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Abstract

For a crystal group Γ in dimension n, a closed subspace V of L2(Rn)
is called Γ–shift invariant if, for every f ∈ V, the shifts of f by every
element of Γ also belong to V. The main purpose of this paper is to
provide a characterization of the Γ–shift invariant closed subspaces of
L2(Rn).

1 Introduction

Let Γ be a crystal group in dimension n with point group Π and associated
lattice L. Detailed definitions are given in Section 3. Elements of Γ are
written [x,M ], where M is an orthogonal matrix that belongs to Π and x is
a vector in Rn. For a function f on Rn, the shift of f by [x,M ] is π[x,M ]f
given by

π[x,M ]f(z) = f
(
M−1z − x

)
,

for z ∈ Rn. When these shifts are applied to functions in the Hilbert space of
all square-integrable functions, L2(Rn), they constitute a unitary representa-
tion of Γ, which we call the natural representation. A closed subspace V of
L2(Rn) is called π-invariant, or Γ–shift invariant, if π[x,M ]f ∈ V , for every
f ∈ V and every [x,M ] ∈ Γ. Our purpose is to provide a characterization of
the Γ–shift invariant closed subspaces of L2(Rn).

The term shift-invariant closed subspace means a closed subspace V of
L2(Rn) such that Tkf ∈ V , for all f ∈ V and all k ∈ Zn, where Tkf(z) =
f(z − k), for z ∈ Rn. In every dimension, there is one crystal group that
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is abelian and it is the set of shifts by lattice points; so shift-invariance is
Γ–shift invariance when Γ is isomorphic to Zn. Understanding shift-invariant
subspaces became more important with the rise of wavelet analysis (see [9]
for a general introduction to the classical theory of wavelets) as the central
subspace in a multiresolution analysis is shift-invariant; see also [18] for more
on the role of shift-invariant subspaces in wavelet theory. A characterization
of shift-invariant subspaces was known in 1964 by Helson [14] and was refor-
mulated in 2000 by Bownik [5] where he applied it to wavelet theory.

The theory of wavelets has many generalizations and variations. One gen-
eralization, wavelets with composite dilations, was introduced in [12] and [13].
The term composite dilations refers to the addition of another set B of ma-
trices that are moving functions, besides the shifts by vectors in a lattice and
the powers of a single dilating matrix. Often, B is a finite group of mea-
sure preserving matrices. Blanchard developed the theory in this case in [3];
see also [4] where the focus was on developing Haar-type wavelet systems
when B leaves the shift lattice invariant and the semi-direct product of B
with the lattice is actually a crystal group, necessarily symmorphic. In [16]
MacArthur and one of the current authors introduced the concept of a mul-
tiresolution analysis where the shifts came from an arbitrary crystal group
and cast the theory in the context of the abstract approach of [2]. Indepen-
dently, González and Moure [11] also formulated the theory for shifts by a
crystal group. In the definition of a multiresolution analysis or a generalized
multiresolution analysis for either composite dilations, with a finite B, or
shifts by a crystal group, the central subspace in the multiresolution analysis
is left invariant under shifts by a crystal group Γ.

Another reason to be concerned about the nature of Γ–shift invariant
closed subspaces is the emergence of topological quantum chemistry (see [8]
and [7], for example) where band representations play a significant role. A
band representation of a crystal group Γ is the restriction of the natural
representation π to a closed Γ–shift invariant subspace generated by a single
function in L2(Rn). A readable review of band representations can be found
in [1].

Our characterization of Γ–shift invariant closed subspaces of L2(Rn) is
stated in Theorem 6.3 with a variation given in Corollary 6.7. Imprecisely
stated, there is a one-to-one correspondence between Γ–shift invariant closed
subspaces of L2(Rn) and certain maps (the range functions) from an open
subset of Rn and the closed subspaces of ℓ2(L∗), where L∗ is the dual lattice
of L. If Γ = Zn, then the characterization in Theorem 6.3 reduces to the
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characterization of shift-invariant subspaces given in Proposition 1.5 in [5].
Our approach draws on the presentation of range functions by Bownik and
Ross in [6], to the extent that Γ–shift invariance implies invariance under
shifts by the lattice L. Perhaps the feature of our characterization that
is most interesting arises when Γ is non-symmorphic; that is Γ is not a
semi-direct product of L with the point group Π. We view π as a unitary
representation of Γ and our strategy is to use unitary maps to transform π
into an equivalent representation that can be analyzed using range function
methods.

We gather together preliminary facts and known results in Section 2 while
Section 3 is devoted to organizing the properties of crystal groups that are
needed. The unitary maps that will be used to transform π are introduced
in Section 4 and applied in the next section. In the final section, we prove
our main theorem, Theorem 6.3. We also present an example of a non-
symmorphic wallpaper group Γ and a Γ–shift invariant closed subspace of
L2(R2) where the impact of the non-symmorphic nature of this Γ is illus-
trated.

2 Preliminaries

Let n be a positive integer and let Rn denote Euclidean space with x ∈ Rn

being considered as a column vector. For 1 ≤ p ≤ ∞, Lp(Rn) denotes the
standard Lebesgue space with respect to Lebesgue measure on Rn and ∥ · ∥p
denotes the usual norm in Lp(Rn). We use the following version of the Fourier

transform. For f ∈ L1(Rn) and ω ∈ Rn, let f̂(ω) =
∫
Rn f(x)e

2πiω·xdx. By

Plancherel’s Theorem, there is a unitary map F on L2(Rn) such that Ff = f̂ ,

for all f ∈ L1(Rn)∩L2(Rn). We call both F and the map f 7→ f̂ the Fourier

transform. We will often use f̂ instead of Ff , for any f ∈ L2(Rn).
If we consider Rn as a topological group with addition of vectors as the

group operation, a subgroup L of Rn is called a lattice in Rn if L is discrete
and Rn/L is compact. The dual lattice of L is L∗ = {ν ∈ Rn : ν · k ∈ Z}.
That is, ν ∈ Rn is in L∗ if and only if e2πiν·k = 1, for all k ∈ L. If L is
a lattice in Rn, then there exists an invertible n × n matrix B such that
L = BZn = {Bk : k ∈ Zn}. Then L∗ = (B−1)tZn, where (B−1)t is the
transpose of the inverse of B. Let Q = {(B−1)tθ : θ ∈

[
−1

2
, 1
2

)n}. Then Rn

is the disjoint union of the Q + ν, ν ∈ L∗. We equip Q with the restriction
of Lebesgue measure.
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We will need a form of the Poisson summation formula. For g ∈ L1(Rn),
the periodization PL∗g of g with respect to L∗ is given by

PL∗g(θ) =
∑
ν∈L∗

g(θ + ν),

for any θ ∈ Rn for which the series converges.

