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Abstract. We consider the issue of describing all self-adjoint idempotents
(projections) in L1(G) when G is a unimodular locally compact group. The

approach is to take advantage of known facts concerning subspaces of the

Fourier-Stieltjes and Fourier algebras of G and the topology of the dual space
of G. We obtain an explicit description of any projection in L1(G) which

happens to also lie in the coefficient space of a finite direct sum of irreducible

representations. This leads to a complete description of all projections in
L1(G) for G belonging to a class of groups that includes SL2(R) and all second

countable almost connected nilpotent locally compact groups.
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1. Introduction

Let G be a unimodular locally compact group, and L1(G) denote the Banach
∗-algebra of integrable functions on G. Let M(G) denote the Banach ∗-algebra of
bounded regular Borel measures on G, and recall that the measure algebra M(G)
contains L1(G) as a closed ideal. Self-adjoint idempotents in L1(G) (respectively
M(G)) are called L1-projections (respectively projection measures). The study of
projections originated with Rudin [20] and Helson [11]. A full characterization of
idempotents of the measure algebra of a locally compact abelian group was obtained
in [4] through identifying such measures with certain subsets of the dual group.
Note that in the abelian case, idempotents of M(G) are automatically projection
measures. For nonabelian compact groups, the orthogonality relations for coeffi-
cient functions of irreducible representations show that any pure positive definite
function, properly scaled, is an L1-projection. Such a projection is strongly mini-
mal in the sense defined later. Conversely, every strongly minimal L1-projection is
just a pure positive definite coefficient function, and is associated uniquely (up to
equivalence) with a particular irreducible representation (namely the unique repre-
sentation in its “support”). Moreover, every L1-projection of a compact group is
just a finite sum of such strongly minimal projections.

The support of an L1-projection p of a locally compact group is the collection
of (equivalence classes of) all irreducible unitary representations π which satisfy
π(p) 6= 0. It turns out that an L1-projection in a compact or an abelian locally
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compact group can be understood using its support. For a noncompact unimodular
group G, it was shown in [2] and independently in [22] that, similar to the case of
a compact group, strongly minimal L1-projections are singly supported. That is,
for a strongly minimal projection p ∈ L1(G), there is a unique (up to equivalence
of representations) irreducible representation π of G such that π(p) 6= 0. Moreover,
the representation π is an open point in the dual space of G, and p is nothing but
a positive definite coefficient function of π.

To our knowledge, the first explicit construction of projections in L1(G) for a
nonunimodular G was carried out by Eymard and Terp [7] for the group of affine
transformations of any locally compact field. In [10] and [14], groups of the form

G = A o H, with A abelian, were studied. The nature of the action of H on Â
determines whether or not there are nonzero projections in L1(G). Groups of the
form AoH are often nonunimodular and, although we know how to construct many
examples of projections, we are a long way from a characterization of projections for
nonunimodular groups that is comparable to that for compact or abelian groups.

In this paper, we restrict our attention to unimodular groups G with the pur-
pose of building on the results of [2] and [22] and moving closer to a complete
description of all projections in L1(G). In particular, we study projections with
finite support in detail and show that, for many groups (precisely the unimodu-
lar second-countable type I groups), the finite support of a projection identifies
the smallest coefficient function space which contains the projection. This article
provides partial generalizations to some earlier results about projections of certain
unimodular groups. For G a connected nilpotent group, all projections in L1(G)
are explicitly described in [13]. Some more headway was made in [15] for [FC−]-
groups; that is, groups for which every conjugacy class is relatively compact. Note
that nilpotent and [FC−]-groups are unimodular.

This article is organized as follows. We collate the necessary background and
tools in Section 2. In Section 3 we prove that every L1-projection can be represented
by an element of the Fourier algebra. We then study projections that lie in certain
subspaces of the Fourier algebra, namely coefficient spaces associated with finite
sums of irreducible representations. In Theorem 3.4, we show that every such
projection is of a rather special form, i.e. it is just a finite sum of coefficient
functions, where each summand is a strongly minimal L1-projection in its own
right. This in particular proves that every one of the irreducible representations
has to be “integrable”. We use the results of [2], together with careful study of
coefficient function spaces of irreducible representations, to prove this theorem. (It
is worth mentioning that we know of no direct way to answer even a very simple
version of this question, namely when the projection is assumed to be just the sum
of coefficient functions of two inequivalent irreducible representations.) In Section
4, we study projections through their support, and show that in special cases, the
support of the projection identifies its location in the Fourier algebra.

