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1. Introduction

In 1976, Larry Baggett and I studied the vanishing of matrix coefficients of rep-
resentations of locally compact groups. This problem led us to consider groups
with the property that their left regular representation decomposes as a direct sum
of irreducible unitary representations (in this article, representation always means
continuous unitary representation); that is, groups with atomic regular representa-
tion. Of course, compact groups have atomic regular representation, but we were
concerned about the non-compact ones. One may feel that such groups are rare and,
in a generic sense, they are. However, there are naturally occurring constructions
that result in non-compact groups with atomic regular representations. Moreover,
the resulting groups play a role in understanding two seemingly independent topics:
construction of projections in the L1-group algebra and generalizing the continu-
ous wavelet transform to Rn or more general locally compact abelian groups. This
survey introduces groups with atomic regular representations, or [AR] groups and
describes a number of such topics that are of personal interest to me.

Since many readers of this volume may not be familiar with all of the notation
and terminology of abstract harmonic analysis, we begin with an introduction to
the basic spaces and the theory of representations. In Section 3, the Fourier and
Fourier-Stieltjes algebras are defined. Section 4 is devoted to square-integrable
representations and the powerful theorem of Duflo and Moore. We then formally
define [AR] groups and provide a recipe for cooking up a variety of [AR] groups in
Section 5.

The Riemann-Lebesgue Theorem tells us that the Fourier transform of an in-
tegrable function vanishes at infinity. This holds on any locally compact abelian,
LCA, group and even has useful generalizations to non-abelian groups. However, on
many LCA groups there exist finite Borel measures that are singular with respect
to Haar measure, but whose Fourier-Stieltjes transform still vanishes at infinity.
Think about the rotation invariant measure on the unit circle in the plane and
what happens to a wave that scatters off a circular object and dissipates at infinity.
In Section 6, this issue is formulated and the work with Baggett is introduced. The
final three sections are devoted to other topics where the unique properties of [AR]
groups turned out to be essential.

To keep some statements clean, I make the assumption that any locally compact
group considered is second countable. In most cases, this assumption is unnecessary.
No proofs are provided.
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2. Preliminaries

There is a veritable menagerie of spaces that arise in abstract harmonic analysis
and much interest centers around the inter-relationships among the spaces. A good
reference for the basic concepts introduced in this section is [11].

Let G be a locally compact group equipped with left Haar measure. Integration
with respect to this measure is denoted by

∫
G
f(x)dx for any function f on G

for which the integration makes sense. As a locally compact space, G carries the
following function spaces: C(G), the continuous complex-valued functions on G;
Cb(G), the bounded elements of C(G); C0(G), those that vanish at infinity; and
C00(G), the elements of C(G) with compact support. Both Cb(G) and C0(G) are
Banach spaces when equipped with the supremum norm || · ||∞, where ||f ||∞ =
sup{|f(x)| : x ∈ G} for f : G → C. Of course, C00(G) is dense in C0(G) with
respect to || · ||∞-convergence.

For f ∈ C00(G),
∫
G
f(x)dx is well-defined and for any y ∈ G,

∫
G
f(yx)dx =∫

G f(x)dx. This is the left invariance of the Haar integral. There exists a continuous
homomorphism ∆G : G → C, called the modular function of G, such that

(1) ∆G(y)

∫

G

f(xy)dx =

∫

G

f(x)dx,

for all f ∈ C00(G) and y ∈ G. The modular function also helps us with inversion
of the variable of integration:

∫
G
f(x)dx =

∫
G
f(x−1)∆G(x

−1)dx. The group G is
called unimodular when ∆G = 1.

For any 1 ≤ p < ∞, define the Lp-norm on C00(G) by ||f ||p = (
∫
G
|f(x)|pdx)1/p,

for all f ∈ C00(G). Let Lp(G) denote the completion of (C00(G), || · ||p) as a normed
linear space. As usual, the elements of Lp(G) are treated as functions in their own

right. For h, k ∈ L2(G), define 〈h, k〉 =
∫
G
h(x)k(x)dx. With this inner product,

L2(G) is a Hilbert space. For f ∈ L1(G) and g ∈ Lp(G), 1 ≤ p < ∞, the convolution
f ∗ g of f and g is defined by

(2) f ∗ g(x) =

∫

G

f(y)g(y−1x)dy,

which converges for almost every x ∈ G. Then f ∗ g ∈ Lp(G) and ||f ∗ g||p ≤
||f ||1||g||p. In particular, L1(G) is a Banach algebra under convolution. There is

an isometric involution, f → f∗ on L1(G) given by f∗(x) = ∆G(x
−1)f(x−1), x ∈ G.