Lemma 2.1. Let L be a lattice in Rn and let L∗ be its dual lattice. Let
g ∈ L1(Rn). Then

∑
ν∈L∗ g(θ + ν), converges for a.e. θ ∈ Rn and PL∗g

∣∣
Q
∈

L1(Q).

Proof. We adapt the standard argument as in the proof of Theorem 8.31
of [10].∫

Q

∑
ν∈L∗

|g(θ + ν)|dθ =
∑
ν∈L∗

∫
Q

|g(θ + ν)|dθ

=
∑
ν∈L∗

∫
Q+ν

|g(θ)|dθ =

∫
Rn

|g(θ)|dθ = ∥g∥1.

By the sum variation of the Dominated Convergence Theorem,
∑

ν∈L∗ g(θ+ν)
converges for a.e. θ ∈ Q and PL∗g

∣∣
Q
∈ L1(Q). Since PL∗g is L∗-periodic,∑

ν∈L∗ g(θ + ν) converges for a.e. θ ∈ Rn.

Proposition 2.2. Let L be a lattice in Rn and let L∗ be its dual lattice. Let
g ∈ L1(Rn). For each ℓ ∈ L,∫

Q

PL∗g(θ)e2πiθ·ℓdθ = ĝ(ℓ).

Moreover, if ĝ(ℓ) = 0, for all ℓ ∈ L, then PL∗g = 0.

Proof. Again, dominated convergence justifies the interchange of sum and
integral below. For ℓ ∈ L,∫

Q

PL∗g(θ)e2πiθ·ℓdθ =

∫
Q

∑
ν∈L∗

g(θ + ν)e2πiθ·ℓdθ =
∑
ν∈L∗

∫
Q

g(θ + ν)e2πiθ·ℓdθ

=
∑
ν∈L∗

∫
Q+ν

g(θ)e2πi(θ−ν)·ℓdθ =
∑
ν∈L∗

∫
Q+ν

g(θ)e2πiθ·ℓdθ

=

∫
Rn

g(θ)e2πiθ·ℓdθ = ĝ(ℓ).
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For the last statement in the proposition, we do a linear change of variables.
Let C = (B−1)t, where L = BZn. That is, C is the invertible matrix such
that L∗ = CZn. Now define h ∈ L1(Rn) by h(ω) = g(Cω), for a.e. ω ∈ Rn.
Form the Zn periodization of h. That is,

PZnh(ω) =
∑
k∈Zn

h(ω + k) =
∑
k∈Zn

g(Cω + Ck) = PL∗g(Cω),

which converges for a.e. ω ∈ Rn, and PZnh is integrable over
[
−1

2
, 1
2

)n
.

Let (cj)j∈Zn be the Fourier multi-series of the periodic function PZnh. For
each j ∈ Zn, compute the Fourier coefficient cj using the change of variables
θ = Cω and noting that C−1 = Bt. So

cj =

∫
[− 1

2
, 1
2)

n
PZnh(ω)e2πiω·jdω =

∫
[− 1

2
, 1
2)

n
PL∗g(Cω)e2πiω·jdω

= | det(B)|
∫
Q

PL∗g(θ)e2πiθ·Bjdθ = | det(B)|ĝ(Bj).

Now Bj ∈ L∗, for all j ∈ Zn. So, if ĝ(ℓ) = 0, for all ℓ ∈ L∗, then every Fourier
coefficient of PZnh is 0. This implies PZnh = 0, which implies PL∗g = 0.

Corollary 2.3. With the notation of Proposition 2.2, let Y be an open subset
of Rn such that (Y +ν)∩(Y +κ) = ∅ if ν, κ ∈ L∗ with ν ̸= κ. Let g ∈ L1(Rn)
be such that g(θ) = 0, for a.e. θ ∈ Rn \ Y . If ĝ(ℓ) = 0, for all ℓ ∈ L, then
g = 0.

Proof. Under the assumption on g, PL∗g agrees with g on Y , so Proposition
2.2 implies g = 0.

Remark 2.4. For each ℓ ∈ L, let eℓ(θ) = e2πiθ·ℓ, for all θ ∈ Rn. In the language
of [6], Definition 2.2, D = {eℓ|Y : ℓ ∈ L} is a determining set for L1(Y ).

The concept of a range function goes back to [14] and was used in [5] for
the characterization of closed subspaces of L2(Rn) that are shift-invariant.
The treatment of range functions given in [6] is most useful for our purposes.
For a Hilbert space H, let Gr(H) denote the set of all closed subspaces of
H, the Grassmannian of H. If K ∈ Gr(H), let PK denote the orthogonal
projection of H onto K.

Definition 2.5. Let H be a separable Hilbert space and let (X ,Σ) be a
measurable space. A measurable range function for H based on X , is a
mapping J : X → Gr(H) such that, for any ξ, η ∈ H, the map x → ⟨PJ(x)ξ, η⟩
is measurable.
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In all the cases we consider here, H is a separable Hilbert space. A map
F : X → H is measurable if x → ⟨F (x), η⟩ is a measurable complex-valued
function, for each η ∈ H. If µ is a positive measure on (X ,Σ), let

L2(X , µ,H) =

{
F : X → H

∣∣F is measurable and

∫
X
∥F (x)∥2dµ(x) < ∞

}
,

with the usual identification of functions that agree µ-almost everywhere. If
the measure µ is understood from context, we write L2(X ,H). The inner
product of F1, F2 ∈ L2(X ,H) is given by

⟨F1, F2⟩ =
∫
X
⟨F1(x), F2(x)⟩dµ(x).

