= τ , and τ(f) 6= 0. Let g denote the trivial extension of f to all

of G. If π ∈ Ĝ is such that π|N ≺ N̂ \ G(τ), then since G(τ) is open in N̂ ,
π(g) = π|N(f) = 0. On the other hand, if π ∈ Sτ then G(τ) ∩ supp(π|N) 6= ∅
and hence τ ∈ supp(π|N) since supp(π|N) is G-invariant. As {τ} is open in N̂ ,
τ ≤ π|N and therefore ‖π(g)‖ = ‖π|N(f)‖ ≥ ‖τ(f)‖. So

Sτ = {π ∈ Ĝ : ‖π(g)‖ ≥ ‖τ(f)‖},
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which is a compact set. Clearly, Sτ is open in Ĝ since G(τ) is open in N̂ , and

hence the set of all π ∈ Ĝ such that π|N ≺ N̂ \G(τ) is closed in Ĝ. ¤

The proof of the following lemma is inspired by and similar to the proof of
Lemma 3 of [11].

Lemma 2.4. Let K and N be closed normal subgroups of the locally compact
group G such that K is compact, K ⊆ N and N/K is connected and contained

in the centre of G/K. Given τ ∈ N̂ , there exist σ ∈ K̂ and a closed subgroup
M of G such that K ⊆ M ⊆ N and

Gσ(τ) = τ ⊗ N̂/M and G(τ) =
⋃
a∈A

a ·Gσ(τ),

where A denotes a representative system for the left cosets of Gσ in G. More-
over, the sets a ·Gσ(τ) are pairwise disjoint and open in G(τ), and G(τ) is a
minimal closed G-invariant set.

Proof. Since K is compact and N/K is connected, each σ ∈ K̂ is N -invariant,

and the sets N̂K,σ = {π ∈ N̂ : π|K ∼ σ}, σ ∈ K̂, are open and closed in N̂

and cover N̂ . Moreover, since N/K is an abelian connected group, it is the
direct product of a vector group and a compact group. So N is an extension
of a compact group by a vector group and as such is type I (see [14], proof of

Theorem 3.7). Theorem 2 of [11] now implies that N̂K,σ = π ⊗ N̂/K, for each

π ∈ N̂K,σ.

Since K̂ is discrete and N/K is connected, N -orbits in K̂ are simply single-

tons. Thus τ |K ∼ σ ∈ K̂ for some σ ∈ K̂. If x, a ∈ G, then

x · τ ∈ N̂K,a·σ ⇐⇒ (a−1x) · τ |K ∼ σ ⇐⇒ x ∈ aGσ.

Thus G(τ) = ∪a∈Aa · Gσ(τ) and hence, since the sets N̂K,a·σ are open and

closed in N̂ ,

G(τ) =
⋃
a∈A

(
G(τ) ∩ N̂K,a·σ

)
=

⋃
a∈A

a ·Gσ(τ).

Now, let Γ = {γ ∈ N̂/K : τ ⊗ γ = τ}. Then Γ is a closed subgroup of N̂/K.

If x ∈ Gσ, then x · τ = τ ⊗ γx for some γx ∈ N̂/K. For each x ∈ Gσ, fix such
a γx. Then, for x, y ∈ Gσ, since N/K is contained in the centre of G/K and

hence every γ ∈ N̂/K is G-invariant,

τ ⊗ γyx = (yx) · τ = y · (x · τ) = y · (τ ⊗ γx) = y · τ ⊗ γx = τ ⊗ γyγx.

This shows that γyγxγ
−1
yx ∈ Γ. Thus the set ∪x∈GσγxΓ is a subgroup of N̂/K.

So ∆ = ∪x∈GσγxΓ is a closed subgroup of N̂/K and therefore ∆ = N̂/M for
some closed subgroup M of G with K ⊆ M ⊆ N . Since Gσ(τ)Γ = Gσ(τ) and

τ ⊗∆ is closed in N̂ , it follows that Gσ(τ) = τ ⊗∆ = τ ⊗ N̂/M .
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Finally, to show that G(τ) is a minimal closed G-invariant set, let ρ ∈ G(τ).