A (continuous, unitary) representation of G is a pair (π,Hπ), where Hπ is a
Hilbert space and π is a homomorphism of G into the group of unitary operators
on Hπ which is continuous with respect to the weak operator topology. Often
the representation may be just named as π with Hπ then assumed. If π is a
representation of G and if ξ, η ∈ Hπ , define the matrix coefficient function ϕπ

ξ,η on
G by

(3) ϕπ
ξ,η(x) = 〈π(x)ξ, η〉,

for x ∈ G.
The weak operator continuity requirement on representations simply means that

each matrix coefficient function ϕπ
ξ,η is continuous. Since |〈π(x)ξ, η〉| ≤ ||η|| · ||ξ||,

ϕπ
ξ,η ∈ Cb(G), for all representations π of G and any ξ, η ∈ Hπ .
If π is a representation of G and A is a subset of Hπ, then A is called π-invariant

if π(x)A ⊆ A, for all x ∈ G. For ξ ∈ Hπ , π(G)ξ = {π(x)ξ : x ∈ G} is π-invariant
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and so is Kξ, the closed linear span of π(G)ξ. If there exists a ξ ∈ Hπ such that
Kξ = Hπ, then π is called a cyclic representation of G and ξ a cyclic vector for π.

A representation π of G is called irreducible if {0} and Hπ are the only π-
invariant closed subspaces of Hπ . It is easy to see that π is irreducible if and only
if every nonzero vector ξ in Hπ is a cyclic vector for π. When expressed in terms
of matrix coefficients, this becomes a useful criterion to test for irreducibility of a
given representation. We include it with two other standard characterizations in
the next proposition that are essentially Schur’s Lemma. Note that B(Hπ) denotes
the space of bounded linear operators on Hπ and I denotes the identity operator
on Hπ. As an algebra, the center of B(Hπ) is CI = {αI : α ∈ C}.

Proposition 1. Let π be a representation of G. Then, the following are equivalent:
(a) π is irreducible.
(b) The weak operator closure of the linear span of {π(x) : x ∈ G} is B(Hπ).
(c) {T ∈ B(Hπ) : Tπ(x) = π(x)T, for allx ∈ G} = CI.
(d) ϕπ

ξ,η 6= 0, for all ξ, η ∈ Hπ \ {0}.

If π and σ are two representations of G such that there exists a unitary map
U : Hπ → Hσ with

Uπ(x) = σ(x)U,

for all x ∈ G, then π and σ are called equivalent representations. Let [π] denote
the class of all representations equivalent to π. Let

Ĝ = {[π] : π is an irreducible representation of G}.

The set Ĝ is called the dual space of G. If G is abelian, then the equivalence of
(a), (b) and (c) in Proposition 1 force any irreducible representation to be one

dimensional. Thus, Ĝ consists of one-dimensional representations, or characters,
and is a locally compact group in its own right under pointwise multiplication as
the group product and equipped with an appropriate topology.

If π is any representation of G, it can be integrated to define a map, also denoted
π, of L1(G) into B(Hπ), the space of bounded linear operators on Hπ. That is, for
f ∈ L1(G),

(ξ, η) →

∫

G

f(x)〈π(x)ξ, η〉dx

is a bounded conjugate bilinear form on Hπ and, thus, there exists π(f) ∈ B(Hπ)
so that

(4) 〈π(f)ξ, η〉 =

∫

G

f(x)〈π(x)ξ, η〉dx

for all ξ, η ∈ Hπ. It is elementary to verify that f → π(f) is a linear map of L1(G)
into B(Hπ) such that ||π(f)|| ≤ ||f ||1, π(f ∗ g) = π(f)π(g), and π(f∗) = π(f)∗,
for all f, g ∈ L1(G). Therefore, to each representation π of G there corresponds a
continuous homomorphism, also denoted π, of L1(G) into B(Hπ) that respects the
involution, a so-called ∗-representation of L1(G).

For each f ∈ L1(G), define ||f ||∗ = supπ{||π(f)||}, where the supremum is
over all representations π of G. This defines a new norm || · ||∗ on L1(G) that is
dominated by ||·||1. The group C∗-algebra ofG is the normed *-algebraic completion
of (L1(G), || · ||∗) and is denoted C∗(G).

