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Abstract

For a crystal group I in dimension n, a closed subspace V of L?(R"™)
is called I'=shift invariant if, for every f € V, the shifts of f by every
element of I' also belong to V. The main purpose of this paper is to
provide a characterization of the I'=shift invariant closed subspaces of
L2(R™).

1 Introduction

Let I' be a crystal group in dimension n with point group II and associated
lattice £. Detailed definitions are given in Section 3. Elements of I' are
written [x, M|, where M is an orthogonal matrix that belongs to II and x is
a vector in R"™. For a function f on R™, the shift of f by [z, M] is ©[z, M]f
given by

e, MIf(2) = f (M2 —z),

for z € R". When these shifts are applied to functions in the Hilbert space of
all square-integrable functions, L?(R"), they constitute a unitary representa-
tion of I', which we call the natural representation. A closed subspace V of
L?*(R™) is called m-invariant, or ['—shift invariant, if 7|z, M|f € V, for every
f €V and every [z, M] € T'. Our purpose is to provide a characterization of
the I'—shift invariant closed subspaces of L*(R").

The term shift-invariant closed subspace means a closed subspace V' of
L*(R™) such that T}, f € V, for all f € V and all k € Z", where T},f(z) =
f(z — k), for z € R™. In every dimension, there is one crystal group that



is abelian and it is the set of shifts by lattice points; so shift-invariance is
['—shift invariance when I' is isomorphic to Z". Understanding shift-invariant
subspaces became more important with the rise of wavelet analysis (see [9]
for a general introduction to the classical theory of wavelets) as the central
subspace in a multiresolution analysis is shift-invariant; see also [18] for more
on the role of shift-invariant subspaces in wavelet theory. A characterization
of shift-invariant subspaces was known in 1964 by Helson [14] and was refor-
mulated in 2000 by Bownik [5] where he applied it to wavelet theory.

The theory of wavelets has many generalizations and variations. One gen-
eralization, wavelets with composite dilations, was introduced in [12] and [13].
The term composite dilations refers to the addition of another set B of ma-
trices that are moving functions, besides the shifts by vectors in a lattice and
the powers of a single dilating matrix. Often, B is a finite group of mea-
sure preserving matrices. Blanchard developed the theory in this case in [3];
see also [4] where the focus was on developing Haar-type wavelet systems
when B leaves the shift lattice invariant and the semi-direct product of B
with the lattice is actually a crystal group, necessarily symmorphic. In [16]
MacArthur and one of the current authors introduced the concept of a mul-
tiresolution analysis where the shifts came from an arbitrary crystal group
and cast the theory in the context of the abstract approach of [2]. Indepen-
dently, Gonzélez and Moure [11] also formulated the theory for shifts by a
crystal group. In the definition of a multiresolution analysis or a generalized
multiresolution analysis for either composite dilations, with a finite B, or
shifts by a crystal group, the central subspace in the multiresolution analysis
is left invariant under shifts by a crystal group I'.

Another reason to be concerned about the nature of I'-shift invariant
closed subspaces is the emergence of topological quantum chemistry (see [8]
and [7], for example) where band representations play a significant role. A
band representation of a crystal group I' is the restriction of the natural
representation 7 to a closed I'-shift invariant subspace generated by a single
function in L?*(R™). A readable review of band representations can be found
in [1].

Our characterization of T'-shift invariant closed subspaces of L?(R") is
stated in Theorem 6.3 with a variation given in Corollary 6.7. Imprecisely
stated, there is a one-to-one correspondence between I'-shift invariant closed
subspaces of L?(R") and certain maps (the range functions) from an open
subset of R" and the closed subspaces of ¢*(L£*), where L* is the dual lattice
of L. If I' = Z", then the characterization in Theorem 6.3 reduces to the



characterization of shift-invariant subspaces given in Proposition 1.5 in [5].
Our approach draws on the presentation of range functions by Bownik and
Ross in [6], to the extent that I'-shift invariance implies invariance under
shifts by the lattice £. Perhaps the feature of our characterization that
is most interesting arises when I' is non-symmorphic; that is I'" is not a
semi-direct product of £ with the point group II. We view 7 as a unitary
representation of I' and our strategy is to use unitary maps to transform 7
into an equivalent representation that can be analyzed using range function
methods.

We gather together preliminary facts and known results in Section 2 while
Section 3 is devoted to organizing the properties of crystal groups that are
needed. The unitary maps that will be used to transform 7 are introduced
in Section 4 and applied in the next section. In the final section, we prove
our main theorem, Theorem 6.3. We also present an example of a non-
symmorphic wallpaper group I' and a I'=shift invariant closed subspace of
L?(R?) where the impact of the non-symmorphic nature of this T' is illus-
trated.