Then ρ = a·(τ⊗χ) = a·τ⊗χ for some a ∈ A and χ ∈ N̂/M . Since a−1·ρ|K ∼ σ,

Gσ(a−1 · ρ) = a−1 · ρ ⊗ N̂/M and this implies that τ = a−1 · ρ ⊗ χ ∈ Gσ(ρ),

whence G(τ) ⊆ G(ρ). ¤

Lemma 2.5. Let G, N and K be as in Lemma 2.4. Let π ∈ Ĝ and τ ∈ N̂
such that π|N ∼ G(τ), and for τ let σ, M and A be as in Lemma 2.4. For

each δ ∈ M̂/K, choose γδ ∈ N̂/K with γδ|M = δ. Then the map

δ → G
(
τ ⊗ γδN̂/M

)
=

⋃
a∈A

a ·Gσ(τ ⊗ γδ)

is a bijection between M̂/K and the collection of all sets supp(ρ|N), where

ρ ∈ ĜK,π.

Proof. Let δ ∈ M̂/K and choose any ρ ∈ supp(indG
N(τ ⊗ γδ)). Then

ρ|K ≺ indG
N(τ ⊗ γδ)|K ∼ G(τ |K) ∼ G(σ) ∼ π|K

and hence ρ ∈ ĜK,π. Similarly,

ρ|N ≺ G(τ ⊗ γδ) = G(τ)⊗ γδ

and therefore, since G(τ) is a minimal closed G-invariant set,

supp(ρ|N) = G(τ)⊗ γδ = G(τ ⊗ γσN̂/M).

If δ1, δ2 ∈ M̂/K are such that

G
(
τ ⊗ γδ1N̂/M

)
= G

(
τ ⊗ γδ2N̂/M

)
,

then, for some a ∈ G and η1 ∈ N̂/M , a · τ = τ ⊗ γδ1γ
−1
δ2

η1. This implies that

a ∈ Gσ and hence there exists η2 ∈ N̂/M such that τ = τ ⊗ γδ1γ
−1
δ2

η1η2. This
shows that

γ = γδ1γ
−1
δ2

η1η2 ∈ Γ ⊆ N̂/M,

where Γ is as in the proof of Lemma 2.4. It follows that

δ1δ
−1
2 = (γδ1γ

−1
δ2

)|M = γ|M = 1M ,

so that δ1 = δ2. It remains to show that given ρ ∈ ĜK,π, there exists δ ∈ M̂/K
such that

supp(ρ|N) = G
(
τ ⊗ γδN̂/M

)
.
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There exists ω ∈ N̂ such that ω|K ∼ σ and ρ|N ∼ G(ω). Then ω = τ ⊗ η for

some η ∈ N̂/K and

supp(ρ|N) = G(ω) = G(τ)⊗ η = τ ⊗ ηN̂/M

= τ ⊗ γη|M
(
γ−1

η|M η
)

N̂/M

= τ ⊗ γη|M N̂/M

since (γ−1
η|M η)|M = 1M . ¤

Recall that the quotient space as N̂/G of N̂ defined by the equivalence

relation ω1 ∼ ω2 if and only if G(ω1) = G(ω2) for ω1, ω2 ∈ N̂ , is equipped with
the quotient topology.

Lemma 2.6. Retain the assumptions and notation of Lemmas 2.4 and 2.5.

Let π ∈ Ĝ and τ ∈ N̂ such that π|N ∼ G(τ), and let

Qπ = {supp(ρ|N) : ρ ∈ ĜK,π} ⊆ N̂/G.

Then the map δ → G(τ ⊗ γδN̂/M) of Lemma 2.5 is a homeomorphism from

M̂/K onto Qπ.

Proof. Let (δα)α be a net in M̂/K converging to some δ ∈ M̂/K and put
γα = γδα and γ = γδ. Then indN

M δα → indN
M δ, and since γ ≺ indN

M δ, there

exist ηα ∈ N̂/M such that γαηα → γ in N̂/K. This implies τ ⊗ γαηα → τ ⊗ γ

in N̂ and therefore G(τ ⊗ γαηα) → G(τ ⊗ γ) in Qπ.
Conversely, suppose that

G(τ ⊗ γαN̂/M) → G(τ ⊗ γN̂/M).

Then, since N̂K,τ is open in N̂ ,

Gσ

(
τ ⊗ γαN̂/M

)
= G

(
τ ⊗ γαN̂/M

)
∩ N̂K,τ

→ G
(
τ ⊗ γN̂/M

)
∩ N̂K,τ

= Gσ

(
τ ⊗ γN̂/M

)
.