The left regular representation λ of G is defined by translations of L2(G). That
is, for x ∈ G, λ(x) is the unitary operator defined by λ(x)g(y) = g(x−1y), for all
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y ∈ G, g ∈ L2(G). One checks that λ is a representation of G. When integrated up
to L1(G), λ gives the module action of L1(G) on L2(G) by left convolution. That
is, λ(f)g = f ∗ g, for all f ∈ L1(G) and g ∈ L2(G).

The reduced C∗-algebra of G is C∗
λ(G) = λ(L1(G)), the closure of {λ(f) : f ∈

L1(G)} in B(L2(G)). In general, C∗
λ(G) differs from C∗(G), but they agree when

G is an amenable group [18].

3. The Fourier and Fourier-Stieltjes Algebras

In [9], Eymard laid the foundations for the study of two of the most impor-
tant commutative Banach algebras associated with a, not necessarily commutative,
locally compact group. The Fourier-Stieltjes Algebra of G is

B(G) = {ϕπ
ξ,η : π is a representation ofG, ξ, η ∈ Hπ}.

Then B(G) is an algebra over C when equipped with pointwise defined opera-
tions. For ϕ ∈ B(G), f → (ϕ, f) =

∫
G
f(x)ϕ(x)dx is a bounded linear functional

when L1(G) is equipped with the C∗-norm, || · ||∗, so it extends to a continuous
linear functional on C∗(G). This identifies B(G) with C∗(G)∗ as a vector space
and gives B(G) the norm

||ϕ|| = sup{|(ϕ, f)| : f ∈ L1(G), ||f ||∗ ≤ 1}.

With this norm, B(G) is a Banach algebra.
The Fourier algebra of G is A(G) = {ϕλ

g,h : g, h ∈ L2(G)}. Eymard [9] proved

that A(G) is a closed ideal in B(G) and identified it with the predual of the von
Neumann algebra generated by the left regular representation of G. More precisely,
let V N(G) denote the weak operator topology closed subalgebra of B(L2(G)) gen-
erated by {λ(x) : x ∈ G}. Each T ∈ V N(G) defines a bounded linear functional on
A(G) such that (T, ϕλ

g,h) = 〈Tg, h〉, for g, h ∈ L2(G). As an algebra of functions on

G, A(G) is a uniformly dense subalgebra of C0(G).
Both A(G) and B(G) are Banach algebras with extremely complicated structure

and they have been two of the motivating examples in the promising development
of the theory of operator spaces [8].

When G is abelian, with dual group Ĝ, A(G) = {f̂ : f ∈ L1(Ĝ)} and B(G) =

{µ̂ : µ ∈ M(Ĝ)}, where M(Ĝ) is the measure algebra of Ĝ and the Fourier (resp.

Fourier-Stieltjes) transform is an isometric isomorphism. Moreover, if P : L2(Ĝ) →

L2(G), ξ → ξ̂ is the Plancherel transform, then V N(G) = PL∞(Ĝ)P−1.

4. Square-integrable Representations

Let π be an irreducible representation of G. An element ξ ∈ Hπ is called an
admissible vector if there exists a nonzero η ∈ Hπ such that ϕπ

ξ,η ∈ L2(G). If
there exists a nonzero admissible vector ξ ∈ Hπ, then π is called square-integrable.
In that case, the set of all admissible vectors is a dense subspace Dπ of Hπ and,
for ξ ∈ Dπ, ϕ

π
ξ,η ∈ L2(G), for all η ∈ Hπ. The following significant theorem was

established in [7].

Theorem 1. (Duflo and Moore) Let π be a square-integrable representation of G.
Then there exists a unique operator K on Hπ that is self-adjoint positive (K may
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be unbounded) and such that (i) domK−1/2 = Dπ, (ii) π(x)Kπ(x)−1 = ∆G(x)
−1K,

for all x ∈ G, and (iii) for ξ1, ξ2 ∈ Dπ, η1, η2 ∈ Hπ,

〈ϕπ
ξ1,η1

, ϕπ
ξ2,η2

〉L2(G) = 〈K−1/2ξ1,K
−1/2ξ2〉〈η2, η1〉.

If G is unimodular, then Dπ = Hπ, K is bounded and (ii) implies that K is a
scalar multiple of the identity. If G is compact then that scalar is the dimension of
Hπ and (iii) is one of the orthogonality relations for irreducible representations of
a compact group.

