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Abstract

A generalization of multi-dimensional wavelet theory is introduced

in which the usual lattice of translational shifts is replaced by a discrete

subgroup of the group of affine, area preserving, transformations of

Euclidean space. The dilation matrix must now be compatible with

the group of shifts. An existence theorem for a multiwavelet in the

presence of a multiresolution analysis is established and examples are

given to illustrate the theory with two dimensional crystal symmetry

groups as shifts.

1 Introduction

In the classical theory of wavelets on Rn, wavelets are transformed by shifts,

selected from a discrete cocompact subgroup of the translation group, and

the powers of an appropriate dilation matrix. The recently developing the-

ory of composite dilations, see [4], [5], [9], and [3], demonstrates the value of

introducing transformation by selected matrices other than powers of the di-
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lation. In applications, so far, these additional transformations are area pre-

serving. We feel there is value in considering all the area preserving transfor-

mations, that are used, as ”shifts”. The purpose of this article is to formulate

the appropriate definitions of multiwavelets and generalized multiresolution

analysis in this context and to demonstrate through examples how crystal

symmetry groups can than be incorporated as the group of shifts.

We find it necessary to formulate a theory based on this more general

concept of shifts because some of the important crystal groups do not split

as a semidirect product of the translation subgroup and a finite point group.

Such non-splitting groups are called nonsymmorphic. In two dimensions,

four of the seventeen wallpaper groups are nonsymmorphic while, in three

dimensions, 146 out of the 219 crystal groups are nonsymmorphic. These

nonsymmorphic groups are not covered by the theory of composite dilations.

In section 2, we establish the notation we will use and define multiwavelets

in the new setting. Generalized multiresolution analysis and an appropriate

concept of scaling ensemble is introduced in section 3 where the main the-

orem on the existence of a multiwavelet is established. After introducing

the definition of crystal groups in 4, we devote section 5 to constructing

the appropriate ingredients in several examples. The article ends with some

concluding remarks.

2 Preliminaries

Let GLn(R) denote the group of invertible n×n real matrices. If ϕ : Rn → Rn

is any affine map then there are unique x ∈ Rn and L ∈ GLn(R) such that
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ϕ(z) = L(z + x), for all z ∈ Rn. (Elements of Rn will be considered as

column vectors). We use the notation [x, L] for ϕ and [x, L] · z = L(z + x).

The affine group of Rn is the set of all affine maps with composition as the

group product. We denote it by

Affn(R) = {[x, L] : x ∈ Rn, L ∈ GLn(R)}.

Affn(R) is then a semidirect product of the additive group Rn by GLn(R) with

the natural action. For [x, L], [y, M ] ∈ Affn(R), calculating the composition

gives

[x, L][y, M ] = [M−1x + y, LM ].

If I denotes the identity n × n matrix, then [0, I] is the identity in Affn(R)

and [x, L]−1 = [−Lx,L−1].

If E ⊆ Rn is a Lebesgue measurable set with Lebesgue measure |E| then,

for [x, L] ∈ Affn(R),

|[x, L] · E| = | det L||E|.

Thus, the measure preserving affine maps are all of the form [x, L] with

L ∈ S̃Ln(R) where

S̃Ln(R) = {L ∈ GLn(R) : | det L| = 1}.

Let SAffn(R) = {[x, L] : x ∈ Rn, L ∈ S̃Ln(R)} = Rn o S̃Ln(R).

For [x, L] ∈ Affn(R), f ∈ L2(Rn) and z ∈ Rn, let

π[x, L]f(z) = | det L|−1/2f([x, L]−1 · z)

= | det L|−1/2f(L−1z − x).

Then π is a unitary representation of Affn(R) and provides convenient nota-

tional shortcuts in the formulation of wavelet theory and its variations.
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We take the point of view in this article that general wavelet theory

refers to any form of analysis or synthesis involving subsets S ⊂ Affn(R) and

W ⊂ L2(Rn) so that, for any given f ∈ L2(Rn), the set of coefficients

{〈f, π[x, L]w〉 : [x, L] ∈ S, w ∈ W}

is useful in understanding f .