Let J be a measurable range function for H based on X . Then, for any
F ∈ L2(X ,H), x → ⟨PJ(x)F (x), η⟩ is measurable, for every η ∈ H. Given J ,
define MJ = {F ∈ L2(X ,H) : F (x) ∈ J(x), for µ-a.e. x ∈ X}. The next
Proposition gathers together Propositions 2.1, 2.2, and 2.3 of [6].

Proposition 2.6. Let Jand K be measurable range functions for H based
on X . Then

(i) MJ is a closed subspace of L2(X ,H),
(ii) if PMJ

is the orthogonal projection of L2(X ,H) onto MJ , then, for
any F ∈ L2(X ,H), (PMJ

F ) (x) = PJ(x)F (x), for a.e. x ∈ X , and
(iii) MJ = MK if and only if J(x) = K(x), for a.e. x ∈ X .

If H is a Hilbert space, let U(H) denote the group of all unitary operators
on H. If Λ is any discrete group, a unitary representation of Λ on H is a
homomorphism σ : Λ → U(H). Let σ1 and σ2 be unitary representations of Λ
on H1 and H2, respectively. If there exists a unitary map W : H1 → H2 such
that Wσ1(a) = σ2(a)W , for all a ∈ Λ, then σ1 and σ2 are called equivalent.

3 Crystal groups

Let On denote the compact group of orthogonal n × n real matrices. For
x ∈ Rn and A ∈ On, define [x,A] to be the affine map, z → A(z + x), of Rn.
Let

Ison(R) = {[x,A] : x ∈ Rn, A ∈ On},
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the group of all isometries of Rn. The composition of isometries is the
group product: For [x,A], [y,B] ∈ Ison(R), [x,A][y,B] = [B−1x+y, AB] and
[x,A]−1 = [−Ax,A−1]. Note that [0, id] is the identity element of Ison(R),
where id denotes the identity n × n matrix. Given the product topology of
Rn×On, Ison(R) is a locally compact group. Let Transn = {[x, id] : x ∈ Rn},
the set of pure translations in Ison(R). This is a closed normal subgroup of
Ison(R). Let q : Ison(R) → On be the homomorphism given by q[x,A] = A,
for all [x,A] ∈ Ison(R).

A crystal group is a discrete subgroup Γ of Ison(R) such that Rn/Γ is
compact, where Rn/Γ is the set of all Γ-orbits, with the quotient topology.
Section 7.5 of [17] presents the basic properties of crystal groups. The trans-
lation subgroup of Γ is T = Γ ∩ Transn, which is a normal subgroup, and
the point group is Π = q(Γ), which is isomorphic to the quotient group Γ/T .
Then Π is a finite subgroup of On, while T is a free abelian group of rank
n. Indeed, L = {ℓ ∈ Rn : [ℓ, id] ∈ T} is a lattice in Rn. For [ℓ, id] ∈ T and
[x,M ] ∈ Γ,

[x,M ][ℓ, id][x,M ]−1 = [x+ ℓ,M ][−Mx,M−1] = [Mℓ, id].

This shows that if ℓ ∈ L, then Mℓ ∈ L, for all M ∈ Π.
Fix a cross-section γ : Π → Γ of the T -cosets in Γ; so q

(
γ(M)

)
= M ,

for all M ∈ Π. With γ fixed, for each M ∈ Π, let xM ∈ Rn be such that
γ(M) = [xM ,M ]. Then Γ = {[ℓ+xM ,M ] : ℓ ∈ L,M ∈ Π}. For many crystal
groups, [0,M ] ∈ Γ, for all M ∈ Π. Then, choose xM = 0, for each M ∈ Π.
When this can be done, Γ is isomorphic to the semidirect product L ⋊ Π.
Such crystal groups are called symmorphic.

Lemma 3.1. With the xM ∈ Rn selected as above, N−1xK + xN − xKN ∈ L,
for all K,N ∈ Π.

Proof. For K,N ∈ Π, calculate the following element of Γ:

[xK , K][xN , N ][xKN , KN ]−1 = [N−1xK + xN , KN ][−KNxKN , (KN)−1]
= [KxK +KNxN −KNxKN , id] ∈ T.

Thus, KxK +KNxN −KNxKN ∈ L. Then

N−1xK + xN − xKN = N−1K−1
(
KxK +KNxN −KNxKN

)
is in L as well.
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Associated with the lattice L is the dual lattice L∗ = {ν ∈ Rn : ν · ℓ ∈
Z, for all ℓ ∈ L}. Since M t = M−1, for any M ∈ Π ⊆ On, this implies L∗

is left invariant when multiplied by members of Π. With this action of Π on
L∗, form the semidirect product L∗ ⋊ Π = {(ν,M) : ν ∈ L∗,M ∈ Π}, with
the group product given by

(κ, L)(ν,M) = (M−1κ+ ν, LM), for (κ, L), (ν,M) ∈ L∗ ⋊ Π.

This auxilliary group might be isomorphic to Γ, but this is not always the
case. As with Γ, L∗ ⋊ Π acts on Rn. For (ν,M) ∈ L∗ ⋊ Π and ω ∈ Rn,
let (ν,M) · ω = M(ω + ν). This identifies L∗ ⋊ Π with a discrete group of
isometries of Rn such that, since L∗ is a full-rank lattice, Rn/(L∗ ⋊ Π) is
compact. That is, L∗ ⋊ Π is also a crystal group. Let Γ∗ = L∗ ⋊ Π.