Since Gσ(τ) = τ ⊗ N̂/M , restricting representations to M gives

{τ |M ⊗ δα} = Gσ(τ |M ⊗ δα) → Gσ(τ |M ⊗ δ) = {τ |M ⊗ δ}.
Since M/K is a closed subgroup of a vector group, M/K = D × Rd, where
d ∈ N0 and D is discrete. Let L be the pullback of D × Zd in G. It suffices
to show that (δα)α contains a subnet which converges pointwise on L/K to
δ|L/K . Indeed, because characters of vector groups are linear, it then follows
that the subnet converges to δ uniformly on compact subsets of M/K.
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Now, since L̂/K is compact, after passing to a subnet if necessary, we can

assume that δα|L → η in L̂/K for some η ∈ L̂/K. Then

τ |L ⊗ δ|L = lim
α

(τ |L ⊗ δα|L) = τ |L ⊗ η

and therefore τ |L = τ |L ⊗ (δ|L · η−1). Since N̂L,τ = τ ⊗ N̂/L, it follows that

τ = τ ⊗ ω for some ω ∈ N̂/K extending δ|L · η−1. So ω ∈ Γ ⊆ N̂/M and
consequently, as L ⊆ M , δ|L = η = limα(δα|L). This completes the proof. ¤

Corollary 2.7. If ĜK,π is compact, then M/K is discrete.

Proof. It follows from continuity of restricting representations that the map

ρ → supp(ρ|N) from ĜK,π onto Qπ is continuous. Thus Qπ is compact, and

hence so is M̂/K by Lemma 2.6. Consequently, M/K is discrete. ¤

Lemma 2.8. Let G be an [FC]− group and let K and N be normal subgroups
of G such that K is compact, N is open, K ⊆ N and N/K is contained in the

centre of G/K. Let π ∈ Ĝ and σ ∈ N̂ be such that π|N ∼ G(σ). Then ĜK,π is

compact if either N̂K,σ or the subset

S = {supp(ρ|N) : ρ ∈ ĜK,π}
of N̂/G is compact.

Proof. Let s denote the map τ → G(τ) from N̂ onto N̂/G. Let τ ∈ N̂K,σ

and choose ρ ∈ Ĝ such that ρ|N ∼ G(τ). Since G(τ) is a minimal closed
G-invariant set, ρ can be taken to be any element of supp(indG

N τ). Then

ρ|K ∼ G(τ |K) ∼ G(σ|K) ∼ G(σ)|K ∼ π|K ,

and hence ρ ∈ ĜK,π and s(τ) ∈ S. Conversely, if ρ ∈ ĜK,π, then since N/K is

contained in the centre of G/K, there exists χ ∈ N̂/K such that

ρ|N ∼ π|N ⊗ χ ∼ G(σ)⊗ χ = G(σ ⊗ χ).

Since σ ⊗ χ ∈ N̂K,σ, it follows that supp(ρ|N) ∈ s(N̂K,σ). Thus we have seen

that s maps N̂K,σ continuously onto S, and therefore compactness of N̂K,σ

implies that S is compact.

It remains to show that if S is compact, then ĜK,π is compact. Since N̂

is locally compact and s : N̂ → N̂/G is continuous and open, there exists a

relatively compact open subset U of N̂ such that U ∩ supp(ρ|N) 6= ∅ for each

ρ ∈ ĜK,π. As U is compact, we find f ∈ L1(N) such that ‖ω(f)‖ ≥ δ > 0 for

all ω ∈ U and hence ‖ρ|N(f)‖ ≥ δ for each ρ ∈ ĜK,π. Since N is open in G, we
can view f as an element of L1(G), and we then have ‖ρ(f)‖ = ‖ρ|N(f)‖ ≥ δ

for all ρ ∈ ĜK,π. Thus ĜK,π is contained in a compact set and hence is compact
since it is closed. ¤
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In some of the preceding lemmas we have considered irreducible representa-

tions π of G such that π|N ∼ G(τ) for some τ ∈ N̂ . Such τ always exist when
the normal subgroup N is second countable (see Lemma 1 of [11]). In passing
we mention that the same is true in our context even though N need not be
second countable.

