EXTENSIONS OF THE HEISENBERG GROUP AND WAVELET ANALYSIS IN THE PLANE

School of Mathematics
Suranaree University of Technology

Nakhon Ratchasima, 3000 O THAILAND

KEITH F. TAYLOR
Department of Mathematics and Statistics
University of Saskatchewan

106 Wiggins Road Saskatoon, SK S7N 5E6

1 INTRODUCTION

In this lecture, we describe a class of groups formed as semidirect products with the positive real numbers acting on the Heisenberg group as dilations. All except one of the groups in this class have square-integrable representations and each of these square-integrable representations leads to continuous wavelet transforms of elements of $L^2(\mathbb{R}^2)$. We compute the reconstruction formulae explicitly in these cases. The techniques that we use are based on those developed in [1]. We begin by briefly presenting the continuous wavelet transform on $L^2(\mathbb{R})$ that arises from the affine group.

2 THE AFFINE WAVELET TRANSFORM

Let

$$\mathcal{H}^2_+ = \{g \in L^2(\mathbb{R}) : \text{ supp } \hat{g} \subseteq (0, \infty) \text{ a.e. } \}$$

and

$$\mathcal{H}^{2}_{-} = \{ g \in L^{2}(\mathbb{R}) : \text{ supp } \hat{g} \subseteq (-\infty, 0) \text{ a.e. } \}.$$

Then, $L^2(\mathbb{R}) = \mathcal{H}^2_+ \oplus \mathcal{H}^2_-$.

For a > 0 and $b \in \mathbb{R}$ and any $g \in L^2(\mathbb{R})$, let

$$[\rho(b,a)g](t) = \frac{1}{\sqrt{a}} g(\frac{t-b}{a}), \text{ for all } t \in \mathbb{R}$$
.

The function $\rho(b,a)g$ is a translated and dilated copy of g.

An affine wavelet for \mathcal{H}^2_+ is any $\omega \in \mathcal{H}^2_+$ such that

$$\int_0^\infty \frac{|\hat{\omega}(\gamma)|^2}{\gamma} \ d\gamma = 1.$$

With such ω fixed, let $\omega_{b,a} = \rho(b,a)\omega$, for all $b \in \mathbb{R}, a > 0$. The continuous wavelet transform of $f \in \mathcal{H}^2_+$ using the wavelet ω is the function $T_{\omega}f$ of (b,a) given by

$$[T_{\omega}f](b,a) = \langle f, \omega_{b,a} \rangle = \int_{-\infty}^{\infty} f(t) \overline{\omega_{b,a}(t)} dt$$
.

The reconstruction formula for f is

$$f = \int_0^\infty \int_{-\infty}^\infty [T_\omega f](b,a) \omega_{b,a} \frac{db \ da}{a^2},$$

with the integral on the right converging in the weak sense in the Hilbert space \mathcal{H}^2_+ . Of course, a properly modified version of this holds on \mathcal{H}^2_- .

In terms of square-integrable group representations, the group here is the affine group $G_{\mathrm{aff}}=\{(b,a):b\in\mathbb{R},a\in\mathbb{R}^+\}$ which has the group product of (b,a) with (b',a') given by (b,a)(b',a')=(b+ab',aa'). For each (b,a) in $G_{\mathrm{aff}},\rho(b,a)$ is a unitary operator on $L^2(\mathbb{R})$ and $(b,a)\to\rho(b,a)$ is a unitary representation of G_{aff} . The representation ρ is irreducible and square-integrable.