As perhaps the most useful consequence of this study, Corollary 4.4 provides a
complete description of all projections in L1(G) when G is a unimodular, second
countable, type I locally compact group with the property that every compact open
subset of the dual of G is a finite subset of the reduced dual. This class of groups
includes SL2(R) and any almost connected nilpotent group.

We finally finish the paper with an application of projections to ∗-homomorphisms
between L1-algebras of (unimodular) locally compact groups.
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2. Notation and background

For the rest of this paper, G is a unimodular locally compact group unless other-
wise stated. The space of equivalence classes of irreducible unitary representations

of G is denoted by Ĝ. There is a natural topology on Ĝ that is not, in general,
Hausdorff (see [16]). Whenever we refer to a representation of G, we mean a weakly
continuous unitary representation. The support of a representation π, denoted by

supp(π), is the set of all representations in Ĝ which are weakly contained in π. For
the left regular representation λ of G, the support of λ is called the reduced dual

of G and is denoted by Ĝr. For a detailed accounts of the representation theory of
locally compact groups see [5] and [8].

For a representation π onG and ξ, η ∈ Hπ, we define the corresponding coefficient
function to be the function πξ,η(x) := 〈π(x)ξ, η〉, for x ∈ G. Let Fπ denote the
linear span of {πξ,η : ξ, η ∈ Hπ}. Then Fπ is a subspace of the space of bounded
continuous complex-valued functions on G.

An irreducible representation π is called integrable if there exists ξ ∈ Hπ, ξ 6= 0,
such that πξ,ξ ∈ L1(G). This is equivalent to the existence of a dense subspace H′
of Hπ such that for all ξ, η ∈ H′, the coefficient function πξ,η belongs to L1(G).
An irreducible representation π of G is said to be square-integrable if there exist
non-zero vectors ξ, η ∈ Hπ such that πξ,η ∈ L2(G). Note that every integrable
representation is square-integrable but the converse is not true. When π is a square-
integrable representation of a unimodular group, every coefficient function of π is
square-integrable. See Chapter 14 of [5] for the basic properties of square-integrable
and integrable representations of unimodular groups.

Square-integrable representations satisfy orthogonality relations similar to the
ones held for coefficient functions of irreducible representations of compact groups.
In particular, let σ =

⊕n
i=1 πi for mutually non-equivalent square-integrable rep-

resentations (πi)
n
i=1, and ξi, ξ

′
i, ηi, η

′
i ∈ Hπi for i ∈ 1, . . . , n. Then for ξ =

⊕n
i=1 ξi,

ξ′ =
⊕n

i=1 ξ
′
i, η =

⊕n
i=1 ηi, and η′ =

⊕n
i=1 η

′
i we have∫

G

〈ξ, σ(x)η〉〈ξ′, σ(x)η′〉dx =

n∑
i,j=1

∫
G

〈ξi, πi(x)ηi〉〈ξ′j , πj(x)η′j〉dx(1)

=

n∑
i=1

1

ki
〈ξi, ξ′i〉〈η′i, ηi〉

where each positive real quantity ki is called the formal dimension of πi. For such
a representation σ, Fσ has additional structure. With ξ, η, ξ′, η′ as above,

(2) σξ,η ∗ σξ′,η′ =

n∑
i=1

1

ki
〈ξi, η′i〉πi,ξ′i,ηi ∈ Fσ,

where πi,ξi,ηi = 〈πi(·)ξi, ηi〉. Using (2), we observe that if G is unimodular and σ
is a direct sum of finitely many square-integrable representations, then Fσ forms a
∗-algebra, where ∗ is the involution.