For any ω ∈ Rn, let Γ∗ω = {M(ω + ν) : (ν,M) ∈ Γ∗}, the Γ∗-orbit of
ω, and let Γ∗

ω = {(ν,M) ∈ Γ∗ : M(ω + ν) = ω}, the stabilizer of ω. There
exist points ω in Rn such that Γ∗

ω = {(0, id)} (see Theorem 6.6.12 of [17]).
Fix ω0 ∈ Rn such that Γ∗

ω0
= {(0, id)}. For each (ν,M) ∈ Γ∗ \ {(0, id)}, let

H(ν,M) = {ω ∈ Rn : ∥ω − ω0∥ < ∥ω −M(ω0 + ν)∥}.

Definition 3.2. The Dirichlet domain for Γ∗ containing ω0 is

Ωω0 =
⋂

{H(ν,M) : (ν,M) ∈ Γ∗, (ν,M) ̸= (0, id)}.

Let A ⊆ Rn, then A+ν = {ω+ν : ω ∈ A}, for ν ∈ L∗, and MA = {Mω :
ω ∈ A}, for M ∈ Π. Also, ∂A denotes the boundary of A.

Proposition 3.3. Let ω0 ∈ Rn be such that Γ∗
ω0

= {(0, id)} and let Ω = Ωω0.
Then Ω has the following properties:

1. Ω is open

2. Ω is convex

3. For (κ, L), (ν,M) ∈ Γ∗, (κ, L) ̸= (ν,M), (L(Ω + κ)) ∩ (M(Ω + ν)) = ∅

4. ∪(ν,M)∈Γ∗M(Ω + ν) = Rn

5. ∪(ν,M)∈Γ∗M(Ω + ν) is a co-null subset of Rn.
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Proof. Properties 1, 2, 3, and 4 are well-known (see, for example, Theorem
6.6.13 and the definition of fundamental domain on page 233 of [17]). Since Ω
is open and convex ∂Ω has Lebesgue measure 0. Each map ω → M(ω+ ν) is
an isometry, so ∂(M(Ω+ν)) = M(∂Ω+ν) is a null set, for each (ν,M) ∈ Γ∗.
Now Rn \∪(ν,M)∈Γ∗M(Ω+ν) ⊆ ∪(ν,M)∈Γ∗M(∂Ω+ν), which is a null set since
Γ∗ is countable. This implies 5.

Let ΠΩ = ∪M∈ΠMΩ. Then ΠΩ is a fundamental domain for L∗. In
particular, we have the following corollary.

Corollary 3.4. If ν1, ν2 ∈ L∗, ν1 ̸= ν2, then (ΠΩ+ ν1) ∩ (ΠΩ+ ν2) = ∅ and
∪ν∈L∗(ΠΩ + ν) is co-null in Rn.

4 Several Unitary Transformations

In order to illuminate aspects of the natural unitary representation of the
crystal group Γ in the next section, the Hilbert space L2(Rn) will be trans-
formed into a number of different realizations by specific unitary maps. The
first is the Fourier transform viewed as a unitary map of L2(Rn) onto itself.

For the other Hilbert spaces that arise, we equip the open subsets Ω and
ΠΩ with the restriction of Lebesgue measure and Ω×Π×L∗ with the product
measure, where Π and L∗ have counting measure. We can use Ω×Π×L∗ to
almost parametrize Rn. Let X = ∪(L,ν)∈Π×L∗L(Ω + ν). By Proposition 3.3,
X is an open co-null subset of Rn.

Lemma 4.1. The map ϕ : Ω×Π×L∗ → X given by ϕ(ω, L, ν) = L(ω + ν)
is a measure preserving homeomorphism.

Proof. Routine.

For any θ ∈ X, let ωθ ∈ Ω, Lθ ∈ Π, and νθ ∈ L∗ be such that Lθ(ωθ+νθ) =
θ. For each ξ ∈ L2(Rn), let W1ξ = ξ ◦ ϕ. Then W1ξ is a measurable function
on Ω× Π× L∗.

Lemma 4.2. The map W1 is a unitary from L2(Rn) onto L2(Ω × Π × L∗)
and W−1

1 is given by, for g ∈ L2(Ω × Π × L∗), W−1
1 g(θ) = g(ωθ, Lθ, νθ), for

a.e. θ ∈ X.

Proof. Also routine.
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Our next unitary transformation is a simple unitary operator on the
Hilbert space L2(Ω × Π × L∗). Recall that, for each L ∈ Π, xL ∈ Rn was
selected so that [xL, L] ∈ Γ. Define a function w2 : Ω × Π × L∗ → T by
w2(ω, L, ν) = e−2πiν·xL , for all (ω, L, ν) ∈ Ω × Π × L∗. Pointwise multipli-
cation by such a T-valued continuous function is a unitary operator and we
formulate this in a lemma.

Lemma 4.3. For each g ∈ L2(Ω× Π× L∗), let W2g = w2g. That is,

(W2g)(ω, L, ν) = e−2πiν·xLg(ω, L, ν),

for a.e. (ω, L, ν) ∈ Ω × Π × L∗. Then W2 is a unitary operator on L2(Ω ×
Π× L∗) and W−1

2 g = w2g, for all g ∈ L2(Ω× Π× L∗).

Remark 4.4. The function w2 plays an important role in the characterization
of Γ–shift invariant closed subspaces of L2(Rn) obtained in Section 6, so it is
important to note that this function is independent of the choice of the cross-
section γ : Π → Γ. Indeed, if γ′ is a different cross-section, then, for each L ∈
Π, γ′(L) = [x′

L, L], for some x′
L ∈ Rn. But [xL, L]

−1[x′
L, L] = [x′

L−xL, id] ∈ T ,
so k = x′

L − xL ∈ L. Thus, e−2πiν·x′
L = e−2πiν·(xL+k) = e−2πiν·xL .

