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1 INTRODUCTION

In this lecture, we describe a class of groups formed as semidirect products
with the positive real numbers acting on the Heisenberg group as dilations.
All except one of the groups in this class have square-integrable representa-
tions and each of these square-integrable representations leads to continuous
wavelet transforms of elements of L2(IR?). We compute the reconstruction
formulae explicitly in these cases. The techniques that we use are based
on those developed in [1]. We begin by briefly presenting the continuous
wavelet transform on L?(IR) that arises from the affine group.

2 THE AFFINE WAVELET TRANSFORM

Let
H3 = {g € L*(R): supp § C (0,00) a.e. }

and
H2 = {g € L>(R) : supp § C (—o0,0)a.e. }.

Then, L?(R) = H2 @ H2.
For a > 0 and b € IR and any g € L?(IR), let

lp(s,)el() = 7= ("), forall 1€ R
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The function p(d,a)g is a translated and dilated copy of g.

An affine wavelet for %2 is any w € H% such that

oo |4 2

[TEOr,
0 Y

With such w fixed, let wp o = p(b,a)w, for all b € IR,a > 0. The continuous

wavelet transform of f € H% using the wavelet w is the function T}, f of (b, a)

given by

[T £1(5,0) = {f,ws,0) = / Z orwor s

The reconstruction formula for f is

1= 7 [ mne,am. 2,

with the integral on the right converging in the weak sense in the Hilbert
space H3. Of course, a properly modified version of this holds on #2.

In terms of square-integrable group representations, the group here is the
affine group G, = {(b,a) : b € R,a € R*} which has the group prod-
uct of (b,a) with (¥,a’) given by (b,a)(¥',a’) = (b + ab’,aa’). For each
(b,a) in G4, p(b, @) is a unitary operator on L%(IR) and (b,a) — p(b,a) is
a unitary representation of G,¢. The representation p is irreducible and
square-integrable.

3 A GENERALIZATION

The group G, can be viewed as a semidirect product formed by the mul-
tiplicative group of positive real numbers acting on IR by dilations. This
situation was generalized in [1] to the following: Let H be a closed subgroup
of GL.(IR), the general linear group of invertible n X n real matricies. Con-
sider IR™ as the space of n-dimensional column vectors and let A € H act
on x € R™ by x — hx, with simple matrix multiplication. Let

G=R">H ={(x,h):x€ R*,he H}
with the product of (x, k) and (y, k) in G given by
(x,h)(y, k) = (x + hy, hk).
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The dual group to IR™ is isomorphic to IR"™ but we prefer to distinguish it
by considering it as R™ = {y = (71, -- ,7n) v; € R,1 < j < n}, the space
of n dimensional row vectors. Each v € R” acts as a character on R™ by
(7,x) = ™% for all x € R™. The group H acts on IR™ with the action

written on the right. For h € H and v € lR",'y h is defined by
(7 h,x) = (v, hx), for all x € R™.

Clearly, v - b = «h, simple matrix multiplication, so we will simply write vh
for v - h.

For g € L'(IR™), the Fourier transform of g is denoted § and is given by
i) = [ 9 xdx.

If g € L'(R"™) N L*(IR™), then § € L%(IR™) and 14112 = llgll2- Consequently,
there exists a unitary map P of L2(IR™) onto LZ(IR"), called the Plancherel
transform, such that P, = §, for g € L}(IR") N L%(R™).

There is a natural unitary representation p of G = IR"><H on L*(IR™)
given, for (x,h) € G and g € L?*(IR"), by

p(x, h)g(y) = §(h)"2g(h~}(y — X)),
for all y € IR", where 6(h) = | det(h)).

Let 7 denote the unitary representation of G that is equivalent to p via P.
That is, 7 is a representation on Lz(]R") such that

T(x, h) = Pp(x, h)P~L, for all (x,h) € G.
A simple calculation (see Proposition 1, [1]) shows that, for £ € L2(I/R\”),
1 =5
(%, h){(7) = 6(h)Z(7,%)E(7h), for all y € R™.

Generally, p (or 7) is not an irreducible representation of G. To see this,
suppose U is a measureable H-invariant subset of IR™. Let

L(U) = {€ € IXR™) : xp€ = £},




where xy is the characteristic function of U. Let
Hy = {g € L*(R™) : Pg € L*(U)}.

Then, it is easy to check that L?(U) is a 7-invariant subspace of L2(IR")
and, so, H} is a p-invariant subspace of L2(IR™). If U is such that both U

and IR™\U have positive measure, then L?(U) and % are proper subspaces
and 7 and p are reducible.