The set S may be of the form Rn o H for some closed subgroup H of

GLn(R) as investigated in [2] and [12] and successfully used in the rapidly

developing theory and applications of the continuous shearlet transform (see

[8] and [15]). However, in the present study we concentrate on systems built

with discrete sets S and finite W .

A motivating development for us was the emerging theory of wavelets

with composite dilations, including discrete shearlet transforms, introduced

in [4] and [5]. For a recent introduction to the theory see [9]; in particular,

Section 1.4.1 of [9] is directly relevant to what follows.

For our purposes, the key ingredients in a system of wavelets with com-

posite dilations are the following

ΨAB = {DADBTxΨ : x ∈ Zn, B ∈ B, A ∈ A}, (1)

where Ψ = {ψ1, . . . , ψl} ⊂ L2(Rn),

Txf(z) = f(z − x),

DAf(z) = |det A|−1/2 f(A−1z),

and A,B ⊂ GLn(Z). Note that the lattice Zn in (1) may be replaced by

some other lattice in Rn and A and B be required to respect that lattice, but
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this is not a substantial generalization. If ΨAB is an ON basis for L2(Rn),

then Ψ is called an ON multiwavelet. We point out that

DADBTxf = π[0, A]π[x,B]f = π[x,AB]f, (2)

for f ∈ L2(Rn), x ∈ Zn, B ∈ B, A ∈ A.

This theory is most pursued in the cases where B is a subgroup of S̃Ln(Z)

and A = {Ak : k ∈ Z}, where A ∈ GLn(Z) is an appropriately compatible

matrix. When B is a subgroup of S̃Ln(Z), let

Γ = {[x,B] : x ∈ Zn, B ∈ B} = Zn o B,

the semidirect product of Zn with the acting group B. Then Γ is a discrete

subgroup of SAffn(R), and the compatibility requirement on A can be ex-

pressed as [0, A]Γ[0, A−1] ( Γ and Γ/[0, A]Γ[0, A−1] is finite. A useful point

of view is to think of Γ as the shift group and A as the dilation matrix.

Although the theory of wavelets with composite dilations, as formulated

in (1), is proving to be extremely useful, there are cases of interest which

are closely related but not included in the current formulation. We are most

concerned with including the cases where Γ is the symmetry group of some

crystal structure in Rn (crystal group). Some crystal groups split as semidi-

rect products and fit into the above setting, but not all. Therefore, we

introduce the following definition.

Definition 1 Let Γ be a discrete subgroup of SAffn(R) and let A ∈ GLn(R)

be such that [0, A]Γ[0, A−1] ( Γ and Γ/[0, A]Γ[0, A−1] is finite. An AΓ-

multiwavelet is a finite set of functions Ψ = {ψ1, . . . , ψl} ⊂ L2(Rn) such

that

{π[0, Ak]π[x,C]ψi : k ∈ Z, [x,C] ∈ Γ, 1 ≤ i ≤ l} (3)

5



is a Parseval frame in L2(Rn).

Recall that F ⊂ H, where H is a Hilbert space, is called a Parseval

frame in H if, for all ξ ∈ H, ||ξ||2 =
∑

η∈F |〈ξ, η〉|2. If the set in (3) is an

orthonormal basis of L2(Rn), then Ψ is called an ON-AΓ-multiwavelet. We

will call A compatible with Γ when [0, A]Γ[0, A−1] ( Γ and Γ/[0, A]Γ[0, A−1]

is finite.

The important features of Definition 1 are that it includes all the examples

of composite dilation systems which have been used so far and it allows for

shift groups that are more general than ZnoB. For example, Γ may be any

crystal group.

3 Existence of AΓ-multiwavelets

In [1], a quite general concept of multiresolution analysis was introduced.