For a locally compact group G, let B(G) denote the set of all coefficient functions
generated by representations of G. Eymard first introduced B(G) for a general
locally compact group in [6]. Clearly, B(G) is an algebra with respect to the
pointwise operations. Eymard showed that B(G) is in fact a Banach algebra with
the norm defined as follows. For each u ∈ B(G), ‖u‖B(G) := inf ‖ξ‖‖η‖ where
the infimum is taken over all possibilities of representations σ of G and ξ, η ∈ Hσ
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with u(x) = 〈σ(x)ξ, η〉. The Banach algebra B(G) is called the Fourier-Stieltjes
algebra of the group G. Further, B(G) is invariant with respect to left and right
translations by elements of G.

For a representation σ of G, Fσ is a subspace of B(G) which is not necessarily
closed. The closure of Fσ with respect to the norm of B(G) is denoted by Aσ(G),
or Aσ when there is no risk of confusion. These subspaces were defined and studied
by Arsac in [1] where it was shown that

Aσ =


∞∑
j=1

σξj ,ηj : ξj , ηj ∈ Hσ,
∞∑
j=1

‖ξj‖‖ηi‖ <∞

 .

In addition, every u in Aσ can be represented as u =
∑∞
i=1 σξi,ηi in such a way that

‖u‖B(G) =

∞∑
j=1

‖ξj‖‖ηj‖.

Moreover, the subspace Aσ can be realized as a quotient of the trace class operator
algebra of Hσ, T (Hσ), through the map ψ defined as

ψ : T (Hσ) −→ Aσ, ψ(T )(x) = Tr(Tσ(x)),

for every T ∈ T (Hσ) and x ∈ G. In the special case where σ is irreducible, the above
map defines an isometry. In particular, we conclude that ‖σξ,η‖B(G) = ‖ξ‖‖η‖. In
our computations, we will use the following proposition which is merely a weaker
version of Corollaire (3.13) of [1].

Proposition 2.1. Let σ =
⊕

i∈I πi, where {πi : i ∈ I} is a collection of non-

equivalent irreducible representations of G. Then Aσ = `1-
⊕

i∈I Aπi .

If λ denotes the left regular representation of G, Aλ turns out to be a closed ideal
of B(G), and is simply denoted by A(G). The algebra A(G), called the Fourier
algebra of G, was also introduced by Eymard in [6]. In particular, Eymard proved
that each element of A(G) can be written in the form of a coefficient function of λ,
that is λf,g for some f, g ∈ L2(G).

An element p in L1(G) is called a projection if p ∗ p = p = p∗; that is, if p is
a self-adjoint idempotent in L1(G). Let PL1(G) denote the set of projections in
L1(G).

For p ∈ PL1(G), define the support of p to be S(p) := {π ∈ Ĝ : π(p) 6= 0}. For

any p ∈ PL1(G), S(p) is a compact open subset of Ĝ (see 3.3.2 and 3.3.7 of [5]), but

S(p) is not necessarily closed (see [13, Example 2]). Thus, if Ĝ has no nonempty
compact open subsets, then PL1(G) = {0}.

The set PL1(G) carries a partial order ≤ that is q ≤ p if q∗p = q (or equivalently
p ∗ q = q) for p, q ∈ PL1(G). A nonzero p ∈ PL1(G) is called a minimal projection
if for any other q ∈ PL1(G), q ≤ p implies that q is either p or 0. A projection p in
L1(G) is called strongly minimal if the left ideal L1(G) ∗ p is a minimal left ideal in
L1(G). Equivalently, for a strongly minimal projection p,

(3) p ∗ f ∗ p = αfp

where αf ∈ C, for every f ∈ L1(G). It is clear that strong minimality implies
minimality of a projection. But the following example shows that the converse is
not true.
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Example 2.2. Let G be a locally compact abelian group with a nontrivial compact
open subgroup K such that G/K is infinite and torsion free (T×Z is such a group).
Normalize Haar measure on G so that the measure of K is 1 and let p = 1K , the
characteristic function of K. Noting that p̂ is the characteristic function of the

connected set Ĝ/K in Ĝ, one sees that p is minimal but not strongly minimal.

Strongly minimal projections have been studied in [2] and [22] where they were
called “minimal”. Since in this article we study two types of minimality for pro-
jections, namely minimal and strongly minimal, we use different terminology. It
has been shown that, for unimodular groups, there is a one-to-one correspondence
between the set of equivalence classes of integrable representations and strongly
minimal projections. We will clarify the relation between a strongly minimal pro-
jection and the corresponding irreducible representation, for unimodular groups, in
Section 3.