Now, suppose that there exists a y € IR” such that the H-orbit yH = {vh:
h € H} is open in IR” and that the map h — 7h is a bijection of H ontoyH.
Let U = vH and let pyy denote the subrepresentation of p corresponding to
the subspace # of L(IR™). In Theorem 1 of [1], it was shown that py is
an irreducible square-integrable representation of G.

There is a beautiful theory of generalized orthogonality relations for square-
integrable representations due to Duflo and Moore [2]. In the situation at
hand, the relevant aspects are as follows (see Theorem 2 of [1] for full details):

Let ¥ denote the Radon-Nikodym derivative of the left Haar measure of
H, transfered to the orbit U, with respect to the Lebesgue measure of ]Tﬁ,
restricted to U. Define an operator K whose domain is dom K = {g € H} :
Pg/¥ € L2(U)} and, for g € dom K, define

Kg=71(pg/¥).

The operator K is (generally) unbounded, self-adjoint and positive. It is
a generalization of the “dimension” of py. The operator K =% has domain
{9 € H} : Q‘I!% € L*(U)} and K'%g = P‘l((’Pg)‘If%). For f,g € H%,
let Vg ¢(x,h) = (f,pu(x,h)g), for all (x,h) € G. If g € dom K7, then
Va5 € L¥(G), for all f € HE and, for fy, f; € HE,

1
(Vy,ang,fz)H(G) = (flaf2)7{?]”K 29”;{?]-

Thus, if we fix w € H¥ such that ”LD\I’%”L2(U) = 1, then f — V,, ¢ is an
isometry of H7; into L%(G) and we get the weakly convergent reconstruction
formula, for f € HE,

dx dh
f= LL" (f’wx,h>wx,h W, (1)
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where wx v (y) = p(x, h)w(y), for all y € R™ and (x,k) € G.

For fixed w, let T, f(x,h) = (f,wx,n) = ([, p(x, h)w), for all f € HE. Then
T.,, from Hf; into L?(G), can be considered as a continuous wavelet trans-
form. Any closed subgroup H of GL,(IR), which is such that it gives rise
to a free open orbit U in @, gives us another form of continuous wavelet
decompositions on IR". We will investigate a family of such decompositions
on IR? that arise by adding dilations to the Heisenberg group.

4 EXTENSIONS OF THE HEISENBERG GROUP

Let H denote the three dimensional, simply connected, two step, nilpotent
Lie group which we prefer to realize by three by three matrices as follows:

by [z,y, z]. Thus, the group product in H is given by

(@1, 91, 21][72, y2, 22] = [21 + 22, 41 + Y2, 21 + 22 + T1302).
See Chapter 1 of [3] for a discussion of the Heisenberg groups - H is one

realization of the 3-dimensional Heisenberg group - and their elegant repre-
sentation theory.

We will say that “dilations of H” means an action of IRt on H that is di-
agonal with respect to the [z,y, 2] parametrization. Since the action must
respect the group structure of H, a dilation is specified by two parameters a
and f3, say. For each a € R*, the dilation by a is the map bapla):H—-H
given by

bap(a)z,y, 2] = [a®z, aﬁy, a°‘+ﬁz],




for all [z,y,z] € H. Let
Gap = H>a, gRY = {([z,9,2],a): [z,y,2] € H,a e RT} .
The group product in G, g is given by
([z,9,2),0)([z", ¥, 2}, d') = ([z + a2,y + aPy', 2 + a® P2’ + 2Py, ad’) .

When we refer to an extension of the Heisenberg group by dilations, we
mean a group which is isomorphic to G4 g, for some (e, 3) € IR?\(0,0). The
question naturally arises of whether the G, g are distinct and it turns out
that they are not. Our first task is to find a convenient cross-section of the
isomorphism classes of the collection of G, ’s .