Let {δν : ν ∈ L∗} be the orthonormal basis of ℓ2(L∗) consisting of the
usual delta functions. We will use L2

(
ΠΩ, ℓ2(L∗)

)
, which is a separable

Hilbert space. As we work with each of L2(Rn), L2(Ω×Π×L∗), ℓ2(L∗), and
L2

(
ΠΩ, ℓ2(L∗)

)
, any inner product that arises will be denoted ⟨·, ·⟩ and the

corresponding norm denoted by ∥ · ∥, relying on the reader to know which
Hilbert space this inner product or norm belongs to from the context.

We now turn to the definition of a unitary transformation of L2(Ω×Π×L∗)
into L2

(
ΠΩ, ℓ2(L∗)

)
. As above, for any θ ∈ ΠΩ, there are unique ωθ ∈ Ω

and Lθ ∈ Π so that Lθωθ = θ. For any g ∈ L2(Ω× Π × L∗) and ν ∈ L∗, let
gν(θ) = g(ωθ, Lθ, ν), for a.e. θ ∈ ΠΩ. Then gν ∈ L2(ΠΩ), for each ν ∈ L∗,
and ∥g∥2 =

∑
ν∈L∗ ∥gν∥2. Define W3g : ΠΩ → ℓ2(L∗) by

W3g(θ) =
∑
ν∈L∗

gν(θ)δν , for a.e. θ ∈ ΠΩ. (1)

Lemma 4.5. If W3g is defined by (1), then W3g ∈ L2
(
ΠΩ, ℓ2(L∗)

)
, for each

g ∈ L2(Ω × Π × L∗) and W3 is a unitary map of L2(Ω × Π × L∗) onto
L2

(
ΠΩ, ℓ2(L∗)

)
. Moreover, for F ∈ L2

(
ΠΩ, ℓ2(L∗)

)
,

W−1
3 F (ω, L, ν) = ⟨F (Lω), δν⟩, (2)

for a.e. (ω, L, ν) ∈ Ω× Π× L∗.
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Proof. For each κ ∈ L∗, the map θ 7→ ⟨W3g(θ), δκ⟩ = gκ(θ) is measurable.
Since {δκ : κ ∈ L∗} is a countable basis of ℓ2(L∗), W3g is measurable. More-
over, using (1)∫

ΠΩ

∥W3g(θ)∥2dθ =

∫
ΠΩ

∑
ν∈L∗

|gν(θ)|2dθ =
∑
ν∈L∗

∫
ΠΩ

|gν(θ)|2dθ = ∥g∥2. (3)

Therefore, W3g ∈ L2
(
ΠΩ, ℓ2(L∗)

)
and W3 is clearly linear. By (3), W3 is

an isometry. If F ∈ L2
(
ΠΩ, ℓ2(L∗)

)
and (2) is used to define W−1

3 F on
Ω × Π × L∗, then one verifies, with an argument similar to (3) in reverse,
that W−1

3 F is square-integrable on Ω× Π× L∗ and W3W
−1
3 F = F .

5 The natural representation

The action of Γ on Rn generates a unitary representation. For [x,M ] ∈ Γ,
π[x,M ] is the unitary operator given by, for f ∈ L2(Rn),

π[x,M ]f(z) = f([x,M ]−1z) = f(M−1z − x), for a.e. z ∈ Rn.

It is routine to show that π is a homomorphism of Γ into U
(
L2(Rn)

)
. As

mentioned in the introduction, we will call π the natural representation of Γ.
The Fourier transform, as a unitary map F on L2(Rn), intertwines π with an
equivalent representation π̂ by π̂[ℓ,M ] = Fπ[ℓ,M ]F−1. A brief calculation,
using the fact that M−1 agrees with the transpose matrix of M ∈ On, shows
that, for ξ ∈ L2(Rn),

π̂[x,M ]ξ(ω) = e2πi(M
−1ω)·xξ(M−1ω), for a.e. ω ∈ Rn. (4)

Recall from Lemma 4.2 that W1ξ(ω, L, ν) = ξ
(
L(ω+ν)

)
, for almost every

(ω, L, ν) ∈ Ω×Π×L∗, for each ξ ∈ L2(Rn), defines a unitary map of L2(Rn)
onto L2(Ω× Π× L∗). Let π̂1 be the representation of Γ on L2(Ω× Π× L∗)
given by π̂1[x,M ] = W1π̂[x,M ]W−1

1 , for [x,M ] ∈ Γ. For g ∈ L2(Ω×Π×L∗),
let ξ = W−1

1 g. Then, for [x,M ] ∈ Γ and a.e. ω ∈ Ω, L ∈ Π, and ν ∈ L∗.

π̂1[x,M ]g(ω, L, ν) = π̂[x,M ]ξ
(
L(ω+ ν)

)
= e2πi(M

−1L(ω+ν))·xξ
(
M−1L(ω+ ν)

)
.

Setting θ = M−1L(ω+ ν), note that ωθ = ω, Lθ = M−1L, and νθ = ν. Thus,

π̂1[x,M ]g(ω, L, ν) = e2πi(M
−1L(ω+ν))·xg(ω,M−1L, ν),
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for a.e. (ω, L, ν) ∈ Ω×Π×L∗. Since [x,M ] ∈ Γ, there exists ℓ ∈ L so that x =
ℓ+xM . For any ν ∈ L∗ and N ∈ Π, e2πi(Nν)·ℓ = 1. Therefore, e2πi(M

−1L(ω+ν))·x

can be written as e2πi(M
−1Lν)·xM e2πi(M

−1Lω)·x = e2πiν·(L
−1MxM )e2πi(M

−1Lω)·x and

π̂1[x,M ]g(ω, L, ν) = e2πiν·(L
−1MxM )e2πi(M

−1Lω)·xg(ω,M−1L, ν). (5)

We can use the rather elementary, but strategic, unitary W2 from Lemma
4.3 to eliminate the first factor in the right hand side of (5). Recall that
W2g = w2g, for all g ∈ L2(Ω × Π × L∗), where w2(ω, L, ν) = e−2πiν·xL , for
(ω, L, ν) ∈ Ω × Π × L∗. Let π̂2[x,M ] = W2π̂1[x,M ]W−1

2 , for all [x,M ] ∈ Γ.
Then, for g ∈ L2(Ω× Π× L∗),

π̂2[x,M ]g(ω, L, ν) = e−2πiν·xL π̂1[x,M ]W−1
2 g(ω, L, ν)

= e−2πiν·xLe2πiν·(L
−1MxM )e2πi(M

−1Lω)·xW−1
2 g(ω,M−1L, ν)

= e−2πiν·xLe2πiν·(L
−1MxM )e2πi(M

−1Lω)·xe2πiν·xM−1Lg(ω,M−1L, ν).