We specialize their definition with the goal of constructing AΓ-multiwavelets

and, ultimately, efficient algorithms.

Definition 2 Let Γ be a discrete subgroup of SAffn(R) and let A ∈ GLn(R)

be compatible with Γ. A sequence {Vj}j∈Z of closed subspaces of L2(Rn) is

called a generalized multiresolution analysis relative to Γ and A (GMRAAΓ)

if

(i) π(Γ)V0 ⊆ V0,

(ii) Vj = π[0, A−j]V0, for all j ∈ Z,

(iii) Vj ⊂ Vj+1, for all j ∈ Z, and

(iv) ∩Vj = {0} and ∪Vj = L2(Rn).

6



One may expect that we introduce the stricter notion of a multiresolution

analysis relative to Γ and A when there exists a scaling function in V0; how-

ever, examples of crystal groups acting on R2 suggest a slightly more general

concept.

Definition 3 Let {Vj}j∈Z be a GMRAAΓ. A subset {ϕ1, . . . , ϕr} ⊂ V0 is

called a finite scaling ensemble (FSE) if

{π[x,C]ϕi : [x,C] ∈ Γ, 1 ≤ i ≤ r}

is an orthonormal basis of V0. If a FSE exists, then {Vj}j∈Z is called a

multiresolution analysis relative to Γ and A (MRAAΓ).

If {Vj}j∈Z is a GMRAAΓ, define Wj = Vj+1ªVj for j ∈ Z. So W0 = V1ªV0

and Wj = π[0, A−j]W0 for j ∈ Z. Observe that W1 is invariant under π[x, C]

for all [x,C] ∈ Γ.

The left regular representation λΓ is a unitary representation of Γ which

acts on `2(Γ) by left translation. That is, for ξ ∈ `2(Γ), [x,C] ∈ Γ,

λΓ[x,C]ξ([y,D]) = ξ([x,C]−1[y, D]),

for all [y, D] ∈ Γ. Let δ denote the function in `2(Γ) which is 1 at the identity

element, [0, I], and 0 everywhere else. Then

{λΓ[x,C]δ : [x,C] ∈ Γ}

is clearly an orthonormal basis of `2(Γ).

If {ϕ1, . . . , ϕr} is a FSE for an MRAAΓ {Vj}j∈Z, then define

V0,i = cl < {π[x,C]ϕi : [x,C] ∈ Γ} >,
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V1,i = π[0, A−1]V0,i and W0,i = V1,i ª V0,i,

for 1 ≤ i ≤ r.

For each i ∈ {1, 2, . . . , r}, define a Hilbert space isomorphism Φi : `2(Γ) →
V0,i by

Φi(λΓ[x,C]δ) = π[x,C]ϕi,

for all [x,C] ∈ Γ, extending by linearity and continuity. Then

ΦiλΓ[x,C]ξ = π[x,C]Φiξ,

for all ξ ∈ `2(Γ). Thus, V0,i is a π-invariant subspace of L2(Rn) and the

restriction of π to this subspace is unitarily equivalent to the left regular

representation.

Now, π[0, A−1] : V0,i → V1,i is a surjective isometry, so

{π[0, A−1]π(γ)ϕi : γ ∈ Γ} = {π(ω)π[0, A−1]ϕi : ω ∈ [0, A−1]Γ[0, A]} (4)

is an ON basis of V1,i. Let d denote the index of Γ in [0, A−1]Γ[0, A], which

is the same as the index of [0, A]Γ[0, A−1] in Γ. Let {[y1, D1], . . . , [yd, Dd]} be

a set of representatives of the cosets of Γ in [0, A−1]Γ[0, A]. So

[0, A−1]Γ[0, A] =
d⋃

j=1

Γ[yj, Dj],

a disjoint union. For 1 ≤ j ≤ d, define ϕi,j = π[yj, Dj]π[0, A−1]ϕi. By (4)