Lemma 2.9. Let K and N be normal subgroups of G such that K is compact,
K ⊆ N , N is open in G and N/K is connected and second countable. Then,

given π ∈ Ĝ, there exists τ ∈ N̂ such that π|N ∼ G(τ).

Proof. Choose σ ∈ supp(π|K) and note that Gσ ⊇ N since N/K is connected

and K̂ is discrete. There exists ρ ∈ Ĝσ such that π ∼ indG
Gσ

ρ. Let C denote
the kernel of σ in K. Then C is normal in Gσ and N/C is second countable
since both K/C and N/K are second countable. As ρ|K ∼ σ, ρ can be viewed

as an irreducible representation of Gσ/C. Then there exists τ ∈ N̂/C ⊆ N̂
such that ρ|N ∼ Gσ(τ). Using that N is open in G and realizing indG

Gσ
ρ in the

Hilbert space `2(G/Gσ,Hρ), it is now straightforward to verify that
(
indG

Gσ
ρ
) |N ∼ {x · (ρ|N) : x ∈ G}.

This shows that π|N ∼ G(ρ|N) ∼ G(τ), as required. ¤

After all this preparation, a proof can be given to Theorem 2.2.

Proof. (Of Theorem 2.2) Note first that G/K is a Lie group. In fact, Gc/K
is discrete and G/Gc is a compact-free abelian group, hence also a Lie group.
We now define a normal subgroup N of G by

N = {x ∈ G : xK ∈ (G/K)0}.
Then N is open in G. Observe next that N/K is compact-free because, since
N/K is connected and Gc/K is discrete,

(N/K)c = (G/K)c ∩N/K = Gc/K ∩N/K = {K}.
Being a compact-free connected [FC]− group, N/K is a vector group (see [9]).
Moreover, for each x ∈ G, the set [xK, N/K] consisting of all commutators
xyx−1y−1K, y ∈ N , is connected and contained in the discrete group Gc/K
because G/Gc is abelian. Consequently, N/K is contained in the centre of
G/K.

Now suppose that ĜK,π is compact. By Lemma 2.9 there exists τ ∈ N̂ such

that π|N ∼ G(τ). By Lemma 2.4 there exist σ ∈ K̂ and a closed subgroup M
of G such that the properties of Lemma 2.4 hold. Thus, by Lemma 2.6 and
Corollary 2.7, conditions (i) and (ii) of Theorem 2.2 are satisfied.

Conversely, let π ∈ Ĝ and let N and M be closed subgroups of G such that

(i) and (ii) are satisfied. Then the collection of sets supp(ρ|N), ρ ∈ ĜK,π, is

compact and hence so is ĜK,π by Lemma 2.8. ¤
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3. Minimal compact open sets and Example 1.1

In this section we briefly comment on when a subset ĜK,π of Ĝ is a minimal
compact open set and then discuss groups as described in Example 1.1.

Proposition 3.1. Let G be an [FC]− group and π ∈ Ĝ. Let K be a compact

normal subgroup of G such that K is open in Gc. Suppose that ĜK,π is compact.

Then ĜK,π is a minimal compact open set if and only if π satisfies π|Gc ∼
indGc

K (π|K). In particular, ĜK,π is a minimal compact open subset of Ĝ if
Gc = K.

Proof. Suppose first that indGc

K (π|K) is not weakly contained in π|Gc . Let L
denote the collection of all compact normal subgroups of G containing K. Then
there exists C ∈ L such that indC

K(π|K) is not weakly contained in π|C because
otherwise, since every compact subset of Gc is contained in some L ∈ L,

π|L Â indL
K(π|K) ∼ indGc

K (π|K)|L
for each L ∈ L and hence indGc

K (π|K) ≺ π|Gc . Choose σ ∈ Ĉ with π|C ∼ G(σ).

Since Ĉ is discrete, G(σ) is a proper subset of the support of indC
K(π|K) and

ĜC,π is a proper open and closed subset of ĜK,π = supp(indG
K(π|K)).