The scalar in the previous line can be rearranged to

e2πiν·(L
−1MxM+xM−1L−xL)e2πi(Lω)·(Mx).

Consider the expression L−1MxM+xM−1L−xL. By Lemma 3.1 with K = M
and N = M−1L, we have that L−1MxM + xM−1L − xL = ℓ, for some ℓ ∈ L.
Since ν ∈ L∗, e2πiν·(L

−1MxM+xM−1L−xL) = 1. Finally, for [x,M ] ∈ Γ and
g ∈ L2(Ω× Π× L∗),

π̂2[x,M ]g(ω, L, ν) = e2πi(Lω)·(Mx)g(ω,M−1L, ν) (6)

for a.e. ω ∈ Ω, L ∈ Π and ν ∈ L∗.
The next step is to conjugate by the unitary W3 : L2(Ω × Π × L∗) →

L2
(
ΠΩ, ℓ2(L∗)

)
from Lemma 4.5. Let π̂3[x,M ] = W3π̂2[x,M ]W−1

3 , for all
[x,M ] ∈ Γ. For F ∈ L2

(
ΠΩ, ℓ2(L∗)

)
,

π̂3[x,M ]F (θ) = W3π̂2[x,M ]W−1
3 F (θ)

=
∑
ν∈L∗

(
π̂2[x,M ]W−1

3 F (ωθ, Lθ, ν)
)
δν

= e2πi(Lθωθ)·(Mx)
∑
ν∈L∗

W−1
3 F (ωθ,M

−1Lθ, ν)δν . (7)

Using (2) we get
∑

ν∈L∗ W
−1
3 F (ωθ,M

−1Lθ, ν)δν = F (M−1Lθωθ). Recall that
Lθωθ = θ and M t = M−1, so (7) implies

π̂3[x,M ]F (θ) = e2πi(M
−1θ)·xF (M−1θ), for a.e. θ ∈ ΠΩ, (8)
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and each [x,M ] ∈ Γ and any F ∈ L2
(
ΠΩ, ℓ2(L∗)

)
. We summarize these

considerations in a proposition.

Proposition 5.1. If π̂2[x,M ] is defined by (6) and π̂3[x,M ] is defined by
(8), for each [x,M ] ∈ Γ, then π̂2 and π̂3 are unitary representations of Γ that
are each unitarily equivalent to the natural representation π.

6 Invariant closed subspaces

Definition 6.1. Let J : ΠΩ → Gr
(
ℓ2(L∗)

)
be a measurable range function.

We say J is Π-invariant, if J(Lθ) = J(θ), for a.e. θ ∈ ΠΩ and every L ∈ Π.

Proposition 6.2. Let K be a closed subspace of L2
(
ΠΩ, ℓ2(L∗)

)
. Then K

is π̂3-invariant if and only if there exists a Π-invariant measurable range
function, J , for ℓ2(L∗) based on ΠΩ such that K = MJ .

Proof. First, suppose J is a Π-invariant measurable range function for ℓ2(L∗)
based on ΠΩ and K = MJ . Let [x,M ] ∈ Γ. For any F ∈ MJ , we know that
F (θ) ∈ J(θ), for a.e. θ ∈ ΠΩ, and J is Π-invariant. This implies

π̂3[x,M ]F (θ) = e2πiθ·(Mx)F (M−1θ) ∈ J(M−1θ) = J(θ),

for a.e. θ ∈ ΠΩ. Thus, π̂3[x,M ]F ∈ K, for all F ∈ K and [x,M ] ∈ Γ. That
is, K is π̂3-invariant.

Now suppose K is a π̂3-invariant closed subspace of L2
(
ΠΩ, ℓ2(L∗)

)
. By

Remark 2.4, D = {eℓ|ΠΩ
: ℓ ∈ L} is a determining set for L1(ΠΩ), where

eℓ(θ) = e2πiθ·ℓ, for all θ ∈ Rn. If F ∈ K and ℓ ∈ L, then [ℓ, id] ∈ T ⊆ Γ and
(8) says

π̂3[ℓ, id]F (θ) = e2πiθ·ℓF (θ) = eℓ(θ)F (θ), for a.e. θ ∈ ΠΩ.

Therefore, eℓF ∈ K, for each ℓ ∈ L. In the language of [6], K is multiplicatively-
invariant with respect to D, denoted D −MI. By Theorem 2.4 of [6], there
exists a measurable range function J : ΠΩ → Gr

(
ℓ2(L∗)

)
so that

K = MJ = {F ∈ L2
(
ΠΩ, ℓ2(L∗)

)
: F (θ) ∈ J(θ), for a.e. θ ∈ ΠΩ}.

Moreover, J is unique up to almost everywhere agreement and, if A is any
countable dense subset of K, J(θ) is the closed linear span of {φ(θ) : φ ∈ A},
for a.e. θ ∈ ΠΩ. Fix such an A.
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Fix L ∈ Π so that [xL, L] ∈ Γ and use (8) again to get

π̂3[xL, L]F (Lω) = e2πiω·(xL)F (ω), for a.e. ω ∈ Ω. (9)

For φ ∈ A, let φL = π̂3[xL, L]φ and let L · A = {φL : φ ∈ A}. Then L · A is
a dense subset of K. Therefore, by (9), for a.e. ω ∈ Ω,

J(Lω) = span{φL(Lω) : φ ∈ A} = span{φ(ω) : φ ∈ A} = J(ω).