{π[x,C]ϕi,j : [x,C] ∈ Γ, 1 ≤ j ≤ d}

is an ON basis of V1,i. Define

Zi,j = cl < {π[x,C]ϕi,j : [x,C] ∈ Γ} >,
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for 1 ≤ j ≤ d. Then V1,i = Zi,1 ⊕ · · · ⊕ Zi,d, each Zi,j is invariant under π(Γ)

and the restriction of π as a representation of Γ to Zi,j is equivalent to λΓ

with the same argument which was used for V0,i. Therefore, the action of

π(Γ) on V1,i is equivalent to the direct sum of d copies of λΓ while the action

of π(Γ) on V0,i is equivalent to one copy of λΓ. With this set-up, the proof

of Lemma 1.3 of [1], using the cancelation property for finite von Neumann

algebras applies to prove that the action of π(Γ) on W0,i is equivalent to d−1

copies of λΓ. Since W0 = W0,1 ⊕ · · · ⊕W0,r, we arrive at our main theorem.

Theorem 4 Let Γ be a discrete subgroup of SAffn(R) and let A ∈ GLn(R)

be compatible with Γ. Let d be the index of [0, A]Γ[0, A−1] in Γ. Suppose

that {Vj}j∈Z is an MRAAΓ with a FSE, {ϕ1, . . . , ϕr}. Then there exists an

ON-AΓ-multiwavelet Ψ = {ψ1, . . . , ψr(d−1)}.

Proof: With the notation above, write W0 = X1 ⊕ · · · ⊕ Xr(d−1), where

each Xi is a π(Γ)-invariant closed subspace on which the action of π(Γ) is

equivalent to λΓ. Let Ui : `2(Γ) → Xi be a Hilbert space isomorphism

intertwining λΓ with π restricted to Xi. Define ψi = Uiδ, for 1 ≤ i ≤ r(d−1).

By construction, {π[x,C]ψi : [x, C] ∈ Γ, 1 ≤ i ≤ r(d− 1)} is an ON basis of

W0. Thus,

{π[0, Ak]π[x,C]ψi : k ∈ Z, [x,C] ∈ Γ, 1 ≤ i ≤ r(d− 1)}

is an ON basis of L2(Rn).

9



4 Crystal symmetry groups

As a major application of using more general discrete subgroups of SAffn(R)

than Zn as the group of shifts in a theory of multiresolution analysis and

wavelets, we focus our attention on crystal groups.

Definition 5 A subgroup Γ ⊆ SAffn(R) is a crystal group if it is discrete

and Rn/Γ is compact.

In two dimensions there are 17 crystal groups. These are sometimes called

the wallpaper groups.

Remark 6 If Γ is a crystal group, then there exists a normal subgroup N of

Γ such that:

1. N is isomorphic to Zn;

2. D = Γ/N is a finite group called the point group.

It is important to note that Γ, since it has an abelian subgroup of finite

index, has a very well understood representation theory. This is in sharp con-

trast to any discrete group which does not have an abelian subgroup of finite

index as a result of Thoma’s famous classification of Type I discrete groups

[14]. In [13], a computationally practical Fourier transform was defined for

crystal groups. This should prove to be an essential tool as we develop the

theory of wavelets with crystal symmetries.

We end this paper with some examples illustrating the construction of

an MRAAΓ in the crystal symmetry setting. Compatible dilation matrices,

MRAAΓ’s and associated wavelets are constructed for all 17 two dimensional
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crystal groups in [10] and [11]. A more in depth analysis can be found in

[11].

5 Examples

We selected three particular examples from among the two dimensional crys-

tal groups. The first example is not a semidirect product, so it is not covered

by the theory of composite dilations. The second illustrates the necessity of

our introduction of finite scaling ensembles, as opposed to a single scaling

vector. The third example is included as the planar crystal group with the

greatest symmetry; that is, the largest point group.