It is instructive to realize G, g as a group of 3 X 3 matrices. The map

a*tf @bz 2

([z,9,2},a)= | 0 d° y
0 0 1

is an isomorphism of G, onto a closed subgroup of GL3(IR). It is clear
that each G, is a four dimensional simply connected solvable Lie group.
Let gq,5 denote its Lie algebra. Since each G, g is simply connected, G, g,
is isomorphic to G, g, if and only if g, g, is isomorphic to gu, g,

Now {([2,0,0],1) : = € R},{([0,,0],1) : y € R}, {([0,0,2],1) : 2 € R}
and {([0,0,0],a) : a« € IR*} are four one-parameter subgroups of Gy g.
Let X,Y,Z, and A, p denote the corresponding generators in g, . With
the above 3 x 3-matrix realization of Gq g, it is easy to realize these basic
elements of g, g by matrices. This gives

010 0 0O 0 01
X=]100 01, Y=]1001], Z=100 0],
0 00 0 00 0 00
and
a+p 0 0
App = 0 /0
0 00




So we can realize g, is the linear span of {X,Y, Z, A, s}. Now it is clear
that o6 = 84,1, if B # 0 and ga0 = g1,0, for all (a, B) # (0,0). Thus, we
reparametrize. Let

p+1

+
A,=| 0
0

[l =]
(== = e}

for p € IR and

AS

OO =
oo o
SO O

and let g, = (X,Y, Z, A,), for p € RU{c0}. Let G, be the simply connected
Lie group
aPtl

r z
ezp(gp) = 0 e y|:z,y9,2¢ R,aeR*
0 01

Each extension of the Heisenberg group is isomorphic to one of these Gp’s;
however, the G,’s are still not mutually nonisomorphic.

Theorem: Let p,g € R U {00},p # q. Then 8p is isomorphic to g, if and
only if p=1/q. If ¢ # o0 and p = 1/q, then an isomorphism ® : g, — g, is
given by ®(X) = -Y,®(Y) = X,8(Z) = Z, and $(4,) = pA,. An isomor-
phism ® : go — goo is the same on X,Y, and Z but ®(Ap) = Ao

Proof: One directly checks that ® as given provides an isomorphism in the
indicated cases.

Conversely, suppose p,q € R and & : 8 — &g is an isomorphism of Lie
algebras. Now {A,,X,Y,Z} and {4,,X,Y, Z} are vector bases of gp and
8, respectively. The only nontrivial Lie brackets among the basis elements

of g, are
[X,Y]=Z,[A,,X] = pX,[4,,Y] =Y, and [45,Z) = (p+ 1)Z.

Thus, [gp,8p] = (X,Y, Z), if p # 0 and [go, go] = (Y, Z). Hence, go cannot
be isomorphic to any g, with p # 0 or co. So we may assume p, g € IR\{0}.




Furthermore, the centers of [g,,g,] and [g,,g,] are then both IRZ. Thus,
an isomorphism @ : g, — g, must map (X,Y,Z) to (X,Y, Z) and RZ to
IRZ. These observations mean that the matrix of ® with respect to the two
basis {A,, X,Y, Z} and {4,, X,Y, Z} has the form:

w11 0 0 0
P w22 w23 0
w31 w32 w3z 0
P41 P42 P43 Paa

Since this matrix must be full rank, ¢, # 0 and @44 # 0. The relation
[4p, Z] = (p+ 1)Z implies [®#4,,8Z] = (p+ 1)®Z. That is,

(P14 + o0 X + 931Y + o017, 044Z] = (p+ 1)psaZ

which reduces to (¢4 1)p11044 = (p+1)paq. Since g1 and @4y are nonzero,
either ¢ = —1 and p= —1 or ¢y; = *;—’—_"'_'—%. In the case that either p = —1 or

g = —1, the other is forced to be —1 also. Thus, we may assume p# -1
and ¢ # —1 from now on. Thus,

p+1
= —, 2
¥11 7+1 (2)
Similarly, [®A,, ®X] = p®X implies
gP11P22 = P22 (3)
and
11932 = PP32. (4)

The relation [®A,, Y] = ®Y implies that

g¥11¥23 = P23. (5)

and
$11¥33 = P33. (6)

Finally, [#X,®Y] = ®Z gives
$22033 — V320023 = Pag. (7)

Using (7), we see that ¢22¢33 and @39¢093 cannot both be 0. Now p22p33 # 0
forces 11 = p/q from (3) and ¢1; = 1 from (6). But then we would have
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p = ¢, contrary to our assumptions.

Thus @32¢093 # 0. Then (4) implies ¢1; = p and (5) implies @13 = 1/g.
Hence, p = 1/q. Thus, if p # ¢q and g, & g,, then p = 1/4. 0

Corollary: {G, : —1 < p < 1} is a complete cross-section of the isomor-
phism classes of {Ga: (2, 8) € R?\(0,0)}.

When we refer to an extension of the Heisenburg group by dilations, from
now on, we will mean one of the G, for -1 < p < 1.