3 A GENERALIZATION

The group G_{aff} can be viewed as a semidirect product formed by the multiplicative group of positive real numbers acting on \mathbb{R} by dilations. This situation was generalized in [1] to the following: Let H be a closed subgroup of $GL_n(\mathbb{R})$, the general linear group of invertible $n \times n$ real matricies. Consider \mathbb{R}^n as the space of n-dimensional column vectors and let $h \in H$ act on $\mathbf{x} \in \mathbb{R}^n$ by $\mathbf{x} \to h\mathbf{x}$, with simple matrix multiplication. Let

$$G = \mathbb{R}^n > H = \{(\mathbf{x}, h) : \mathbf{x} \in \mathbb{R}^n, h \in H\}$$

with the product of (x, h) and (y, k) in G given by

$$(\mathbf{x}, h)(\mathbf{y}, k) = (\mathbf{x} + h\mathbf{y}, hk).$$

The dual group to \mathbb{R}^n is isomorphic to \mathbb{R}^n but we prefer to distinguish it by considering it as $\widehat{\mathbb{R}^n} = \{ \gamma = (\gamma_1, \dots, \gamma_n) : \gamma_j \in \mathbb{R}, 1 \leq j \leq n \}$, the space of n dimensional row vectors. Each $\gamma \in \widehat{\mathbb{R}^n}$ acts as a character on \mathbb{R}^n by $(\gamma, \mathbf{x}) = e^{2\pi i \gamma \mathbf{x}}$, for all $\mathbf{x} \in \mathbb{R}^n$. The group H acts on $\widehat{\mathbb{R}^n}$ with the action written on the right. For $h \in H$ and $\gamma \in \widehat{\mathbb{R}^n}, \gamma \cdot h$ is defined by

$$(\gamma \cdot h, \mathbf{x}) = (\gamma, h\mathbf{x}), \text{ for all } \mathbf{x} \in \mathbb{R}^n.$$

Clearly, $\gamma \cdot h = \gamma h$, simple matrix multiplication, so we will simply write γh for $\gamma \cdot h$.

For $g \in L^1(\mathbb{R}^n)$, the Fourier transform of g is denoted \hat{g} and is given by

$$\hat{g}(\gamma) = \int_{\mathbf{R}^n} g(\mathbf{x})(\gamma, \mathbf{x}) d\mathbf{x} .$$

If $g \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$, then $\hat{g} \in L^2(\widehat{\mathbb{R}^n})$ and $||\hat{g}||_2 = ||g||_2$. Consequently, there exists a unitary map \mathcal{P} of $L^2(\mathbb{R}^n)$ onto $L^2(\widehat{\mathbb{R}^n})$, called the Plancherel transform, such that $\mathcal{P}_g = \hat{g}$, for $g \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$.

There is a natural unitary representation ρ of $G = \mathbb{R}^n \rtimes H$ on $L^2(\mathbb{R}^n)$ given, for $(\mathbf{x}, h) \in G$ and $g \in L^2(\mathbb{R}^n)$, by

$$\rho(\mathbf{x}, h)g(\mathbf{y}) = \delta(h)^{-\frac{1}{2}}g(h^{-1}(\mathbf{y} - \mathbf{x})),$$

for all $\mathbf{y} \in \mathbb{R}^n$, where $\delta(h) = |\det(h)|$.

Let π denote the unitary representation of G that is equivalent to ρ via \mathcal{P} . That is, π is a representation on $L^2(\widehat{\mathbb{R}^n})$ such that

$$\pi(\mathbf{x},h) = \mathcal{P}\rho(\mathbf{x},h)\mathcal{P}^{-1}, \text{ for all } (\mathbf{x},h) \in G.$$

A simple calculation (see Proposition 1, [1]) shows that, for $\xi \in L^2(\widehat{\mathbb{R}^n})$,

$$\pi(\mathbf{x},h)\xi(\gamma) = \delta(h)^{\frac{1}{2}}(\gamma,\mathbf{x})\xi(\gamma h), \text{ for all } \gamma \in \widehat{\mathbb{R}^n}.$$

Generally, ρ (or π) is not an irreducible representation of G. To see this, suppose U is a measureable H-invariant subset of $\widehat{\mathbb{R}^n}$. Let

$$L^2(U)=\{\xi\in L^2(\widehat{{\rm I\!R}^n}): \chi_U\xi=\xi\},$$

where χ_U is the characteristic function of U. Let

$$\mathcal{H}_U^2 = \{ g \in L^2(\mathbb{R}^n) : \mathcal{P}g \in L^2(U) \}.$$

Then, it is easy to check that $L^2(U)$ is a π -invariant subspace of $L^2(\widehat{\mathbb{R}^n})$ and, so, \mathcal{H}^2_U is a ρ -invariant subspace of $L^2(\mathbb{R}^n)$. If U is such that both U and $\widehat{\mathbb{R}^n} \setminus U$ have positive measure, then $L^2(U)$ and \mathcal{H}^2_U are proper subspaces and π and ρ are reducible.