Given a crystal group Γ acting on R2, take a compatible A ∈ GLn(Z)

and choose a fundamental domain R. Let ϕ = χR/||R|| and consider the

sequence of subspaces {Vj}j∈Z defined by,

V0 = span{π[x,C]ϕ : [x,C] ∈ Γ},
Vj = π[0, A−j]V0.

By construction, V0 is invariant under the π action of Γ. Moreover, the

subspaces have dense union and trivial intersection. Unfortunately, it is

not necessarily the case that Vj ⊂ Vj+1 for every j ∈ Z. This condition is

satisfied however, if A · R can be tiled by tiles from Γ · R. Namely, if there

exists [x1, C1], . . . , [xd, Cd] ∈ Γ such that

A ·R =
d⋃

j=1

[xj, Cj] ·R.

It may be that there are no such group elements for a particular fundamental

domain, see the example below when Γ = p6. If this is the case, a partition
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into subsets R = R1∪· · ·∪Rr, so that A ·R may be tiled by tiles from Γ ·Ri,

i = 1, . . . , r may be used. That is, we now desire,

A ·R =
d⋃

j=1

([xj,1, Cj,1] ·R1 ∪ · · · ∪ [xj,r, Cj,r] ·Rr)

for some [x1,i, C1,i], . . . , [xd,i, C
i
d] ∈ Γ, i = 1, . . . , r. If this is the case, then

{Vj}j∈Z becomes an MRAAΓ with FSE {ϕ1, . . . , ϕr}, where ϕi = χRi
/||Ri||.

In each of the examples that follow, we will choose bases a and b, so that

the lattice can be represented by Z2.

5.1 Square Lattice : Γ = pg

Take σ0 to be a reflection about a. Then the subgroup pg of Affn(R) defined

by,

pg = {[n, I], [
a
2
, σ0][m, I] : n,m ∈ Z2},

is a wallpaper group. It is generated by integer translations [n, I] and a glide

reflection [a
2
, σ0] about the a-axis. It is important to note that this group

is not a semi-direct product due to the half integer translation in the glide

reflection. As a result, the theory of wavelets with composite dilations as

formulated in (1) from section 2 does not apply. A pattern representing pg

is illustrated in figure 1.

Now, take the shaded region R depicted in figure 2 as fundamental domain

and

A =


 s 0

0 t


 ,
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where A 6= I and s, t are such that Aa has odd entries. Then A is compatible

with pg. Viz.,

[0, A] [x,B][0, A−1] = [Ax,ABA−1]

= {[An, I], [
1

2
Aa, Aσ0A

−1][Am, I] : n,m ∈ Z2}.

Clearly An,Am ∈ Z2. The reflection σ0 about the a-axis is diagonal and

hence is invariant under conjugation with another diagonal. Since Aa has

odd entries, [1
2
Aa, σ0] is a glide along the a-axis. Therefore, [0, A]pg[0, A−1]

is a proper subgroup of pg with index |det A|.
Now, the normalized characteristic function ϕ of R will generate an

MRAA,pg. The condition Vj ⊂ Vj+1 for every j ∈ Z is illustrated by fig-

ure 2 for s = 2 and t = 3. The scaled tile A · R (outlined region) is tiled by

the smaller tiles from pg ·R.

Figure 1: Pattern representing

wallpaper group pg.

Figure 2: Fundamental domain R

(shaded region). Action of A on

R with s = 2 and t = 3 (outlined

region).
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5.2 Hexagonal Lattice : Γ = p6

Take Γ to be the wallpaper group p6 defined by,

p6 = Z2 o {I, ρ6, ρ
2
6, . . . , ρ

5
6},

where ρ6 is a rotation about the origin by π/3. Set,

A =


 s 0

0 s


 ,

A 6= I and s ∈ Z. Clearly the lattice is preserved by A and since every

element of GLn(R) is invariant under conjugation by A the compatibility

requirement is met.