Since L ∈ Π is arbitrary, J is Π-invariant.

Before formulating the main result, we recall the various ingredients: Γ
is a crystal group in dimension n with point group Π and associated lattice
L. The dual lattice of L is L∗. There is an open subset Ω of Rn described
in Proposition 3.3 and the collection of sets {L(Ω + ν) : L ∈ Π, ν ∈ L∗} tiles
Rn up to a null set.

Theorem 6.3. Let V be a closed subspace of L2(Rn). Then V is invariant
under shifts by elements of Γ if and only if there exists a Π-invariant mea-
surable range function J for ℓ2(L∗) based on ΠΩ such that, for any f ∈ V,
there exists F ∈ MJ so that, for almost every ω ∈ Ω, every L ∈ Π, and
every ν ∈ L∗,

f̂
(
L(ω + ν)

)
= e2πiν·xL⟨F (Lω), δν⟩. (10)

Proof. Suppose that V is a closed subspace of L2(Rn) that is invariant under
shifts by elements of Γ. That is, V is π-invariant. Let U = W3◦W2◦W1◦F , a
unitary map that intertwines the natural representation π with π̂3. Therefore,
UV is a π̂3-invariant closed subspace of L2

(
ΠΩ, ℓ2(L∗)

)
. By Proposition 6.2,

there exists a Π-invariant measurable range function J : ΠΩ → Gr
(
ℓ2(L∗)

)
such that UV = MJ . For any f ∈ V , let F = Uf . This can be written as
W1f̂ = W−1

2 W−1
3 F , which is an element of L2(Ω×Π×L∗). By the definition

of W1 given just before Lemma 4.2,

W1f̂(ω, L, ν) = f̂
(
L(ω + ν)

)
, (11)

for a.e. (ω, L, ν) ∈ Ω× Π× L∗. On the other hand, using the equations for
W−1

2 and W−1
3 given in Lemmas 4.3 and 4.5, we have

W−1
2 W−1

3 F (ω, L, ν) = e2πiν·xL⟨F (Lω), δν⟩, (12)

for a.e. (ω, L, ν) ∈ Ω× Π× L∗. Comparing (11) with (12) yields (10).
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Conversely, suppose J is a Π-invariant measurable range function for
ℓ2(L∗) based on ΠΩ and that V is related to MJ via (10). Then MJ is
π̂3-invariant by Proposition 6.2 and unpacking (10) shows that U−1MJ = V .
Since U is the intertwining unitary between π and π̂3, V must be π-invariant.
Thus, V is invariant under shifts by elements of Γ.

Theorem 6.3 is a direct generalization of Proposition 1.5 in [5], where
it is attributed to Helson [14]. It is not surprising that the range function
associated to a π-invariant closed subspace must be Π-invariant. However,
the appearance of the factor e2πiν·xL in (10) is not so obvious. As noted
earlier, for a given L ∈ Π, the choice of xL such that [xL, L] ∈ Γ is not
unique. However, if y ∈ Rn also satisfies [y, L] ∈ Γ, then xL − y ∈ L. Thus,
e2πiν·y = e2πiν·xL , for all ν ∈ L∗. To help understand the role this term plays,
we present an example of a group, necessarily non-symmorphic, where this
factor is nontrivial.

Example 6.4. The patch of brick wall illustrated in Figure 1 is meant to
be a region of a pattern extending in all directions. The symmetry group
of this pattern is often denoted pg, so set Γ = pg. If the origin is placed
at the bottom of one of the vertical line segments, let u denote a horizontal
vector pointing right whose length equals the length of one brick. Let v be
an upward pointing vector whose length equals twice the width of a brick.
Then, we can take the translation lattice of Γ to be L = {ju+kv : j, k ∈ Z}.
Let σ ∈ O2 denote the reflection about the horizontal axis. This is not a
symmetry of the pattern, but [1

2
u, σ] ∈ Γ. Indeed, the point group of Γ

is Π = {id, σ}, isomorphic to Z2. If T = {[ju + kv, id] : j, k ∈ Z} is the
translation subgroup of Γ, we can take the cross-section of the T -cosets to
be given by γ(id) = [0, id] and γ(σ) = [1

2
u, σ].

Figure 1: A pattern illustrating the symmetries of the wallpaper group pg.
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Fix the basis for R2 to be {u,v} and represent elements x ∈ R2 as

x =

(
x1

x2

)
. Then L =

{
ℓ =

(
ℓ1
ℓ2

)
: ℓ1, ℓ2 ∈ Z

}
= Z2, viewed as a lattice in

R2. So L∗ = Z2, as well. We set Γ∗ = L∗ ⋊ Π. Let ω0 =

(
0
1/4

)
and form

Ω as in Definition 3.2. Then Ω =

{
ω =

(
ω1

ω2

)
;−1

2
< ω1 <

1
2
, 0 < ω2 <

1
2

}
as illustrated in Figure 2. The open set σΩ is outlined as well. Note that
ΠΩ = Ω ∪ σΩ.

Ω

σΩ

Figure 2: The Γ∗-orbit of ω0 and domain Ω.

Let’s construct a simple Π-invariant measurable range function for ℓ2(L∗)

based on ΠΩ. Let κ =

(
1
0

)
∈ L∗ and consider the one-dimensional subspace

V = C(δ0 + δκ) = {α(δ0 + δκ) : α ∈ C} of ℓ2(L∗). Let E be a measurable
subset of Ω as pictured in Figure 3 where we have surpressed the vertical
axis and changed the scale a little.

E

σE

E+κ

σ(E+κ)

Figure 3: The measurable subset E of Ω and three of its shifts.