Now, suppose that there exists a $\gamma \in \widehat{\mathbb{R}^n}$ such that the H-orbit $\gamma H = \{\gamma h : h \in H\}$ is open in $\widehat{\mathbb{R}^n}$ and that the map $h \to \gamma h$ is a bijection of H onto γH . Let $U = \gamma H$ and let ρ_U denote the subrepresentation of ρ corresponding to the subspace \mathcal{H}^2_U of $L^2(\mathbb{R}^n)$. In Theorem 1 of [1], it was shown that ρ_U is an irreducible square-integrable representation of G.

There is a beautiful theory of generalized orthogonality relations for square-integrable representations due to Duflo and Moore [2]. In the situation at hand, the relevant aspects are as follows (see Theorem 2 of [1] for full details):

Let Ψ denote the Radon-Nikodym derivative of the left Haar measure of H, transferred to the orbit U, with respect to the Lebesgue measure of $\widehat{\mathbb{R}^n}$, restricted to U. Define an operator K whose domain is dom $K = \{g \in \mathcal{H}^2_U : \mathcal{P}g/\Psi \in L^2(U)\}$ and, for $g \in \text{dom } K$, define

$$Kg = \mathcal{P}^{-1}(\mathcal{P}g/\Psi).$$

The operator K is (generally) unbounded, self-adjoint and positive. It is a generalization of the "dimension" of ρ_U . The operator $K^{-\frac{1}{2}}$ has domain $\{g \in \mathcal{H}_U^2 : \hat{g}\Psi^{\frac{1}{2}} \in L^2(U)\}$ and $K^{-\frac{1}{2}}g = \mathcal{P}^{-1}((\mathcal{P}g)\Psi^{\frac{1}{2}})$. For $f,g \in \mathcal{H}_U^2$, let $V_{g,f}(\mathbf{x},h) = \langle f,\rho_U(\mathbf{x},h)g \rangle$, for all $(\mathbf{x},h) \in G$. If $g \in \text{dom } K^{-\frac{1}{2}}$, then $V_{g,f} \in L^2(G)$, for all $f \in \mathcal{H}_U^2$ and, for $f_1, f_2 \in \mathcal{H}_U^2$,

$$\langle V_{g,f_1}, V_{g,f_2} \rangle_{L^2(G)} = \langle f_1, f_2 \rangle_{\mathcal{H}_U^2} ||K^{-\frac{1}{2}}g||_{\mathcal{H}_U^2}^2.$$

Thus, if we fix $\omega \in \mathcal{H}_U^2$ such that $||\hat{\omega}\Psi^{\frac{1}{2}}||_{L^2(U)} = 1$, then $f \to V_{\omega,f}$ is an isometry of \mathcal{H}_U^2 into $L^2(G)$ and we get the weakly convergent reconstruction formula, for $f \in \mathcal{H}_U^2$,

$$f = \int_{H} \int_{\mathbb{R}^{n}} \langle f, \omega_{\mathbf{x}, h} \rangle \omega_{\mathbf{x}, h} \, \frac{d\mathbf{x} \, dh}{\delta(h)}, \tag{1}$$

where $\omega_{\mathbf{x},h}(\mathbf{y}) = \rho(\mathbf{x},h)\omega(\mathbf{y})$, for all $\mathbf{y} \in \mathbb{R}^{\mathbf{n}}$ and $(\mathbf{x},h) \in G$.

For fixed ω , let $T_{\omega}f(\mathbf{x},h) = \langle f,\omega_{\mathbf{x},h} \rangle = \langle f,\rho(\mathbf{x},h)\omega \rangle$, for all $f \in \mathcal{H}_U^2$. Then T_{ω} , from \mathcal{H}_U^2 into $L^2(G)$, can be considered as a continuous wavelet transform. Any closed subgroup H of $GL_n(\mathbb{R})$, which is such that it gives rise to a free open orbit U in $\widehat{\mathbb{R}^n}$, gives us another form of continuous wavelet decompositions on \mathbb{R}^n . We will investigate a family of such decompositions on \mathbb{R}^2 that arise by adding dilations to the Heisenberg group.