2 Preliminaries

Let n be a positive integer and let R" denote Euclidean space with x € R"
being considered as a column vector. For 1 < p < oo, LP(R") denotes the
standard Lebesgue space with respect to Lebesgue measure on R” and || - ||,
denotes the usual norm in LP(R™). We use the following version of the Fourier

~

transform. For f € L'(R") and w € R”, let f(w) = [;. f(z)e*™*dz. By
Plancherel’s Theorem, there is a unitary map F on L*(R™) such that F f = f,
for all f € L*(R™) N L2(R™). We call both F and the map f ~ f the Fourier
transform. We will often use finstead of Ff, for any f € L*(R").

If we consider R™ as a topological group with addition of vectors as the
group operation, a subgroup £ of R" is called a lattice in R™ if £ is discrete
and R"/L is compact. The dual lattice of L is L* ={v e R" : v -k € Z}.
That is, v € R" is in £* if and only if e>™* = 1, for all k € £. If L is
a lattice in R", then there exists an invertible n x n matrix B such that
L = BZ" = {Bk : k € Z"}. Then L* = (B~ Y)'Z", where (B™')! is the
transpose of the inverse of B. Let Q = {(B~")%¢ : 6 € [-1,1)"}. Then R"
is the disjoint union of the Q) + v, v € L*. We equip ) with the restriction
of Lebesgue measure.



We will need a form of the Poisson summation formula. For g € L'(R"),
the periodization P,-g of g with respect to L* is given by

Pr-g(0) = Z g9(0 +v),
veLr

for any # € R™ for which the series converges.

Lemma 2.1. Let L be a lattice in R™ and let L* be its dual lattice. Let
g€ L'(R"). Then Y, ... g(0 + v), converges for a.e. § € R" and PL*9|Q €
14Q).
Proof. We adapt the standard argument as in the proof of Theorem 8.31
of [10].

0+uv)do = 0+ v)|do
/QZ|9<+>| Z/Q|g<+)|

veL* veL*

S /Q lo®do = [ la(@)ido = Il

veLl*

By the sum variation of the Dominated Convergence Theorem, »° .. g(6+v)
converges for a.e. 6 € QQ and Pr«g o € LY(Q). Since Pp-g is L*-periodic,
> ver- 9(0 4 v) converges for a.e. 6 € R™. O

Proposition 2.2. Let L be a lattice in R™ and let L* be its dual lattice. Let
g € LY(R"). For each ( € L,

/ Pe-g(0)e2™4dg = G(0).
Q

Moreover, if g(¢) =0, for all ¢ € L, then Pr«g = 0.

Proof. Again, dominated convergence justifies the interchange of sum and
integral below. For ¢ € L,

/Pﬁ*gw)e%ia-fdg = / Z g<9+y)e2m9%d9 _ Z / g(9+y)€2ﬂ-i9-éd9
Q Q Q

veLl* veLl*
= Y [ 9Ot =" [ () dg
vers Qv veLs 7 Qv

= [ sto)e=tan g0
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For the last statement in the proposition, we do a linear change of variables.
Let C = (B™')!, where £ = BZ". That is, C' is the invertible matrix such
that £* = CZ". Now define h € L'(R") by h(w) = g(Cw), for a.e. w € R™
Form the Z™ periodization of h. That is,

Ponh(w) =Y hw+k) =Y g(Cw+ Ck) = Pr-g(Cw),
kezn kezm
which converges for a.e. w € R", and Pz.h is integrable over [—%, %)n
Let (¢;)jezn be the Fourier multi-series of the periodic function Pznh. For
each j € Z", compute the Fourier coefficient ¢; using the change of variables

§ = Cw and noting that C~! = B!, So

cj:/[_

= |det(B)| [ Pr-g(0)e*™*Pidg = | det(B)[§(Bj).

. Prnh(w)e*™ I dw = / Preg(Cw)e?™™ I dw

44"
22

Now Bj € L* forall j € Z". So, if g(¢) = 0, for all £ € L*, then every Fourier
coefficient of Pznh is 0. This implies Pznh = 0, which implies P,«g =0. [

Corollary 2.3. With the notation of Proposition 2.2, letY be an open subset
of R™ such that (Y +v)N(Y +k) = 0 if v,k € L* withv # k. Let g € L*(R")
be such that g(0) = 0, for a.e. 6 € R"\'Y. Ifg(¢) =0, for all ¢ € L, then
g=0.

Proof. Under the assumption on g, P,«g agrees with g on Y, so Proposition
2.2 implies g = 0. [

Remark 2.4. For each £ € L, let e,(0) = e2™* for all § € R". In the language
of [6], Definition 2.2, D = {e/|, : £ € L} is a determining set for L'(Y).