5 SQUARE-INTEGRABLE REPRESENTATIONS
OF G,

Recall that
a?tl gz 2
G, = 0 a vy |:z,9,26€R,aeR*
0 01
Noting that
a?tl z 2 10 =2 a?tl z 0
0 a y = 01 y 0 a 0
0 01 0 01 0 01

leads us to realizing G}, in the form IR*><H,. These are the kinds of groups
that were studied in section 3. Let

p+1
H,,:{(ao z):zem,aem+},

which is a closed subgroup of GLy(IR). Then

won={((5): (5 2)) < (5) em (5 1) em)

is isomorphic to G, via the map
aPt+l

P+l T z
() (572) = [0 e
0 01




Following the analysis of section 3, we consider the action of H, on R? =
{(v,1) : 7, € R}. That s, for (v, ) € R?

abPtl 2

(%#)( 0 a ) = (a"'y,ap + 27) (8)

a?tl g
( 0 a)er'

If p = —1, then there are three kinds of orbits in ﬁ{2;

for

1. for v # 0,
(1,0 H-1={(7,p): p € R}
2. for v =0,
(0,1)H_y = {(0, ) : pp > 0}
and

(07_1)}[—1 = {(0,#) u< 0}

3. finally, {(0,0)} is an orbit itself.

Thus, there are no open H_j-orbits in IR?. In fact, G_; has no square-
integrable representations and does not fit under the general analysis devel-
oped in [1]. However, it is interesting that G_; has been studied in detail,
from the point of view of generating frames, in [4], where it is called the one
dimensional UT group.

Therefore, from now on, assume —1 < p < 1. By (8), we see that there are

two open Hp-orbits in RZ. They are
Uy =(1,0)H, = {(7, 1) : v > 0}

and
U-=(-1,00H, = {(7,p): 7 < 0}.

Since Uy U U_ is co-null in ﬁ{\z, wehaveL%ﬁ?) = L*(Uy) ® L*(U-) and
L¥(R®) = "}, & HE_.
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Let us apply the theory of section 3 to determine the form that the continu-
ous wavelet transform and reconstruction formula (1) takes in ’HU We get
a different analysis for each p,~1 < p < 1.

As a manifold, G, = R X R x R x R*. Let us write (z,9,2,a) for the

element
aP+1

z z
0 a y
0 01

of Gp. Also, write the elements of IR? in the form (s,t) instead of as a
column Then, the square-integrable representation of G, associated with
U, is, for g € ’HU and (z,y,2,a) € Gy,

_ 1 as—az—zt+zy t—y
pU+(m,y,z,a)g(s,t)—— a(p+2)/2g( apbt2 ’ a )

for all (s,t) € R2.

To find the operator K, we need the Radon-Nikodym derivative ¥. That is
found as follows: Fix an element in Uy, say (1,0). Let £ € Coo(U,). Then,
using left Haar integration on H,

/H,, £((1,0)h)dh :/0 /_oo £(aP, z) aﬂ;ﬂa

oo oo 1
—/0 _/_oo €(%#)m dudy.

Thus,
U(y,p) = __—6_17 for (y,n) € Uy .
(p+ 1)7 p¥:
Note that when p = 0,¥(v,u) =~7% and, when p = 1, ¥(v,u) = 1y -2

Now, we fix any w € 7-((2]+ such that

o0 o0 ‘
(p+ 1)/0 / 100y, )24 dpdy = 1. 9)
Let, for (z,y,2z,a) e R xR x R x R¥,
1 as—az—zxt4+zy t—y
W(x’%z’a)(s, t) = a(E%ﬁ)w( ap+2 ’ a ) (10)
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for all (s,t) € IR2. For fE'H;"]+, define T,f on R x R x R x R+ by

T.(z,y, 2 a) = / - / " (5 oy (510) dsdt. (11)

Then the reconstruction formula (1) becomes,

dzdydzda
f / / / / wf(x Y,z a)w(x,y,z a) a2i+3 ’ (12)

weakly in H¥ L

We will leave the calculations for #7,_ to the interested reader.

6 Conclusions

We looked at those groups that arise by adding dilations to the Heisenberg
group structure of IR®, where we considered that the dilation must respect
the group structure. This led us to the class of groups G,,—1 < p < 1. Each
Gp could be alternately realized in the form ]I{2><1Hp for an appropriate 2-
dimensional subgroup H, of GLy(IR). Using the general theory of [1] for
groups of this form, we found that G, has square-integrable representations
when -1 < p< 1.

For each p,—1 < p < 1, formulas (9), (10), (11), and (12) constitute a form
of continuous wavelet analysis on IR? that was discovered via representation

theory.
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