Conversely, suppose that indGc

K (π|K) ≺ π|Gc and let C be any nonempty

compact open subset of ĜK,π. Then, for each ρ ∈ C, ρ ⊗ Ĝ/Gc is connected

and C∩(ρ⊗Ĝ/Gc) is open and closed in ρ⊗Ĝ/Gc. Thus ρ⊗Ĝ/Gc ⊆ C. Since

C is closed in Ĝ, ĜK,π \C is also open and compact in ĜK,π and therefore we
can assume that π ∈ C. Then, since π|Gc Â indGc

K (π|K) and G is amenable,

C ∼
⋃
ρ∈C

ρ⊗ Ĝ/Gc ∼ {indG
Gc(ρ|Gc) : ρ ∈ C}

Â indG
Gc(π|Gc) Â indG

Gc(indGc

K (π|K))

∼ indG
K(π|K) ∼ ĜK,π.

This shows that C = ĜK,π, and hence ĜK,π is a minimal compact open subset

of Ĝ. ¤
Corollary 3.2. Suppose that Gc is contained in the centre of G and that ĜK,π

is compact. Then ĜK,π is a minimal compact open subset of Ĝ (if and) only if
K = Gc.

Proof. We have π|Gc ∼ τ for some τ ∈ Ĝc and therefore

π|Gc ∼ indGc

K (π|K) ∼ indGc

K (τ |K) ∼ τ · Ĝc/K,

which implies that K = Gc. ¤
Example 3.3. This example illustrates some of the complexity which can
exist in general. For each j ∈ N, let Fj be a finite group of order |Fj| ≥ 2, and

let G =
∏′

j∈N Fj be their restricted direct product. Then G is discrete, so Ĝ
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is compact, and Gc = G. Let π ∈ Ĝ, and for each n ∈ N, let Kn =
∏n

j=1 Fj

and Hn =
∏′

j≥n+1 Fj. Then Kn is Type I since it is finite. Thus π = σn × τn,

for some σn ∈ K̂n and τn ∈ Ĥn. Hence π|Kn is a multiple of σn and ĜKn,π =

{σn} × Ĥn. Notice that σn+1 = σn × ωn, for some ωn ∈ F̂n+1 and |F̂n+1| ≥ 2.

Thus, ĜKn+1,π ( ĜKn,π. If ρ ∈ Ĝ and ρ /∈ {π}, then there exists n such that

ρ|Kn � π|Kn . Therefore,
⋂

n∈N ĜKn,π = {π} which is not open in Ĝ.
If now K is an arbitrary finite normal subgroup of G, then K ⊆ Kn for some

n, so ĜKn,π ⊆ ĜK,π. Thus, Theorem 2.1 and the above shows that ĜK,π does
not contain any minimal closed and open subset.

A characterization of when sets of the form ĜK,π are compact can be made
more explicit in a form which is easily checked in the case of the kinds of groups
described in Example 1.1.

Theorem 3.4. Let A be a compactly generated locally compact abelian group

and let G = (T×A)o Â. Let π ∈ Ĝ and let K be a compact normal subgroup
of G which is open in Gc.

(i) If π|T 6∼ 1T, then the set ĜK,π is compact.

(ii) If π|T ∼ 1T, then ĜK,π is compact if and only if A is finite.

Proof. (i) By the structure theorem for compactly generated locally compact
abelian groups (see [10], Theorem (9.8)), A = Rn × Zm × B, where B is

compact and n,m ∈ N0. We identify Rn, R̂n,Zm,Tm = Ẑm and B, B̂ with the
corresponding subgroups of G/T.

Since K is open in Gc, K ⊇ T and hence

K/T ⊆ Gc/T = (G/T)c = Ac × Â/A0 = B × Tm × B̂t.

Moreover, K/T contains Tm as well as a subgroup of finite index in B. Also
note that if K is a subgroup of finite index in a normal subgroup C of G,

then as shown in the proof of Theorem 2.1, ĜK,π is a finite union of sets ĜC,ρ,

ρ ∈ Ĝ. Therefore we can assume that

K/T = B × Tm × F,

where F is a finite subgroup of B̂. By hypothesis, there exists q ∈ Z, q 6= 0,
such that π(z) = zq for all z ∈ T. Now, for any group H, let Hq denote the
subgroup of H consisting of all elements h with hq = e. Thus Tq is the kernel
of π|T. Let

L = {g ∈ G : [g, G] ⊆ Tq} = {g ∈ G : gyg−1y−1 ∈ Tq for all y ∈ G}
, that is, L/Tq is the centre of G/Tq. Since T is contained in the centre of G
and G/T is abelian, there exists a character λ of L such that π ∼ indG