The concept of a range function goes back to [14] and was used in [5] for
the characterization of closed subspaces of L*(R") that are shift-invariant.
The treatment of range functions given in [6] is most useful for our purposes.
For a Hilbert space H, let Gr(#H) denote the set of all closed subspaces of
H, the Grassmannian of H. If K € Gr(H), let Pc denote the orthogonal
projection of H onto K.

Definition 2.5. Let H be a separable Hilbert space and let (X,3) be a
measurable space. A measurable range function for H based on X, is a
mapping J : X — Gr(H) such that, for any {,n € H, themap v — (P&, 1)
is measurable.



In all the cases we consider here, H is a separable Hilbert space. A map
F : X — H is measurable if z — (F(z),n) is a measurable complex-valued
function, for each n € H. If p is a positive measure on (X, X), let

LA(X, 1, H) = {F : X — H|F is measurable and / | F () ||Pdp(x) < oo} :
x

with the usual identification of functions that agree p-almost everywhere. If
the measure p is understood from context, we write L?(X,H). The inner
product of Fy, Fy € L*(X,H) is given by

(Fy Fy) = /X (Fy(2), Fa))du(z).

Let J be a measurable range function for ‘H based on X. Then, for any
F e L2(X,H), x = (PywF(x),n) is measurable, for every n € H. Given J,
define M; = {F € L*(X,H) : F(x) € J(x), for p-a.e. x € X}. The next
Proposition gathers together Propositions 2.1, 2.2, and 2.3 of [6].

Proposition 2.6. Let Jand K be measurable range functions for H based
on X. Then

(i) My is a closed subspace of L*(X,H),

(i1) if Pum, is the orthogonal projection of L*(X,H) onto M, then, for
any F € L*(X,H), (Pm,F) (z) = Py F(x), for a.e. x € X, and

(i) My = My if and only if J(x) = K(x), for a.e. x € X.

If H is a Hilbert space, let U(#H) denote the group of all unitary operators
on H. If A is any discrete group, a unitary representation of A on H is a
homomorphism o : A — U(#H). Let 0y and oy be unitary representations of A
on H; and H,, respectively. If there exists a unitary map W : H; — Hs such
that Woy(a) = o9(a)W, for all a € A, then o1 and oy are called equivalent.

3 Crystal groups

Let O,, denote the compact group of orthogonal n x n real matrices. For
x € R" and A € O,, define [z, A] to be the affine map, 2 — A(z + ), of R".
Let

Iso,(R) = {[z,A] : 2 € R", A € O,,},



the group of all isometries of R™. The composition of isometries is the
group product: For [z, 4], [y, B] € Is0,(R), [z, A]ly, B] = [B~ 'z +y, AB] and
[z, A]7' = [ Az, A7']. Note that [0,id] is the identity element of Iso,(R),
where id denotes the identity n x n matrix. Given the product topology of
R" x Oy, Iso,(R) is a locally compact group. Let Trans, = {[z,id] : € R"},
the set of pure translations in Iso,(R). This is a closed normal subgroup of
Iso,(R). Let ¢ : Iso,(R) — O, be the homomorphism given by ¢[z, A] = A,
for all [z, A] € Iso,(R).

A crystal group is a discrete subgroup I' of Iso,(R) such that R"/T" is
compact, where R™/T" is the set of all T-orbits, with the quotient topology.
Section 7.5 of [17] presents the basic properties of crystal groups. The trans-
lation subgroup of I" is T' = I" N Trans,,, which is a normal subgroup, and
the point group is IT = ¢(I"), which is isomorphic to the quotient group I'/T.
Then II is a finite subgroup of O,,, while T is a free abelian group of rank
n. Indeed, £L = {¢ € R" : [¢(,id] € T} is a lattice in R™. For [(,id] € T" and
[z, M] €T,

[z, M][¢,id][x, M]™" = [z + ¢, M|[-Mz, M| = [M{,id].

This shows that if £ € £, then M/{ € L, for all M € II.

Fix a cross-section v : II — I' of the T-cosets in I'; so q(v(M)) = M,
for all M € II. With v fixed, for each M € 1II, let ), € R" be such that
Y(M) = [xp, M]. Then I' = {[{ +xpr, M] : ¢ € L, M € II}. For many crystal
groups, [0, M] € T, for all M € II. Then, choose x); = 0, for each M € II.
When this can be done, I' is isomorphic to the semidirect product £ x II.
Such crystal groups are called symmorphic.

Lemma 3.1. With the x3; € R" selected as above, N 'z +xny —2xn € L,
for all K,N € 1II.

Proof. For K, N € 11, calculate the following element of I':

[Q?K,KH.%'N,N][Z'KN,KN]_I = [N_I.CEK —F.Q?N,KN][—KNQZ'KN,(KN)_I]
= [KJIK+KN$N —KNLL’KN,id] eT.