Definition 1. The operator K in Theorem 1 is called the generalized dimension
of π.

If π is a square-integrable representation of G, select an admissible vector ξ such
that ||K−1/2ξ|| = 1. Define a linear map Vξ : Hπ → L2(G) by

Vπη(x) = ϕπ
ξ,η(x) = 〈η, π(x)ξ〉.

Let Vπ,ξ = {Vπη : η ∈ Hπ}. Then Theorem 1(iii) implies that Vπ,ξ is a closed
subspace of L2(G) and Vξ is a unitary map ofHπ onto Vπ,ξ. Also, Vπ,ξ is λ-invariant
and Vξ establishes the equivalence of π with λ restricted to Vπ,ξ. Thus, any square-
integrable representation sits as a subrepresentation of the regular representation.
On the other hand, if σ is an irreducible subrepresentation of λ then σ is square-
integrable.

Most noncompact groups have no square-integrable representations. However,
there exist important noncompact groups, such as SL(2,R) and the affine group
of R, which have some square-integrable representations. For SL(2,R), the set of
square-integrable representations is known as the Discrete Series and the regular
representation of SL(2,R) is the direct sum of an atomic part (which is a sum of
Discrete Series Representations) and a continuous part (which has no irreducible
subrepresentations). In the case of the affine group,

Gaff = {(b, a) : a, b ∈ R, a > 0}

with group product given by (b1, a1)(b2, a2) = (b1 + a1b2, a1a2), there are two
square-integrable representations π+ and π− and λ is equivalent to ℵ0π

+ ⊕ ℵ0π
−.

This latter notation means that there are two families {K+
i : i = 1, 2, 3, · · · } and

{K−
i : i = 1, 2, 3, · · · } of mutually orthogonal closed subspaces of L2(Gaff), each

λ-invariant, so that

L2(Gaff) =

∞∑

i=1

K+
i +

∞∑

i=1

K−
i

and λ acting on K±
i is equivalent to π±.

5. [AR] Groups

Definition 2. A locally compact group G is called an [AR] group if the left regular
representation of G is the direct sum of irreducible representations.

Of course, any compact group is [AR] and we just saw that Gaff is an [AR] group.
Actually, Gaff is representative of a large class of examples of [AR] groups that can
be constructed by the following procedure.

Let A be an abelian locally compact group and let H be another locally compact
group such that there is a homomorphism α : H → Aut(A), where Aut(A) is the
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group of automorphisms of A. Further, assume that (a, h) → αh(a) is continuous
from A×H into A. Form the semidirect product A⋊H = {(a, h) : a ∈ A, h ∈ H},
where

(a1, h1)(a2, h2) = (a1αh1
(a2), a1a2)

gives the group product. The, so-called, Mackey Machine can be used to param-

eterize Â⋊H when a specific regularity assumption is satisfied. (See Section 6.6
of [11] for a readable introduction to the Mackey Machine.) We need to develop a
little notation.

Since A is abelian, Â is the group of characters of A. The action of H on A

generates an action (h, χ) → h · χ of H on Â defined by

h · χ(a) = χ(αh−1(a)),

for a ∈ A. For χ ∈ Â, the orbit of χ in Â is Oχ = {h · χ : h ∈ H} and the
stabilizer of χ in H is Hχ = {h ∈ H : h · χ = χ}, which is a closed subgroup of
H . The regularity assumption that is needed has a simple formulation when we
are assuming all locally compact groups considered are second countable. If there

exists a Borel measurable subset Γ ⊆ Â so that Oχ ∩ Γ is a singleton for each

orbit Oχ in Â, then we say that the action of H on Â is regular. That is, the

action is regular when the orbit space Â/H has a Borel cross-section. Among the

consequences of this assumption are that each orbit in Â is open in its closure and
the map hHχ → h · χ is a homeomorphism of H/Hχ with Oχ. To obtain [AR]
groups, we consider two specific properties (let |S| denote the Haar measure of a

measurable S ⊆ Â):

(I) There exists a countable family {Oj : j ∈ J} of H-orbits in Â such that

|Oj | > 0, for j ∈ J, and |Â \ [∪j∈JOj ] | = 0.

(II) With (I) holding, for each j ∈ J and χ ∈ Oj , Hχ is [AR].

The following theorem is an easy application of standard techniques in the Mackey
Machine and is contained in the first section of [3].