4 EXTENSIONS OF THE HEISENBERG GROUP

Let H denote the three dimensional, simply connected, two step, nilpotent Lie group which we prefer to realize by three by three matrices as follows:

$$\mathbf{H} = igg\{ \left(egin{array}{ccc} 1 & x & z \ 0 & 1 & y \ 0 & 0 & 1 \end{array}
ight): x,y,z \in \mathbf{I}\!\mathbf{R} igg\}.$$

To compress notation a bit, denote

$$\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)$$

by [x, y, z]. Thus, the group product in **H** is given by

$$[x_1, y_1, z_1][x_2, y_2, z_2] = [x_1 + x_2, y_1 + y_2, z_1 + z_2 + x_1y_2].$$

See Chapter 1 of [3] for a discussion of the Heisenberg groups - H is one realization of the 3-dimensional Heisenberg group - and their elegant representation theory.

We will say that "dilations of **H**" means an action of \mathbb{R}^+ on **H** that is diagonal with respect to the [x,y,z] parametrization. Since the action must respect the group structure of **H**, a dilation is specified by two parameters α and β , say. For each $a \in \mathbb{R}^+$, the dilation by a is the map $\delta_{\alpha,\beta}(a) : \mathbf{H} \to \mathbf{H}$ given by

$$\delta_{\alpha,\beta}(a)[x,y,z] = [a^{\alpha}x, a^{\beta}y, a^{\alpha+\beta}z],$$

for all $[x, y, z] \in \mathbb{H}$. Let

$$G_{\alpha,\beta} = \mathbb{H} >_{\alpha,\beta} \mathbb{R}^+ = \{([x,y,z],a) : [x,y,z] \in \mathbb{H}, a \in \mathbb{R}^+\}$$
.

The group product in $G_{\alpha,\beta}$ is given by

$$([x, y, z], a)([x', y', z'], a') = ([x + a^{\alpha}x', y + a^{\beta}y', z + a^{\alpha+\beta}z' + xa^{\beta}y'], aa').$$

When we refer to an extension of the Heisenberg group by dilations, we mean a group which is isomorphic to $G_{\alpha,\beta}$, for some $(\alpha,\beta) \in \mathbb{R}^2 \setminus (0,0)$. The question naturally arises of whether the $G_{\alpha,\beta}$ are distinct and it turns out that they are not. Our first task is to find a convenient cross-section of the isomorphism classes of the collection of $G_{\alpha,\beta}$'s.

It is instructive to realize $G_{\alpha,\beta}$ as a group of 3×3 matrices. The map

$$([x,y,z],a)
ightarrow \left(egin{array}{ccc} a^{lpha+eta} & a^eta x & z \ 0 & a^eta & y \ 0 & 0 & 1 \end{array}
ight)$$

is an isomorphism of $G_{\alpha,\beta}$ onto a closed subgroup of $GL_3(\mathbb{R})$. It is clear that each $G_{\alpha,\beta}$ is a four dimensional simply connected solvable Lie group. Let $\mathbf{g}_{\alpha,\beta}$ denote its Lie algebra. Since each $G_{\alpha,\beta}$ is simply connected, G_{α_1,β_1} is isomorphic to G_{α_2,β_2} if and only if $\mathbf{g}_{\alpha_1,\beta_1}$ is isomorphic to $\mathbf{g}_{\alpha_2,\beta_2}$.