Thus, Kz + KNxy — KNxgy € L. Then
N 'zx+ay —agy = NT'K ' (Kzg + KNay — KNzgy)

isin L as well. O



Associated with the lattice £ is the dual lattice L* = {v e R" : v -{ €
Z, for all ¢ € L}. Since M* = M~ for any M € II C O, this implies £*
is left invariant when multiplied by members of II. With this action of II on
L*, form the semidirect product £* x II = {(v, M) : v € L*, M € 11}, with
the group product given by

(k, L) (v, M) = (M 'r +v,LM), for (k,L), (v, M) € L* x II.

This auxilliary group might be isomorphic to I', but this is not always the
case. As with I', £* x II acts on R". For (v, M) € L* x Il and w € R",
let (v, M) -w = M(w + v). This identifies £* x II with a discrete group of
isometries of R™ such that, since £* is a full-rank lattice, R"/(L* x II) is
compact. That is, £L* x II is also a crystal group. Let I'* = £* x II.

For any w € R", let Mw = {M(w +v) : (v, M) € T*}, the I'™*-orbit of
w, and let T = {(v, M) € T* : M(w + v) = w}, the stabilizer of w. There
exist points w in R™ such that I'}, = {(0,id)} (see Theorem 6.6.12 of [17]).
Fix wy € R™ such that I';, = {(0,id)}. For each (v, M) € I'* \ {(0,id)}, let
Hipy = {w € B" ¢ oo = snl] < o — Mo + )]}

Definition 3.2. The Dirichlet domain for I'* containing wy is
Qo = [ Huan) : (v, M) €7, (v, M) # (0,id)}.

Let A CR" then A+v={w+v:we A}, forve L and MA={Mw:
w € A}, for M € II. Also, 0A denotes the boundary of A.

Proposition 3.3. Let wy € R™ be such that I';, = {(0,id)} and let Q = Q.
Then ) has the following properties:

1. Q is open

2. Q s convex

3. For (k,L),(v,M) e T* (k,L) # (v, M), (L(Q+ k)N (M(Q+v)) =0
4 U(V,M)er*M(ﬁ +v)=R"

5. Upanyer=M(Q +v) is a co-null subset of R™.



Proof. Properties 1, 2, 3, and 4 are well-known (see, for example, Theorem
6.6.13 and the definition of fundamental domain on page 233 of [17]). Since (2
is open and convex 0f2 has Lebesgue measure 0. Each map w — M(w+v) is
an isometry, so O(M (Q+v)) = M(00+v) is a null set, for each (v, M) € I'*.
Now R"\ U, aner= M (Q+v) C U, aner- M (02 +v), which is a null set since
['* is countable. This implies 5. O

Let I = Up;en M. Then II€) is a fundamental domain for £*. In
particular, we have the following corollary.

Corollary 3.4. If vy,1v5 € L*, 1y # vy, then (IIQ +11) N (IIQ + 15) = 0 and
Upers (IIQ + v) is co-null in R™.

4 Several Unitary Transformations

In order to illuminate aspects of the natural unitary representation of the
crystal group I' in the next section, the Hilbert space L?(R") will be trans-
formed into a number of different realizations by specific unitary maps. The
first is the Fourier transform viewed as a unitary map of L?*(R") onto itself.

For the other Hilbert spaces that arise, we equip the open subsets {2 and
[1Q2 with the restriction of Lebesgue measure and €2 x IT x £* with the product
measure, where II and £* have counting measure. We can use €2 x IT x L* to
almost parametrize R". Let X = Uz yerixc+L(€2 + v). By Proposition 3.3,
X is an open co-null subset of R™.

Lemma 4.1. The map ¢ : Q x 11 x L* — X given by ¢(w, L,v) = L(w + v)
s a measure preserving homeomorphism.

Proof. Routine. O]

Forany 6 € X letwy € 2, Ly € II, and vy € L* be such that Ly(wg+vp) =
6. For each £ € L*(R"), let W1 = £o¢. Then Wi€ is a measurable function
on ) x IT x L*.

Lemma 4.2. The map Wi is a unitary from L*(R™) onto L*(2 x IT x L*)
and Wit is given by, for g € L*(Q x II x L*), W[ g(0) = g(ws, Ly, vg), for
a.e. 0 € X.

Proof. Also routine. m



Our next unitary transformation is a simple unitary operator on the
Hilbert space L*(Q2 x IT x £*). Recall that, for each L € II, z;, € R" was
selected so that [z, L] € I". Define a function wy : Q x II x £* — T by
wo(w, L,v) = e 22t for all (w,L,v) € Q x II x L£*. Pointwise multipli-
cation by such a T-valued continuous function is a unitary operator and we
formulate this in a lemma.

Lemma 4.3. For each g € L*(Q x 11 x L*), let Wog = wag. That is,
(Wag)(w, L,v) = e 2™ L g(w, L,v),

for a.e. (w,L,v) € Qx Tl x L*. Then Wy is a unitary operator on L*(2 x
I x £*) and Wy 'g = wag, for all g € L*(Q x I x L*).