Theorem 2. (Baggett and Taylor) If properties (I) and (II) hold for the action of
a locally compact group H on an abelian group A, then A⋊H is an [AR] group.

Using this construction a variety of examples of noncompact [AR] groups are
obtained in [3]. All of the [AR] groups highlighted there were nonunimodular and
connected. In a similar manner, Mauceri and Picardello constructed families of uni-
modular [AR] groups in [16]; however, their examples were all totally disconnected.
In [2], Baggett studied the interplay of unimodularity and [AR]. By combining his
remark after Proposition 1.2 [2] with Theorem 2.3 [2], one obtains the following
limitation.

Theorem 3. (Baggett) If G is a connected unimodular [AR] group, then G is
compact.

Thus, if one wants to have a noncompact connected [AR] group, then one has to
deal with the modular function. However, it is actually the modular function that
plays a key role in many of the most interesting phenomena that occur on [AR]
groups.

Of course Gaff is an obvious example of the above construction. One already gets
an interesting variety of additional examples by taking A = R2 and H to be almost
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any 2-dimensional closed subgroup of the general linear group GL(2,R). One only
has to be sure that the generic orbits of H do not collapse. An illustrative family
of examples was studied in [19]. For −1 ≤ p ≤ 1, let

Hp =

{(
ap+1 x
0 a

)
: a, x ∈ R, a > 0

}
.

Each group R2⋊Hp has a normal subgroup isomorphic to the 3-dimensional Heisen-
berg group H and is an extension of H by R acting on H as ‘dilations’. More
precisely, realize H as {[x, y, z] : x, y, z ∈ R} with product

[x1, y1, z1][x2, y2, z2] = [x1 + x2, y1 + y2, z1 + z2 + x1y2].

A dilation action of R on H is one of the form αr,s(t)[x, y, z] = [ertx, esty, e(r+s)tz],
where r and s are fixed real parameters and t ∈ R. Groups of the form H ⋊αr,s

R

were studied and classified in [19].

Theorem 4. (Schulz and Taylor) Each H ⋊αr,s
R is isomorphic to R2 ⋊Hp, for

some −1 ≤ p ≤ 1. Moreover, the groups R2 ⋊ Hp,−1 ≤ p ≤ 1 are mutually
non-isomorphic and R2 ⋊Hp is an [AR] group if and only if p 6= −1.

A good exercise for the reader is to calculate the action of Hp on R̂2, which can
be identified with R2, to verify that (I) and (II) hold when −1 < p ≤ 1 and see how
the open orbits collapse to lines when p = −1.

6. Representations Vanishing at Infinity

It was observed earlier that A(G) ⊆ C0(G)∩B(G). The question of when equality
holds has a long history and its investigation leads to the study of [AR] groups.
Indeed, it was the attempt to characterize G for which A(G) = C0(G)∩B(G) that
generated my initial interest in [AR].

In 1916, Menchoff [17] showed that there exists a singular probability measure
µ on T such that µ̂(n) → 0 as |n| → ∞. So µ̂ ∈ [C0(Z) ∩B(Z)] \A(Z). Hewitt and
Zuckerman [12] proved that, for an abelian locally compact group G, G is compact
if and only if A(G) = C0(G) ∩B(G). In [10], Figà-Talamanca showed that, if G is
unimodular, then A(G) = C0(G)∩B(G) implies G is [AR]. Since compactness and
[AR] coincide for abelian groups, Figà-Talamanca’s result extends that of Menchoff
and Hewitt and Zuckerman.

Larry Baggett and I turned our attention to extending Menchoff’s theorem to
general G in [4]. We showed that, for any non-[AR] group G, there exists a repre-
sentation π of G that has no subrepresentation in common with the regular repre-
sentation and a ξ ∈ Hπ, ||ξ|| = 1 such that ϕπ

ξ,ξ ∈ C0(G). This is neatly stated as
the following theorem.

Theorem 5. (Baggett and Taylor) Let G be a second countable locally compact
group. If A(G) = C0(G) ∩B(G), then G is an [AR] group.