Now $\{([x,0,0],1): x \in \mathbb{R}\}, \{([0,y,0],1): y \in \mathbb{R}\}, \{([0,0,z],1): z \in \mathbb{R}\}$ and $\{([0,0,0],a): a \in \mathbb{R}^+\}$ are four one-parameter subgroups of $G_{\alpha,\beta}$. Let X,Y,Z, and $A_{\alpha,\beta}$ denote the corresponding generators in $\mathbf{g}_{\alpha,\beta}$. With the above 3×3 -matrix realization of $G_{\alpha,\beta}$, it is easy to realize these basic elements of $\mathbf{g}_{\alpha,\beta}$ by matrices. This gives

$$X = \left(egin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}
ight), \qquad Y = \left(egin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}
ight), \qquad Z = \left(egin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}
ight),$$

and

$$A_{lpha,eta} = \left(egin{array}{ccc} lpha + eta & 0 & 0 \ 0 & eta & 0 \ 0 & 0 & 0 \end{array}
ight) \; .$$

So we can realize $\mathbf{g}_{\alpha,\beta}$ is the linear span of $\{X,Y,Z,A_{\alpha,\beta}\}$. Now it is clear that $\mathbf{g}_{\alpha,\beta} = \mathbf{g}_{\alpha/\beta,1}$, if $\beta \neq 0$ and $\mathbf{g}_{\alpha,0} = \mathbf{g}_{1,0}$, for all $(\alpha,\beta) \neq (0,0)$. Thus, we reparametrize. Let

$$A_p = \left(\begin{array}{ccc} p+1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right),$$

for $p \in \mathbb{R}$ and

$$A_{\infty} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

and let $\mathbf{g}_p = \langle X, Y, Z, A_p \rangle$, for $p \in \mathbb{R} \cup \{\infty\}$. Let G_p be the simply connected Lie group

$$exp(\mathbf{g}_p) = \left\{ \left(egin{array}{ccc} a^{p+1} & x & z \ 0 & a & y \ 0 & 0 & 1 \end{array}
ight) : x,y,z \in {
m I\!R}, a \in {
m I\!R}^+
ight\} \;.$$

Each extension of the Heisenberg group is isomorphic to one of these G_p 's; however, the G_p 's are still not mutually nonisomorphic.

Theorem: Let $p,q \in \mathbb{R} \cup \{\infty\}, p \neq q$. Then \mathbf{g}_p is isomorphic to \mathbf{g}_q if and only if p = 1/q. If $q \neq \infty$ and p = 1/q, then an isomorphism $\Phi : \mathbf{g}_p \to \mathbf{g}_q$ is given by $\Phi(X) = -Y, \Phi(Y) = X, \Phi(Z) = Z$, and $\Phi(A_p) = pA_q$. An isomorphism $\Phi : \mathbf{g}_0 \to \mathbf{g}_\infty$ is the same on X, Y, and Z but $\Phi(A_0) = A_\infty$.

Proof: One directly checks that Φ as given provides an isomorphism in the indicated cases.

Conversely, suppose $p, q \in \mathbb{R}$ and $\Phi : \mathbf{g}_p \to \mathbf{g}_q$ is an isomorphism of Lie algebras. Now $\{A_p, X, Y, Z\}$ and $\{A_q, X, Y, Z\}$ are vector bases of \mathbf{g}_p and \mathbf{g}_q , respectively. The only nontrivial Lie brackets among the basis elements of \mathbf{g}_p are

$$[X,Y] = Z, [A_p, X] = pX, [A_p, Y] = Y, \text{ and } [A_p, Z] = (p+1)Z.$$

Thus, $[\mathbf{g}_p, \mathbf{g}_p] = \langle X, Y, Z \rangle$, if $p \neq 0$ and $[\mathbf{g}_0, \mathbf{g}_0] = \langle Y, Z \rangle$. Hence, \mathbf{g}_0 cannot be isomorphic to any \mathbf{g}_p with $p \neq 0$ or ∞ . So we may assume $p, q \in \mathbb{R} \setminus \{0\}$.