If we use the shaded region R in figure 3 as our fundamental domain,

then ϕ = χR/||R|| does not generate an MRAA,p6. As illuatrated with s = 2,

the nesting condition Vj ⊂ Vj+1 is not satisfied since the scaled region A · R
cannot be tiled by tiles from p6 ·R, see figure 3.
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Figure 3: Pattern representing

wallpaper group p6. Fundamental

domain R (shaded region). Action

of A = diag(2, 2) on R (outlined

region).

Figure 4: Decomposition of funda-

mental domain R = R1 ∪R2.

However, if we decompose R into R1 ∪ R2 , see figure 4, we do obtain an

MRAA,p6 with FSE {χR1/||R1||, χR2/||R2||}. The scaled region A · R can be

tiled by tiles from p6 ·R1 and p6 ·R2, i.e. A ·R = R1∪· · ·∪Rr·d, where r = 2

and d = |det A| = 4.

5.3 Hexagonal Lattice : Γ = p6mm

The group p6mm is the largest wallpaper group. It is the symmetry group

of a tessellated hexagon,

p6mm = Z2 o {I, ρ6, ρ
2
6, ρ

3
6, ρ

4
6, ρ

5
6, σ0, ρ6σ0, ρ

2
6σ0, ρ

3
6σ0, ρ

4
6σ0, ρ

5
6σ0},
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where ρ6 is a rotation about the origin by π/3 and σ0 is a reflection about an

axis. Take the shaded region R in the figures below as fundamental domain.

In this case, both

A1 =


 s 0

0 s


 and A2 =


 2s −s

s s


 ,

with s ∈ Z, yield an MRAA,p6mm generated by the scaling vector ϕ =

χR/||χR||. Again the lattice is preserved by each matrix and A1 leaves the

point group invariant. The action of A2 on the point group yields the follow-

ing permutation,


 e ρ6 ρ2

6 ρ3
6 ρ4

6 ρ5
6 σ0 ρ6σ0 ρ2

6σ0 ρ3
6σ0 ρ4

6σ0 ρ5
6σ0

e ρ6 ρ2
6 ρ3

6 ρ4
6 ρ5

6 ρ6σ0 ρ2
6σ0 ρ3

6σ0 ρ4
6σ0 ρ5

6σ0 σ0


 .

As a result, both meet the compatibility requirement.

The action of A1 on R with s = 2 and s = 3 is indicated in figure 5. See

figure 6 for the action of A2 on R with s = 1 and s = 2 .
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Figure 5: Pattern representing

wallpaper group p6mm. Funda-

mental domain R (shaded region).

Action of A1 with s = 2 and s = 3

on R (outlined region).

Figure 6: Action of A2 with s = 1

and s = 2.

In each case the scaled region Ai · R can be tiled by tiles from p6mm · R
satisfying the nesting condition.

In [7], examples of Haar-type wavelets associated with p6 and p6mm are

constructed within the context of composite dilations. We chose to treat these

same examples from the crystal shifts viewpoint and using a basis chosen so

that the dilation matrices are over the integers, to provide a comparison

between the two approaches in cases where they overlap.
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6 Concluding remarks

The basic ingredients needed for the development of wavelet theory when the

group of shifts is non-translational and non-abelian, including definitions of

multiwavelets, generalized multiresolution analysis and finite scaling ensem-

bles, were introduced. The essential existence theorem for a multiwavelet

in the presence of a GMRA with a finite scaling ensemble was established

and examples illustrated Haar-type constructions for various two dimensional

crystal groups as the group of shifts. The fact that nonsymmorphic crystal

groups do not fit into the composite dilation framework provides the incen-

tive to continue to develop the theory we introduced here in parallel to the

fruitful line of research into composite dilations. It is our belief that the

accessible representation theory of crystal symmetry groups will support the

development of many of the tools for a mature wavelet analysis in this setting.

Tools such as a theory of shift-invariant subspaces of L2(Rn) for non-abelian

shift groups acting on Rn.
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