L λ ([3],
Lemma 3.1). It is now straightforward to verify that

L = {g = (z, a, χ) ∈ G : χ(a′)χ′(a) ∈ Tq for all a′ ∈ A and χ′ ∈ Â}.
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To describe L more explicitly, let g = (z, a, χ) ∈ L and a = (x, y, t), x ∈ Rn, y ∈
Zm and t ∈ B. Taking for a′ the identity of A, it follows that χ′(qx) = χ′(x)q =

1 for all χ′ ∈ R̂n and hence x = 0. Similarly, we get χ′(qy) = χ′(y)q = 1 for

all χ′ ∈ Ẑm, whence y = 0, and χ′(tq) = 1 for all χ′ ∈ B̂, which implies
t ∈ Bq. Thus we have seen that a ∈ Bq. Furthermore, with χ′ = 1A, we
have χ(qa′) = χ(a′)q = 1 for all a′ ∈ Rn and hence χ|Rn = 1Rn . Consequently,

χ ∈ Ẑm ×B = Tm × B̂, and then arguments as above show that actually

χ ∈ Tm
q × B̂q. Summing up, we have

L/T ⊆ Bq × Tm
q × B̂q,

the converse inclusion being obvious.

Define a normal subgroup N of G by N ⊇ K and N/K = Rn × R̂n. Then
N is open in G and N/K is a vector group. We determine the set

S = {supp(ρ|N) : ρ ∈ ĜK,π}.
Since π ∼ indG

L λ and G/K is abelian, an element ρ of Ĝ belongs to ĜK,π if

and only if there exists χ ∈ N̂/K such that

ρ|N ∼ χ⊗ π|N ∼ χ⊗ indN
L∩N(λ|L∩N) = indN

L∩N(χ|L∩N ⊗ λ|L∩N).

Now, by definition of N and the description of L,

(L ∩N)/T = L/T ∩N/T =
(
Bq × Tm

q × B̂q

)
∩

(
Rn × R̂n

)
,

which is the trivial subgroup of G/T. So L ∩N = T and therefore

ρ|N ∼ indN
T (χ|T ⊗ λ|T) = indN

T (λ|T)
for each ρ ∈ ĜK,π. This shows that S is a singleton, {supp(indN

T (λ|T))}, and

hence ĜK,π is compact by Lemma 2.8. The hypotheses of Theorem 2.2 are
now satisfied when taking M = K.

(ii) If π ∈ Ĝ/T, then ĜK,π = π ⊗ Ĝ/K and since

G/K = Rn × Zm × R̂n × B̂/F,

compactness of ĜK,π is equivalent to n = m = 0 and finiteness of B̂, which
means that A is finite. ¤

4. Examples of projections in L1(G)

If f is a nonzero projection in C∗(G), then associated with f is the nonempty
compact open set

S(f) = {π ∈ Ĝ : π(f) 6= 0}
of Ĝ, the support of f (see [4], (3.3.2), (3.3.7)). If G is abelian, then f →
S(f) is a bijective correspondence between nonzero projections in C∗(G) and

nonempty compact open subsets of the dual group Ĝ. For nonabelian G, the
map f → S(f) will no longer be one-to-one. Also, even for 2-step solvable
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discrete groups G, a compact open subset of Ĝ need not be the support set of
some projection (see [12], Example 2 and Proposition).

The partial ordering on the set of projections in L1(G) is given by g ≤ f if
g = g ∗ f (and hence also g = f ∗ g). Thus a nonzero projection f is said to
be minimal if g ≤ f implies g = 0 or g = f .

Proposition 4.1. Let G be an [FC]− group such that Gc is open in G and let

S be a compact open subset of Ĝ. Then there exists a projection f in L1(G)
such that S(f) = S. The conclusion in particular holds if G/Gc is totally
disconnected.

Proof. Note first that if G/Gc is totally disconnected, then G/Gc is discrete
since G/Gc is compact-free. Therefore, it suffices to prove the first statement
of the lemma.