Furthermore, the centers of $[\mathbf{g}_p, \mathbf{g}_p]$ and $[\mathbf{g}_q, \mathbf{g}_q]$ are then both $\mathbb{R}Z$. Thus, an isomorphism $\Phi: \mathbf{g}_p \to \mathbf{g}_q$ must map $\langle X, Y, Z \rangle$ to $\langle X, Y, Z \rangle$ and $\mathbb{R}Z$ to $\mathbb{R}Z$. These observations mean that the matrix of Φ with respect to the two basis $\{A_p, X, Y, Z\}$ and $\{A_q, X, Y, Z\}$ has the form:

$$\left(egin{array}{cccc} arphi_{11} & 0 & 0 & 0 \ arphi_{21} & arphi_{22} & arphi_{23} & 0 \ arphi_{31} & arphi_{32} & arphi_{33} & 0 \ arphi_{41} & arphi_{42} & arphi_{43} & arphi_{44} \end{array}
ight) \;.$$

Since this matrix must be full rank, $\varphi_{11} \neq 0$ and $\varphi_{44} \neq 0$. The relation $[A_p, Z] = (p+1)Z$ implies $[\Phi A_p, \Phi Z] = (p+1)\Phi Z$. That is,

$$[\varphi_{11}A_q + \varphi_{21}X + \varphi_{31}Y + \varphi_{41}Z, \varphi_{44}Z] = (p+1)\varphi_{44}Z$$

which reduces to $(q+1)\varphi_{11}\varphi_{44}=(p+1)\varphi_{44}$. Since φ_{11} and φ_{44} are nonzero, either q=-1 and p=-1 or $\varphi_{11}=\frac{p+1}{q+1}$. In the case that either p=-1 or q=-1, the other is forced to be -1 also. Thus, we may assume $p\neq -1$ and $q\neq -1$ from now on. Thus,

$$\varphi_{11} = \frac{p+1}{q+1} \ . \tag{2}$$

Similarly, $[\Phi A_p, \Phi X] = p\Phi X$ implies

$$q\varphi_{11}\varphi_{22} = p\varphi_{22} \tag{3}$$

and

$$\varphi_{11}\varphi_{32} = p\varphi_{32}.\tag{4}$$

The relation $[\Phi A_p, \Phi Y] = \Phi Y$ implies that

$$q\varphi_{11}\varphi_{23}=\varphi_{23}. (5)$$

and

$$\varphi_{11}\varphi_{33}=\varphi_{33}.\tag{6}$$

Finally, $[\Phi X, \Phi Y] = \Phi Z$ gives

$$\varphi_{22}\varphi_{33} - \varphi_{32}\varphi_{23} = \varphi_{44}. \tag{7}$$

Using (7), we see that $\varphi_{22}\varphi_{33}$ and $\varphi_{32}\varphi_{23}$ cannot both be 0. Now $\varphi_{22}\varphi_{33} \neq 0$ forces $\varphi_{11} = p/q$ from (3) and $\varphi_{11} = 1$ from (6). But then we would have

p = q, contrary to our assumptions.

Thus $\varphi_{32}\varphi_{23} \neq 0$. Then (4) implies $\varphi_{11} = p$ and (5) implies $\varphi_{11} = 1/q$. Hence, p = 1/q. Thus, if $p \neq q$ and $\mathbf{g}_p \cong \mathbf{g}_q$, then p = 1/q.

Corollary: $\{G_p : -1 \le p \le 1\}$ is a complete cross-section of the isomorphism classes of $\{G_{\alpha,\beta} : (\alpha,\beta) \in \mathbb{R}^2 \setminus (0,0)\}$.

When we refer to an extension of the Heisenburg group by dilations, from now on, we will mean one of the G_p for $-1 \le p \le 1$.

5 SQUARE-INTEGRABLE REPRESENTATIONS OF G_p

Recall that

$$G_p = \left\{ \left(\begin{array}{ccc} a^{p+1} & x & z \\ 0 & a & y \\ 0 & 0 & 1 \end{array} \right) : x, y, z \in \mathbb{R}, a \in \mathbb{R}^+ \right\}.$$