Remark 4.4. The function ws plays an important role in the characterization
of T-shift invariant closed subspaces of L?(R") obtained in Section 6, so it is
important to note that this function is independent of the choice of the cross-
section v : [T — I'. Indeed, if 4/ is a different cross-section, then, for each L €
1,7/ (L) = [z}, L], for some 2, € R"™. But [xy, L] '[2}, L] = [z}, —x,id] € T,
so k = le —xy € L. Thus, e 2mival _ o—2miv-(zL+k) — p—2mivay

Let {0, : v € L*} be the orthonormal basis of ¢*(L*) consisting of the
usual delta functions. We will use L?(IIQ, ¢*(£*)), which is a separable
Hilbert space. As we work with each of L*(R"), L*(Q x IT x L*), (*(£*), and
L2(II, (*(L£*)), any inner product that arises will be denoted (-,-) and the
corresponding norm denoted by || - ||, relying on the reader to know which
Hilbert space this inner product or norm belongs to from the context.

We now turn to the definition of a unitary transformation of L*(QxIIx L*)
into L? (HQ,EQ(E*)). As above, for any 6 € IIf, there are unique wy € €
and Ly € 1T so that Lywy = 0. For any g € L*(2 x IT x L*) and v € L*, let
9,(0) = g(wy, Lg,v), for a.e. 6 € I, Then g, € L*(TIQ), for each v € L*,
and [|g]|* = >,z lgv||?. Define Wag : TIQ — ¢*(L*) by

Wsg(0) = Z 9,(0)6,, for a.e. O € 1IQ. (1)

veL*

Lemma 4.5. If Wsg is defined by (1), then W3g € L*(1IQ, (*(L*)), for each
g € L*(Q x 11 x L*) and W3 is a unitary map of L*(Q x IT x L*) onto
L2(1IQ, £2(L*)). Moreover, for F' € L*(II, (2(L£*)),

Wil F(w, Lv) = (F(Lw),5,), 2)
for a.e. (w,L,v) € QxIlxL".
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Proof. For each k € L*, the map 0 — (W5g(0),d.) = gx(#) is measurable.
Since {0, : k € L*} is a countable basis of (*(L*), W3g is measurable. More-
over, using (1)

/H Wag(8)|Fdo / DIORTEDY / P = ol 3)

veL* veL*

Therefore, W3g € L*(IIQ, *(L£*)) and Wj is clearly linear. By (3), Ws is
an isometry. If F € L*(IIQ, ¢*(£*)) and (2) is used to define W;'F on
Q x II x L£*, then one verifies, with an argument similar to (3) in reverse,
that W5 ' F is square-integrable on Q x IT x £* and W3W;'F = F. O

5 The natural representation

The action of I' on R™ generates a unitary representation. For [z, M] € T,
w[z, M] is the unitary operator given by, for f € L?(R"),

mlw, M f(2) = f([z, M]"'2) = f(M 'z — z), for a.e. z € R".

It is routine to show that 7 is a homomorphism of I' into U (L?(R")). As
mentioned in the introduction, we will call = the natural representation of I.
The Fourier transform, as a unitary map F on L*(R"™), intertwines 7 with an
equivalent representation 7 by 7[¢, M| = Fr[¢, M]F~'. A brief calculation,
using the fact that M ~! agrees with the transpose matrix of M € O,,, shows
that, for £ € L*(R"),

Flw, M]¢(w) = Mg (A1), for ace. w € R™. (4)
Recall from Lemma 4.2 that W1&(w, L, v) = £(L(w+v)), for almost every
(w, L,v) € Q@ x T x L*, for each £ € L*(R™), defines a unitary map of L*(R")
onto L?(Q x II x £*). Let 7; be the representation of I' on L*(Q x IT x L£*)
given by 7 [z, M| = Wy z[z, M]W, !, for [z, M] € T. For g € L>(Q2 x I x L*),
let £ = W 'g. Then, for [z, M] €T and a.e. w € Q, L €I, and v € L*.
lw, Mlg(w, L,v) = Flz, MIE(Lw +v)) = 70D 2e (M L(w+v)).
Setting 6 = M~'L(w+v), note that wy = w, Ly = ML, and vy = v. Thus,
%1 [$’ M]g(w, L, I/) _ e?m‘(MflL(w—i-V))-xg(w’ M_lL, I/),
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fora.e. (w,L,v) € QxIIxL*. Since [x, M| € I, there exists ¢ € L so that x =
(+xy. Forany v € £* and N € II, e2"¥»)t — 1. Therefore, 2m(M ' L(wtv))«
can be written as 627ri(M*1LV)~acMe27ri(M*1Lw)-x zmu.(L*lMxM)e2m‘(M*1Lw)~z and