By Theorem 2.1, there exists a compact normal subgroup K of G which is
open in Gc, and hence open in G, such that S is a union of finitely many sets

of the form ĜK,π, π ∈ Ĝ. We fix π and show there is a projection f ∈ L1(G)

with S(f) = ĜK,π. Choose σ ∈ K̂ such that π|K ≥ σ and a unit vector ξ in
the space of σ. Let dσ denote the dimension of σ and put f(x) = dσ〈σ(x)ξ, ξ〉
for x ∈ K and f(x) = 0 for x ∈ G \K. Then f ∗ = f and the orthogonality
relations for irreducible representations of compact groups show that f is an
idempotent. In fact, (f ∗ f)(x) = f(x) = 0 for x ∈ G \K and, for x ∈ K,

(f ∗ f)(x) = d2
σ

∫

K

〈σ(xy)ξ, ξ〉〈σ(y−1)ξ, ξ〉dy

= d2
σ

∫

K

〈σ(y)ξ, σ(x−1)ξ〉〈σ(y)ξ, ξ〉dy

= d2
σ

1

dσ

〈σ(x−1)ξ, ξ〉
= dσ〈σ(x)ξ, ξ〉 = f(x).

Using the orthogonality relations again, it is easily verified that the projection

f has the property that S(f) = ĜK,π. Finally, let S = ∪n
j=1ĜK,πj

, let fj be

as above associated with ĜK,πj
, 1 ≤ j ≤ n and put f =

∑n
j=1 fj. Then,

for any π ∈ Ĝ, π(f) = 0 whenever π 6∈ S and π(f) = π(fk) if π ∈ ĜK,πk
.

Thus S(f) = S and π(f ∗ f) = π(f) for all π ∈ Ĝ, which implies that f is a
projection. ¤
Example 4.2. Consider the reduced Heisenberg group H = {(z, t, x) : z ∈
T, t, x ∈ R} with the product (z1, t1, x1)(z2, t2, x2) = (e2πit2x1z1z2, t1 + t2, x1 +
x2). This is a special case of Example 1.1 Then Hc = T×{0}×{0} and H/Hc =
R2. Projections in L1(H) were constructed in [12] using the orthogonality
relations for integrable representations of unimodular groups from [4].

The next example is a closed subgroup of H from Example 4.2 where there
are no longer open points in the dual, so the integrable representation technique
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of [12] no longer applies. Nevertheless, there are still compact open sets in the
dual and a modification of the construction gives projections in L1(G).

Example 4.3. Let G be the semidirect product G = (T × R) o Z, where Z
acts on T× R by

((z, t), n) → n · (z, t) = (e2πitnz, t), z ∈ T, t ∈ R, n ∈ Z.

We identify T with T×{0}×{0}, the centre of G, T×R with N = T×R×{0}
and Z with {1} × {0} × Z. For m ∈ Z = T̂ and t ∈ R = R̂ let χm,t be the

character of T× R given by χm,t(z, s) = zme2πist. Then the action of Z on N̂
is given by n · χm,t = χm,t+nm, so that G(χm,t) = {m} × {t + nm : n ∈ Z}.
Since the orbits in N̂ are closed and discrete, G is type I. For m ∈ Z, put

Ĝm = {π ∈ Ĝ : π|T ∼ m}. Then Ĝ0 = Ĝ/T = Ẑ× R = T×R does not contain

any nonempty compact open subset. However, for m 6= 0, Ĝm is a minimal

compact open subset of Ĝ. In fact, since the stability group of χm,t equals N
and G(χm,t) = {m} × (t + Zm), the map t → indG

N χm,t is a continuous map

from, [0, m] onto Ĝm, so that Ĝm is compact and connected.
We fix m ∈ Z, m 6= 0, and employ the concept of a projection generating

function, as introduced in [8] and used in [8] and [13], to construct a projection

f ∈ L1(G) such that S(f) = Ĝm. Let U = {m} × R ⊆ N̂ and let πU denote

the unitary representation of G on L2(U) ⊆ L2(N̂) defined by

πU(a, n)ξ(χ) = χ(a)ξ(n · χ), ξ ∈ L2(U),

for a ∈ N, n ∈ Z and χ ∈ U . Moreover, for ξ ∈ L2(U), define a function fξ on
G by

fξ(a, n) = 〈ξ, πU(a, n)ξ〉 = (ξ n · ξ)∨(a),

for (a, n) ∈ G. By Theorem 1.2 of [13], fξ is a projection with S(fξ) = Ĝm

provided that ξ is a projection generating function associated with U , that is,

a measurable function on N̂ with the following properties:

(i) ξ(χ) = 0 for all χ ∈ N̂ \ U ;

(ii) For all n ∈ Z, ξ n · ξ = ĥn for some hn ∈ L1(N);
(iii) fξ ∈ L1(G);
(iv)

∑
n∈Z |ξ(n · χ)|2 = 1 for every ξ ∈ U .