Now consider the map J : ΠΩ → Gr
(
ℓ2(L∗)

)
given by J(θ) = V , for

θ ∈ E ∪ σE, and J(θ) = {0}, for θ ∈ ΠΩ \ (E ∪ σE). Then, MJ consists
of all F ∈ L2

(
ΠΩ, ℓ2(L∗)

)
such that F (θ) = 0, for a.e. θ ∈ ΠΩ \ (E ∪ σE),

and F (θ) ∈ C(δ0 + δκ), for a.e. θ ∈ E ∪ σE. Before looking at (10) in
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this situation, note that xid =

(
0
0

)
and xσ =

(
1/2
0

)
. So, e2πiν·xid = 1

and e2πiν·xσ = (−1)ν1 , for all ν =

(
ν1
ν2

)
∈ L∗. Consider the following three

properties for an f ∈ L2(R2):

(a) f̂(ω + κ) = f̂(ω), for a.e. ω ∈ Ω.

(b) f̂
(
σ(ω + κ)

)
= −f̂

(
σ(ω)

)
, for a.e. ω ∈ Ω.

(c) f̂(θ) = 0, for all θ ∈ R2 \
(
E ∪ (E + κ) ∪ σE ∪ σ(E + κ)

)
.

What Theorem 6.3 implies for the simple range function J is that, if V
denotes the set of all f ∈ L2(R2) whose Fourier transform f̂ satisfies (a), (b),
and (c), then V is a closed subspace of L2(R2) that is invariant under shifts
from the wallpaper group pg.

Although the range function used in Example 6.4 is simple compared to
the complexity that is possible, the example does suggest that the statement
of Theorem 6.3 can be refined. We return to Γ denoting a crystal group in
dimension n with Π, L, and Ω as before. For each L ∈ Π, define a unitary
operator UL on ℓ2(L∗) by ULh(ν) = e2πiν·xLh(ν), for all ν ∈ L∗ and for each
h ∈ ℓ2(L∗). In Theorem 6.3, we used range functions based on ΠΩ that are
Π-invariant, so completely determined by their restriction to Ω. We now give
a version where Π-invariance is replaced with twisting by the unitaries UL,
L ∈ Π.

Definition 6.5. For a measurable range function J : Ω → Gr
(
ℓ2(L∗)

)
, let

JΓ : ΠΩ → Gr
(
ℓ2(L∗)

)
be given by JΓ(Lω) = ULJ(ω), for each ω ∈ Ω and

all L ∈ Π.

If J is a measurable range function for ℓ2(L∗) based on Ω, then it is clear
that JΓ is a measurable range function for ℓ2(L∗) based on ΠΩ. Note that
we can create a Π-invariant range function J ′ from J based on ΠΩ by simply
letting J ′(Lω) = J(ω), for all L ∈ Π, ω ∈ Ω. We call J ′ the Π-invariant
extension of J . The following lemma is immediate from the definitions.

Lemma 6.6. Let J be a measurable range function for ℓ2(L∗) based on Ω
and let J ′ be the Π-invariant extension. For any G ∈ L2

(
ΠΩ, ℓ2(L∗)

)
, we

have G(Lω) ∈ J ′(Lω) if and only if UL

(
G(Lω)

)
∈ JΓ(Lω), for all ω ∈ Ω

and L ∈ Π.

We can now present a modified statement of Theorem 6.3 as a corollary.
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Corollary 6.7. Let V be a closed subspace of L2(Rn). Then V is invariant
under shifts by elements of Γ if and only if there exists a measurable range
function J for ℓ2(L∗) based on Ω such that, for any f ∈ V, there exists

F ∈ MJΓ so that f̂
(
L(ω+ ν)

)
= ⟨F (Lω), δν⟩, for almost every ω ∈ Ω, every

L ∈ Π, and every ν ∈ L∗.

Proof. Suppose that V is invariant under shifts by Γ, and let K be a Π-
invariant range function for ℓ2(L∗) based on ΠΩ, as described in Theorem

6.3. Thus for any f ∈ V , there exists G ∈ MK such that f̂
(
L(ω + ν)

)
=

e2πiν·xL⟨G(Lω), δν⟩ for a.e. ω ∈ Ω and all L ∈ Π and ν ∈ L∗. Let J denote
the restriction of K to Ω. Then J ′ = K. Define F ∈ L2

(
ΠΩ, ℓ2(L∗)

)
by

F (Lω) = UL

(
G(Lω)

)
, for a.e. ω ∈ Ω and any L ∈ Π. By Lemma 6.6,

F ∈ MJΓ . And

f̂
(
L(ω + ν)

)
= e2πiν·xL⟨G(Lω), δν⟩ = ⟨UL

(
G(Lω)

)
, δν⟩ = ⟨F (Lω), δν⟩, (13)

for a.e. ω ∈ Ω, any L ∈ Π, and any ν ∈ L∗.
Conversely, suppose that for any f ∈ V , there exists F ∈ MJΓ such that

f̂
(
L(ω + ν)

)
= ⟨F (Lω), δν⟩

for a.e. ω and all L ∈ Π, ν ∈ L∗. Defining G ∈ L2
(
ΠΩ, ℓ2(L∗)

)
by

G(Lω) = U−1
L F (Lω) for a.e. ω ∈ Ω, it is immediate that ⟨F (Lω), δν⟩ =

e2πiν·xL⟨G(Lω), δν⟩, so that

f̂
(
L(ω + ν)

)
= e2πiν·xL⟨G(Lω), δν⟩.

We show that G ∈ MK , where K is a Π-invariant measurable range function
for ℓ2(L∗) based on ΠΩ. Since F ∈ MJΓ by assumption, we have

ULG(Lω) = F (Lω) ∈ JΓ(Lω),

which by Lemma 6.6 is equivalent to G(Lω) ∈ J ′(Lω) for a.e. ω, where J ′ is
the Π-invariant extension of J . Thus G ∈ MJ ′ . It follows now from Theorem
6.3 that V is invariant under shifts by Γ.
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