%1 [{L‘, M]g(w, L, l/) _ egm‘l,.(Lfl]\/[wM)627ri(M*1Lu.;).xg(w7 M_IL, l/). (5>

=€

We can use the rather elementary, but strategic, unitary W5 from Lemma
4.3 to eliminate the first factor in the right hand side of (5). Recall that
Wog = wag, for all g € L*(Q x I x L£*), where wy(w, L,v) = e 2™%L_ for
(w,L,v) € Q x TI x L*. Let Ty, M| = Wom, [z, MWy !, for all [z, M] € T.
Then, for g € L*(Q x II x L*),

Tolz, Mg(w, L,v) = e ™7 (2. MW, tg(w, L, v)
— o 2mivaL e27ri1/-(L_1MzM)62m'(M_1Lw)~mW2—lg(w7 M_IL, V)

o L1 A= 1T0). i —
—e 2mymLe27m/ (L MzM)e2m(M Lw) r€27rw:EM,1Lg<w7M 1L,V).

The scalar in the previous line can be rearranged to

627ri1/~(L_1MxM+$A171L—$L) 2mi(Lw)-(Mz)

e .

Consider the expression L™ *Mxy; +xp-1, — 2. By Lemma 3.1 with K = M
and N = M 'L, we have that L='Mxy + 251, — 2 = £, for some £ € L.

Since v € L*, e2w (L7 Mentey-1-71) — 1. Finally, for [, M] € T and
g€ L*(QxTIx LY,

fora.e. we Q) L €Il and v € L*.

The next step is to conjugate by the unitary Wy : L2(Q x II x L*) —
L2(II, (*(£*)) from Lemma 4.5. Let 73[z, M] = WiTs[z, M]W5 ", for all
[z, M] € T. For F € L?(IIQ, £*(L*)),

Ts[z, M]F(0) = WsTlx, M]W;  F(6)

= Y (Ralw, MWy Fwp, Lg,v)) b,

veL*

e?ribowo) M) N " Y P (wp, M7 L, )6, (7)

veL*

Using (2) we get >, Wy ' Fwg, M~ 'Ly, v)5, = F(M~'Lowg). Recall that
Lywy = 6 and M' = M~ so (7) implies

Tz, M]F(0) = 2" M 702 p(A[=19), for a.e. 6 € TI€, (8)
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and each [z, M] € T’ and any F € L*(IIQ, ¢*(L£*)). We summarize these
considerations in a proposition.

Proposition 5.1. If mylx, M| is defined by (6) and sz, M| is defined by
(8), for each [x, M] € ', then Ty and T3 are unitary representations of I' that
are each unitarily equivalent to the natural representation .

6 Invariant closed subspaces

Definition 6.1. Let J : IIQ — Gr(¢*(£*)) be a measurable range function.
We say J is [-invariant, if J(LO) = J(0), for a.e. § € TIQ2 and every L € II.

Proposition 6.2. Let K be a closed subspace of L*(1IQ, ¢*(L*)). Then K
is m3-invariant if and only if there exists a Il-invariant measurable range
function, J, for (>(L*) based on I such that K = M.

Proof. First, suppose J is a [I-invariant measurable range function for £2(L*)
based on IIQ and K = M. Let [z, M] € I'. For any F' € M, we know that
F(0) € J(0), for a.e. 8 € TIQ, and J is [I-invariant. This implies

Tylz, M|F(0) = MO p(N19) € J(M~10) = J(6),

for a.e. § € IIQ. Thus, m3[z, M|F € K, for all F' € K and [z, M] € I'. That
is, KC is m3-invariant.

Now suppose K is a Tz-invariant closed subspace of L2 (HQ, 62(5*)). By
Remark 2.4, D = {e|,, : ¢ € L} is a determining set for L'(IIQ), where
eo(0) = ¥ for all @ € R™. If F € K and £ € L, then [(,id] € T C T" and
(8) says

73, id]F(0) = > F(0) = e,(0)F (6), for a.e. 0 € TIN.

Therefore, e,F' € K, for each £ € L. In the language of [6], K is multiplicatively-
invariant with respect to D, denoted D — MI. By Theorem 2.4 of [6], there
exists a measurable range function J : IIQ — Gr(¢2(L*)) so that

K =M;={F e L*(IIQ, *(L")) : F(0) € J(), for a.e. 6 € IIQ}.