Noting that

$$\left(\begin{array}{ccc} a^{p+1} & x & z \\ 0 & a & y \\ 0 & 0 & 1 \end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} a^{p+1} & x & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{array}\right)$$

leads us to realizing G_p in the form $\mathbb{R}^2 > H_p$. These are the kinds of groups that were studied in section 3. Let

$$H_p = \left\{ \left(egin{array}{cc} a^{p+1} & x \ 0 & a \end{array}
ight) : x \in {\rm I\!R}, a \in {\rm I\!R}^+
ight\},$$

which is a closed subgroup of $GL_2(\mathbb{R})$. Then

$$\mathbb{R}^2 > \!\!\! \dashv H_p = \left\{ \left(\left(\begin{array}{c} z \\ y \end{array} \right), \left(\begin{array}{c} a^{p+1} & x \\ 0 & a \end{array} \right) \right) \ : \left(\begin{array}{c} z \\ y \end{array} \right) \in \mathbb{R}^2, \left(\begin{array}{c} a^{p+1} & x \\ 0 & a \end{array} \right) \in H_p \right\}$$

is isomorphic to G_p via the map

$$\left(\left(\begin{array}{c}y\\z\end{array}\right),\quad \left(\begin{array}{c}a^{p+1}&x\\0&a\end{array}\right)\right)\quad \rightarrow\quad \left(\begin{array}{ccc}a^{p+1}&x&z\\0&a&y\\0&0&1\end{array}\right)\;.$$

Following the analysis of section 3, we consider the action of H_p on $\widehat{\mathbb{R}^2} = \{(\gamma, \mu) : \gamma, \mu \in \mathbb{R}\}$. That is, for $(\gamma, \mu) \in \widehat{\mathbb{R}^2}$

$$(\gamma,\mu)\begin{pmatrix} a^{p+1} & x \\ 0 & a \end{pmatrix} = (a^{p+1}\gamma,a\mu + x\gamma)$$
 (8)

for

$$\left(\begin{array}{cc}a^{p+1}&x\\0&a\end{array}\right)\in H_p.$$

If p = -1, then there are three kinds of orbits in $\widehat{\mathbb{R}^2}$;

1. for
$$\gamma \neq 0$$
,
$$(\gamma, 0)H_{-1} = \{(\gamma, \mu) : \mu \in \mathbb{R}\}$$

2. for
$$\gamma = 0$$
,
$$(0,1)H_{-1} = \{(0,\mu): \mu > 0\}$$

and

$$(0,-1)H_{-1}=\{(0,\mu):\mu<0\}$$

3. finally, $\{(0,0)\}$ is an orbit itself.

Thus, there are no open H_{-1} -orbits in $\widehat{\mathbb{R}^2}$. In fact, G_{-1} has no square-integrable representations and does not fit under the general analysis developed in [1]. However, it is interesting that G_{-1} has been studied in detail, from the point of view of generating frames, in [4], where it is called the one dimensional UT group.

Therefore, from now on, assume $-1 . By (8), we see that there are two open <math>H_p$ -orbits in $\widehat{\mathbb{R}^2}$. They are

$$U_+ = (1,0) H_p = \{(\gamma,\mu): \gamma > 0\}$$

and

$$U_- = (-1,0)H_p = \{(\gamma,\mu): \gamma < 0\}.$$

Since $U_+ \cup U_-$ is co-null in $\widehat{\mathbb{R}^2}$, we have $L^2(\widehat{\mathbb{R}^2}) = L^2(U_+) \oplus L^2(U_-)$ and $L^2(\mathbb{R}^2) = \mathcal{H}^2_{U_+} \oplus \mathcal{H}^2_{U_-}$.

Let us apply the theory of section 3 to determine the form that the continuous wavelet transform and reconstruction formula (1) takes in $\mathcal{H}^2_{U_+}$. We get a different analysis for each p,-1 .

As a manifold, $G_p = \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^+$. Let us write (x, y, z, a) for the element

$$\left(\begin{array}{ccc} a^{p+1} & x & z \\ 0 & a & y \\ 0 & 0 & 1 \end{array}\right)$$

of G_p . Also, write the elements of \mathbb{R}^2 in the form (s,t) instead of as a column. Then, the square-integrable representation of G_p associated with U_+ is, for $g \in \mathcal{H}^2_{U_+}$ and $(x,y,z,a) \in G_p$,

$$\rho_{U_{+}}(x, y, z, a)g(s, t) = \frac{1}{a^{(p+2)/2}}g\left(\frac{as - az - xt + xy}{a^{p+2}}, \frac{t - y}{a}\right)$$

for all $(s,t) \in \mathbb{R}^2$.