One may speculate that [AR] groups are characterized by A(G) = C0(G)∩B(G).
However, in [3], we constructed an [AR] group G and an irreducible representation
π of G that is not square-integrable but still vanishes at infinity; that is, for ξ ∈
Hπ, ϕ

π
ξ,ξ ∈ C0(G). So, if ξ ∈ Hπ \ {0}, then ϕπ

ξ,ξ ∈ [C0(G) ∩ B(G)] \ A(G). The

problem of characterizing groups for which A(G) = C0(G) ∩B(G) remains open.
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7. Geometric Properties of A(G) and the [AR] Property

If G is abelian, then A(G) is isometrically isomorphic to L1(Ĝ). Moreover, an

abelian group G is [AR] if and only if G is compact, equivalently, Ĝ is discrete,

equivalently, Haar measure on Ĝ is atomic. If (X,µ) is a measure space, there are
a number of geometric properties of Banach spaces that hold on L1(X,µ) if and
only in µ is atomic. Essentially, these properties distinguish l1 from L1[0, 1]. When
G is non-abelian, we cannot say that A(G) is L1(X,µ) for some measure space
(X,µ). However, many analogies hold. In particular, when G is [AR], A(G) shares
characteristics with l1.

One striking property that L1(µ) has only when µ is atomic is that of being the
dual of another Banach space.

Theorem 6. (Taylor [21]) G is an [AR] group if and only if A(G) is a dual Banach
space.

Definition 3. A Banach space E has the Radon-Nikodym Property, RNP, if when-
ever (X,µ) is a finite measure space and ν is a µ-continuous vector-valued measure
from X into E of bounded variation, there exists a Bochner integrable g from X
into E such that ν(a) =

∫
A gdµ for every measurable A ⊆ X .

The book by Diestel and Uhl [6] is a good source of information on RNP. There
one will find a long list of properties of Banach spaces that turn out to be equivalent
to RNP. For a measure space (X,µ), L1(µ) has the RNP if and only if µ is an atomic
measure.

Theorem 7. (Taylor [21]) G is an [AR] group if and only if A(G) has the RNP.

8. Constructing Projections in L1(G)

A self-adjoint idempotent in the Banach *-algebra L1(G) is called a projection.
That is, f ∈ L1(G) is a projection if f ∗ f = f = f∗. This is the case if and only
if π(f) is a projection operator on Hπ, for every irreducible representation π of
G. Since the left regular representation is faithful as a representation of L1(G), f
is a projection if and only if λ(f) is a projection operator on L2(G). In [13] and
[14], we developed methods for deciding whether certain groups G admit nonzero
projections in L1(G) and for explicit constructions of projections when they can
exist. The most satisfying results apply for the type of [AR] groups constructed in
Section 5.

To keep things simple, we will assume that G = A⋊α H with A abelian and H

acting in such a manner that there are χ1, · · · , χn ∈ Â such that, for 1 ≤ i ≤ n,

Hχi
= {e}, Oχi

is open, and |Â \ [∪iOχi
]| = 0. Then clearly (I) and (II) of Section

5 hold and G is an [AR] group. Constructing projections in L1(G) requires some
preparation.

Let ∆H denote the modular function of H and let δ(h) denote the modulus of
the automophism α(h) of A. Thus,

δ(h)

∫

A

g(αh(a))da =

∫

A

g(a)da,

for any g ∈ C00(A), for example. There is a natural unitary representation ρ of G
on L2(A) given by

(5) ρ(a, h)g(b) = δ(h)−1/2g(αh−1(a−1b)),
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for all b ∈ A, g ∈ L2(A), and (a, h) ∈ G. To decompose ρ into irreducibles, let F :

L2(A) → L2(Â) denote the Fourier transform as a unitary map. Define π(a, h) =
Fρ(a, h)F−1, for (a, h) ∈ G. Then π is a representation equivalent to ρ and a short
calculation using standard properties of the Fourier transform shows that

(6) π(a, h)ξ(χ) = δ(h)1/2χ(a)ξ(h−1 · χ),

for χ ∈ Â, ξ ∈ L2(Â), and (a, h) ∈ G. Since each Oχi
is open, we can restrict

Haar measure on Â to Oχi
and consider L2(Oχi

) as a closed subspace of L2(Â)

in the obvious way. Since Oχi
is a H-invariant set in Â, one sees from (6) that

L2(Oχi
) is a π-invariant subspace of L2(Â). Define πi(a, h) = π(a, h)|L2(Oχi

), for

(a, h) ∈ G and for 1 ≤ i ≤ n. It can be shown that each πi is irreducible and, in

fact, equivalent to indG
Aχi, the representation of G induced from χi.