Moreover, J is unique up to almost everywhere agreement and, if A is any
countable dense subset of K, J(0) is the closed linear span of {¢(0) : ¢ € A},
for a.e. 8 € IIQ). Fix such an A.
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Fix L € Il so that [z, L] € " and use (8) again to get
Tslrp, L F(Lw) = ¥ @0 F(w), for ae. w e Q. 9)

For ¢ € A, let o* = T3]xp, Llp and let L- A= {¢*:p e A}. Then L- A'is
a dense subset of . Therefore, by (9), for a.e. w € €,

J(Lw) = span{p"(Lw) : ¢ € A} =span{p(w) : p € A} = J(w).
Since L € Il is arbitrary, J is II-invariant. O]

Before formulating the main result, we recall the various ingredients: I'
is a crystal group in dimension n with point group Il and associated lattice
L. The dual lattice of £ is £*. There is an open subset €2 of R™ described
in Proposition 3.3 and the collection of sets {L(Q2+v) : L € II,v € L*} tiles
R™ up to a null set.

Theorem 6.3. Let V be a closed subspace of L*(R™). Then V is invariant
under shifts by elements of I if and only if there exists a Il-invariant mea-
surable range function J for (*(L*) based on 11 such that, for any f € V,
there exists F € M so that, for almost every w € Q, every L € I, and
every v € L,

~

f(Lw+v)) = ™ (F(Lw),d,). (10)

Proof. Suppose that V is a closed subspace of L?(R") that is invariant under
shifts by elements of I'. That is, V is m-invariant. Let U = W3oWy0W 0 F, a
unitary map that intertwines the natural representation = with 3. Therefore,
UV is a Ts-invariant closed subspace of L?(II€, ¢*(L£*)). By Proposition 6.2,
there exists a II-invariant measurable range function .J : IIQ — Gr(¢3(L*))
such that UV = M. For any f € V, let F' = Uf. This can be written as
Wi f = Wy 'W; ' F, which is an element of L2(Q x I x £*). By the definition

of W1 given just before Lemma 4.2,
Wif(w, Lv) = f(L(w +v)), (11)

for a.e. (w,L,v) € Q xII x L*. On the other hand, using the equations for
Wyt and Wyt given in Lemmas 4.3 and 4.5, we have

Wy Wi F(w, Lv) = ™" (F(Lw), 6,), (12)

for a.e. (w,L,v) € Q x II x £*. Comparing (11) with (12) yields (10).
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Conversely, suppose J is a Il-invariant measurable range function for
(*(L*) based on TIQ) and that V is related to My via (10). Then M; is
T3-invariant by Proposition 6.2 and unpacking (10) shows that UM ; = V.
Since U is the intertwining unitary between 7 and 73, ¥ must be w-invariant.
Thus, V is invariant under shifts by elements of I'. O]

Theorem 6.3 is a direct generalization of Proposition 1.5 in [5], where
it is attributed to Helson [14]. It is not surprising that the range function
associated to a mw-invariant closed subspace must be Il-invariant. However,
the appearance of the factor e*™ % in (10) is not so obvious. As noted
earlier, for a given L € II, the choice of z such that [z, L] € T is not
unique. However, if y € R™ also satisfies [y, L] € I, then x;, —y € L. Thus,
e?™y = 2L for all v € L*. To help understand the role this term plays,
we present an example of a group, necessarily non-symmorphic, where this
factor is nontrivial.

Example 6.4. The patch of brick wall illustrated in Figure 1 is meant to
be a region of a pattern extending in all directions. The symmetry group
of this pattern is often denoted pg, so set I' = pg. If the origin is placed
at the bottom of one of the vertical line segments, let u denote a horizontal
vector pointing right whose length equals the length of one brick. Let v be
an upward pointing vector whose length equals twice the width of a brick.
Then, we can take the translation lattice of I' to be £ = {ju+kv : j, k € Z}.
Let 0 € Oy denote the reflection about the horizontal axis. This is not a
symmetry of the pattern, but [%u,a] € I'. Indeed, the point group of T'
is IT = {id, ¢}, isomorphic to Z,. If T = {[ju + kv,id] : j,k € Z} is the
translation subgroup of I', we can take the cross-section of the T-cosets to
be given by v(id) = [0,id] and v(0) = [3u, 7).

Figure 1: A pattern illustrating the symmetries of the wallpaper group pg.

15



Fix the basis for R? to be {u,v} and represent elements z € R? as

. (ah) Then £ — {g - (61) 21,4y € Z} = 72, viewed as a lattice in

) EQ
R2. So L* = Z2, as well. We set I'* = L* x II. Let wy = (1(/)4 and form
) as in Definition 3.2. Then ) = {w = wl) ;—% <w < %,O <wgy < %
)

as illustrated in Figure 2. The open set o is outlined as well. Note that
[ = QU ol

Figure 2: The [™*-orbit of wy and domain (2.

Let’s construct a simple II-invariant measurable range function for £2(L£*)

based on II{2. Let k = ((1)) € L£* and consider the one-dimensional subspace

V = C(by + 6x) = {a(dg + d.) : @ € C} of £2(L*). Let E be a measurable
subset of 2 as pictured in Figure 3 where we have surpressed the vertical
axis and changed the scale a little.