To find the operator K, we need the Radon-Nikodym derivative Ψ . That is found as follows: Fix an element in U_+ , say (1,0). Let $\xi \in C_{00}(U_+)$. Then, using left Haar integration on H_p

$$\begin{split} \int_{H_p} \xi((1,0)h) dh &= \int_0^\infty \int_{-\infty}^\infty \xi(a^{p+1},x) \frac{dx \ da}{a^{p+1}} \\ &= \int_0^\infty \int_{-\infty}^\infty \xi(\gamma,\mu) \frac{1}{(p+1)\gamma^{\binom{p+\frac{p}{2}}{p+1}}} \ d\mu d\gamma. \end{split}$$

Thus,

$$\Psi(\gamma,\mu) = \frac{1}{(p+1)\gamma^{\binom{2p+\frac{1}{p}}{p+1}}}, \text{ for } (\gamma,\mu) \in U_+.$$

Note that when $p = 0, \Psi(\gamma, \mu) = \gamma^{-2}$ and, when $p = 1, \Psi(\gamma, \mu) = \frac{1}{2}\gamma^{-\frac{3}{2}}$.

Now, we fix any $\omega \in \mathcal{H}^2_{U_+}$ such that

$$(p+1)\int_0^\infty \int_{-\infty}^\infty |\hat{\omega}(\gamma,\mu)|^2 \gamma^{\left(\frac{p+\frac{1}{p}}{p+1}\right)} d\mu d\gamma = 1.$$
 (9)

Let, for $(x, y, z, a) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^+$,

$$\omega_{(x,y,z,a)}(s,t) = \frac{1}{a^{\left(\frac{p+2}{2}\right)}} \omega\left(\frac{as - az - xt + xy}{a^{p+2}}, \frac{t-y}{a}\right) \tag{10}$$

for all $(s,t) \in \mathbb{R}^2$. For $f \in \mathcal{H}^2_{U_+}$, define $T_{\omega}f$ on $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^+$ by

$$T_{\omega}(x,y,z,a) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(s,t) \overline{\omega_{(x,y,z,a)}(s,t)} \ ds dt. \tag{11}$$

Then the reconstruction formula (1) becomes,

$$f = \int_0^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty T_\omega f(x, y, z, a) \omega_{(x, y, z, a)} \frac{dx dy dz da}{a^{2p+3}}, \tag{12}$$

weakly in $\mathcal{H}_{U_+}^2$.

We will leave the calculations for $\mathcal{H}_{U_{-}}^{2}$ to the interested reader.

6 Conclusions

We looked at those groups that arise by adding dilations to the Heisenberg group structure of \mathbb{R}^3 , where we considered that the dilation must respect the group structure. This led us to the class of groups $G_p, -1 \le p \le 1$. Each G_p could be alternately realized in the form $\mathbb{R}^2 > H_p$ for an appropriate 2-dimensional subgroup H_p of $GL_2(\mathbb{R})$. Using the general theory of [1] for groups of this form, we found that G_p has square-integrable representations when -1 .

For each $p, -1 , formulas (9), (10), (11), and (12) constitute a form of continuous wavelet analysis on <math>\mathbb{R}^2$ that was discovered via representation theory.

References

- [1] Bernier, D and Taylor, K.F., Wavelets from Square-Integrable Representations, SIAM J. Math. Anal., 27 (1996), pp. 594-608.
- [2] Duflo, M. and Moore, C. C., On the Regular Representation of a Nonunimodular Locally Compact Group, J. Funct. Anal., 21 (1976), pp. 209-243.
- [3] Folland, G. B., Harmonic Analysis in Phase Space, Annals of Mathematics Studies, No. 122, Princeton University Press (1989), Princeton.
- [4] Hogan, J.A. and Lakey, J.D., Extensions of the Heisenberg Group by Dilations and Frames, Applied and Computational Harmonic Analysis, 2 (1995), pp. 174-199.