Here is an example of such a projection generating function ξ. Let ϕ ∈
C∞

c (R) be such that supp ϕ ⊆ [−m/2, 3m/2], ϕ ≥ 0 and ϕ(t) > δ, for all
t ∈ [0,m], where δ > 0 is fixed. For t ∈ R, let

β(t) =

[∑

n∈Z
ϕ(t + nm)2

]−1/2

.

Then β ∈ C∞(R), β(t) ≥ δ and β(t + m) = β(t), for all t ∈ R. Thus, ϕ/β is a
Schwartz function on R satisfying

(1)
∑

n∈Z
|(ϕ/β)(t + nm)|2 = 1,
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for all t ∈ R. Let w be a Schwartz function on R such that ŵ = ϕ/β.

Define ξ on N̂ by ξ(χm,t) = ϕ(t)/β(t) and ξ(χm,t) = 0 if k 6= m. Define
g : T× R→ C by g(z, s) = z−mw(s). Then ξ = ĝ.

Property (i) above holds by the definition of ξ and (1) implies property
(iv). For each n ∈ Z, let τng(z, t) = g((−n) · (z, t)) = g(e−2πitnz, t). Then
g ∗ (τng)∗ ∈ L1(N) and (g ∗ (τng)∗)̂ = ξ n · ξ, for each n ∈ Z. Thus property
(ii) holds. Observe next that, for each t ∈ R, ĝ(χk,t) = 0 for k 6= m and

(g ∗ (τng)∗)̂ (χm,t) = ξ n · ξ(χm,t) = ŵ(t)ŵ(t + nm) = 0,

for |n| ≥ 2. So g ∗ (τng)∗ = 0 for all |n| ≥ 2. Now with fξ(a, n) = (ξ n · ξ)∨(a)
for a ∈ N and n ∈ Z. Then∫

G

|fξ(x)|dx =
∑

n∈Z

∫

T

∫

R
|fξ(z, s, n)| dzds

=
∑

n∈Z

∫

T

∫

R
|(ξn · ξ)∨ (z, s)| dzds

=
∑

n∈Z

∫

T

∫

R
|(g ∗ (τng)∗)(z, s)| dzds

=
n=1∑

n=−1

‖g ∗ (τng)∗‖1 ≤ ‖g‖1

n=1∑
n=−1

‖τng‖1 < ∞,

which proves (iii).

Thus, fξ is a projection in L1(G) with supp fξ = Ĝm.

Remark 4.4. The reasoning of Proposition 3.2 of [13] shows that the projection

fξ constructed in Example 4.3 is minimal. For each χ ∈ N̂ , let πχ = indG
N χ.

Then {πχ : χ ∈ N̂} is a faithful family of representations on L1(G). Suppose
f ∈ L1(G) is a projection such that 0 6= f ≤ fξ. Thus, supp f ⊆ supp fξ.

But supp fξ = Ĝm, which is connected. So supp f = supp fξ. Then, as in
Proposition 3.2 of [13], πχ(fξ) is a rank one projection for each χ of the form
χm,t, but πχ(fξ) = 0 if χ is not of this form. This implies πχ(f) = πχ(fξ), for

all χ ∈ N̂ . Thus f = fξ. That is, fξ is minimal.

5. Concluding remarks

Theorems 2.1 and 2.2 provide a complete characterization of the compact

open sets in Ĝ for any [FC]− group G. The characterization is made very

explicit in Theorem 3.4 for groups of the form G = (T × A) o Â, where A is
compactly generated and abelian. In some particular examples, projections in
L1(G) are constructed with support a given compact open set. However, the
following questions remain.

Question 1. Is every compact open set in Ĝ the support set of a projection in
L1(G) if G is an [FC]− group? In [12], it is shown that, for G = Z o Z2 with
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the nontrivial action of Z2, there are compact open subsets of Ĝ which are not
the support sets of projections. However, each nonempty compact open set
contains the support set of some nonzero projection. Note that Z o Z2 is not
an [FC]− group.

Question 2. Is it true that, for any locally compact group G, if S is a nonempty

compact open subset of Ĝ, then there exists a nonzero projection f in L1(G)
with S(f) ⊆ S?
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