[
|
|
|
|
[

Figure 3: The measurable subset E of €2 and three of its shifts.

Now consider the map J : IIQ — Gr((*(L*)) given by J(§) = V, for
0 € EUoE, and J(0) = {0}, for 0 € IIQ\ (E U oFE). Then, M, consists
of all F € L*(IIQ2, (*(£*)) such that F(6) = 0, for a.e. § € IIQ\ (EU0E),
and F(0) € C(dp + dx), for a.e. § € EUoFE. Before looking at (10) in
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this situation, note that xyq = (8) and z, = <162). So, e2rivEa — 1

%1

and e*™ % = (—1)", for all v =
V2

) € L*. Consider the following three
properties for an f € L*(R?):

(a) f(w + k) = f(w), for a.e. w € Q.

(b) fo(w+ k) = —F(0(w)), for ae. w e Q.

(c) f(6) =0, for all § € R*\ (EU (E + k) UoEU0(E +k)).
What Theorem 6.3 implies for the simple range function J is that, if V
denotes the set of all f € L?(IR?) whose Fourier transform f satisfies (a), (b),
and (c), then V is a closed subspace of L?(R?) that is invariant under shifts
from the wallpaper group pg.

Although the range function used in Example 6.4 is simple compared to
the complexity that is possible, the example does suggest that the statement
of Theorem 6.3 can be refined. We return to I denoting a crystal group in
dimension n with II, £, and €2 as before. For each L € II, define a unitary
operator Uy, on ¢*(L*) by Uph(v) = e*™*Lh(v), for all v € L* and for each
h € £2(L*). In Theorem 6.3, we used range functions based on TIf2 that are
[I-invariant, so completely determined by their restriction to 2. We now give

a version where Il-invariance is replaced with twisting by the unitaries Uy,
L ell

Definition 6.5. For a measurable range function J : Q — Gr(¢3(£*)), let
JUTIQ — Gr(£*(L£*)) be given by J"(Lw) = UpJ(w), for each w € Q and
all L € II.

If J is a measurable range function for ¢*(L£*) based on €, then it is clear
that JU is a measurable range function for ¢*(£*) based on TI€. Note that
we can create a [I-invariant range function J’ from J based on II2 by simply
letting J'(Lw) = J(w), for all L € II, w € Q. We call J' the Il-invariant
extension of J. The following lemma is immediate from the definitions.

Lemma 6.6. Let J be a measurable range function for (*(L*) based on Q
and let J' be the Il-invariant extension. For any G € L* (HQ,P(E*)), we
have G(Lw) € J'(Lw) if and only if U, (G(Lw)) € J"(Lw), for all w € Q
and L € II.

We can now present a modified statement of Theorem 6.3 as a corollary.
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Corollary 6.7. Let V be a closed subspace of L*(R"™). Then V is invariant
under shifts by elements of I' if and only if there exists a measurable range
function J for (*(L*) based on 0 such that, for any f € V, there exists
F e Mjr so that f(L(w + l/)) = (F(Lw),d,), for almost every w € Q), every
L e 1l, and every v € L*.

Proof. Suppose that V is invariant under shifts by I', and let K be a II-
invariant range function for ¢2(£*) based on IIf2, as described in Theorem
6.3. Thus for any f € V, there exists G € My such that fA(L(w +v)) =
e TL(G(Lw), d,) for a.e. w € Qand all L € T and v € L*. Let J denote
the restriction of K to Q. Then J' = K. Define F € L*(IIQ2, (*(L*)) by
F(Lw) = U(G(Lw)), for ae. w € Q and any L € II. By Lemma 6.6,
Fe Mjy. And

f(L(w + V)) = 7™ TLG(Lw), 6,) = (UL (G(Lw)),é,,) = (F(Lw),d,), (13)

for a.e. w € Q, any L € II, and any v € L*.
Conversely, suppose that for any f € V, there exists F' € M ;r such that

F(L(w+v)) = (F(Lw),d,)

for a.e. w and all L € I, v € £*. Defining G € L*(IIQ, *(L*)) by
G(Lw) = U;'F(Lw) for a.e. w € €, it is immediate that (F(Lw),d,)
e?™ oL (G(Lw),d,), so that

F(L(w +v)) = ™1 (G(Lw), d,).

We show that G € M, where K is a II-invariant measurable range function
for £2(L*) based on II€. Since F' € M r by assumption, we have

ULG(Lw) = F(Lw) € J"(Lw),
which by Lemma 6.6 is equivalent to G(Lw) € J'(Lw) for a.e. w, where .J' is
the Il-invariant extension of J. Thus G € M ;.. It follows now from Theorem
6.3 that V is invariant under shifts by I'. ]
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