If H2
i = {f ∈ L2(A) : F(f) ∈ L2(Oχi

)}, then L2(A) =
∑⊕

i H2
i and each H2

i is
ρ-invariant. Let ρi be the subrepresentation of ρ associated with H2

i . Note that

ρi is equivalent to πi, for 1 ≤ i ≤ n. Not only is ρ =
∑⊕

i ρi, but the left regular

representation λ is equivalent to
∑⊕

i ℵ0 · ρi.
In analogy with the projections that arise from the orthogonality relations asso-

ciated with irreducible representations of compact groups, one can hope that there
might be projections associated with the square-integrable representations, ρi, in
light of Theorem 1. Investigating this potential in [13] and [14] led to defining, for
w ∈ L2(A),

(7) fw(a, h) =

[
δ(h)

∆H(h)

]1/2
〈w, ρi(a, h)w〉,

Definition 4. A projection generating function (PGF) associated with Oχi
is a

w ∈ L2(A) which satisfies:
(i) supp(ŵ) ⊆ Oχi

(ii)
∫
H |ŵ(h−1 · χi)|

2dh = 1

(iii) fw ∈ L1(G), with fw defined by (7).

For a projection f in L1(G) the support of f in Ĝ is s(f) = {σ ∈ Ĝ : σ(f) 6= 0}.
For projections f and g in L1(G) we write f ≤ g if f ∗ g = f . A projection f in
L1(G) is called minimal if f 6= 0 and, for any projection g in L1(G), g ≤ f implies
g = 0 or g = f .

Theorem 8. (Kaniuth and Taylor [14]) With the above notation, the following
three facts hold:

(a) Let w be a PGF associated with the orbit Oχi
. Then fw, as defined in (7),

is a minimal projection.
(b) Every minimal projection in L1(G) is of the form fw, with w a PGF associ-

ated with Oχi
, for some 1 ≤ i ≤ n.

(c) Every projection in L1(G) with s(f) = ρi is the orthogonal direct sum of
minimal projections.

Many questions remain open on how completely one may describe the projections
in L1(G) for a general [AR] group G.
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9. Constructing Continuous Wavelet Transforms on Rn

The final area to mention in which [AR] groups play a central role is the general
construction of continuous wavelet transforms of L2(Rk) or L2(A) for a general
locally compact abelian groupA. Again, as in the previous section, assume thatG =

A⋊αH with A abelian andH acting in such a manner that there are χ1, · · · , χn ∈ Â

such that, for 1 ≤ i ≤ n, Hχi
= {e}, Oχi

is open, and |Â\ [∪iOχi
]| = 0. The results

in this section are based on [5]. There we assumed A = Rk, but the generalization
is direct.

Let ρ be the representation of G on L2(A) defined in (5). For w ∈ L2(A) and
(a, h) ∈ G, define wa,h = ρ(a, h)w.

For each i ∈ {1, 2, · · · , n}, let ρi be the irreducible subrepresentation of ρ associ-
ated with H2

i . Since ρi is a square-integrable representation, the theorem of Duflo
and Moore applies. A key point is to identify the operator K that arises in The-
orem 1. This operator comes from the relationship between two natural measures
on the orbit Oχi

. Since h → h · χi is a homeomorphism of H with Oχi
, we can

transfer the left Haar measure of H to Oχi
. Call this measure νi. Let µi denote

Haar measure on Â restricted to Oχi
. Let Ψi = [dµi/dνi], the Radon-Nikodym de-

rivative. Then Ψi is a positive continuous function on Oχi
. Therefore, Ψi operates

on L2(Oχi
) by pointwise multiplication as an unbounded operator with domain

{ξ ∈ L2(Oχi
) : Ψξ ∈ L2(Oχi

)}. Now define Ki on H2
i by Kig = F−1(Ψiĝ), for any

g ∈ H2
i such that Ψiĝ ∈ L2(Oχi

) (these are the admissible vectors in the language
of Section 4). Select wi ∈ H2

i such that ||Kiw
i||22 = ||Ψiw

i||22 = 1.
The set W = {w1, · · · , wn} forms a multi-wavelet for a continuous wavelet trans-

form of L2(A) in the sense expressed by (b) in the following theorem which can be
derived from [5] and Theorem 1.

Theorem 9. (Bernier and Taylor) With the above notation,
(a) Ki is the generalized dimension of ρi, for i = 1, · · · , n.
(b) For any f ∈ L2(A),

f =

n∑

i=1

∫

A

∫

H

〈f, wi
a,h〉w

i
a,h

dh da

δ(h)
,

weakly in L2(A).
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