3. Main results

Our objective for this paper is to study L1-projections of unimodular groups.
Our motivation is the result of Barnes in [2] which states that every strongly min-
imal L1-projection of a unimodular group is a coefficient function of an integrable
representation. In particular, strongly minimal projections of L1(G) lie in some Aπ
with π integrable (which implies Aπ ⊆ A(G)).

We begin this section with an analogous key observation on idempotents in
L1(G). Note that unimodularity of G guarantees that many of the significant
dense left ideals of L1(G) are (two-sided) ideals. Let us recall that an element p
of an algebra A is called an idempotent if p2 = p. The following proposition is
formerly proved in [17, Theorem 8] in a more general setting. We present the proof
here to be self-contained.

Proposition 3.1. Let G be a unimodular locally compact group and p be an idem-
potent in L1(G). Then, p ∈ A(G) ∩ Lr(G) for every 1 < r <∞.

Proof. Suppose p is a non-zero idempotent in L1(G). Let J be any one of the ideals
A(G) ∩ L1(G) or L1(G) ∩ Lr(G) for some 1 ≤ r < ∞. Since J is dense in L1(G),
there is some u ∈ J such that ‖u− p‖1 < ‖p‖−11 . Define b :=

∑∞
n=1(p− u ∗ p)∗n ∈

L1(G), where ∗n denotes the n-fold convolution. Note that b ∗ p = b. Moreover,
b ∗ (p− u ∗ p) = b− (p− u ∗ p). Therefore, u ∗ p+ (b− b ∗ (p− u ∗ p)) = p. On the
other hand, u ∗ p + (b − b ∗ (p − u ∗ p)) = u ∗ p + b ∗ u ∗ p ∈ J . This implies that
p ∈ J . �

Note that the proof of Proposition 3.1 does not work for nonunimodular locally
compact groups, as having two-sided ideals is essential for the proof.

The following gives most of [2, Theorem 1], but from a perspective more suitable
to our needs.

Proposition 3.2. Let G be a unimodular locally compact group and p a projection
in L1(G).

(i) Let π = λ(·)|L2(G)∗p. Then p ∈ Aπ.
(ii) If p is strongly minimal, then π is irreducible and integrable. Further,

p = πp,p.
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Proof. Since G is unimodular, and p∗ = p, we have that p̌ is equal to p a.e. where
p̌(s) := p(s−1) and p(s) := p(s). Proposition 3.1 tells us that p ∈ A(G) ∩ L2(G).
Hence we have

p = p ∗ p = p ∗ p̌ = 〈p, λ(·)p〉 = 〈λ(·)p, p〉,
which gives (i).

Let p be a strongly minimal projection. Let u be the element in L∞(G) which
is associated with the linear functional f 7→ αf defined in (3), i.e.

(4) p ∗ f ∗ p = (

∫
G

uf) p (for f ∈ L1(G)).

Notice that
∫
G
u(p ∗ f) =

∫
G

(p̌ ∗ u)f =
∫
G

(p ∗ u)f . So for every f ∈ L1(G),

(

∫
G

uf) p = p ∗ f ∗ p = p ∗ (p ∗ f) ∗ p = (

∫
G

u(p ∗ f)) p = (

∫
G

(p ∗ u)f) p

which implies that p ∗ u = u. Likewise u ∗ p = u. Now if (uι) is a net from Cc(G)
which is weak∗ convergent to u, then we have

u = p ∗ u ∗ p = w*- lim
ι
p ∗ uι ∗ p = lim

ι

(∫
G

uιu

)
p.

In particular α := limι

(∫
G
uιu
)

exists and u = αp. But p = p ∗ p ∗ p = α(
∫
G
pp)p,

so α = ‖p‖−22 .
Now we follow a procedure in [2]. If σ is any representation for which σ(p) 6= 0,

find ξ in Hσ such that σ(p)ξ = ξ and ‖ξ‖2 = α−1. Interchanging roles of p and p
in (4), we have for f in L1(G) that

‖σ(f)ξ‖2 = 〈σ(p ∗ f∗ ∗ f ∗ p)ξ, ξ〉 = α‖ξ‖2
∫
G

(f∗ ∗ f) p = 〈f∗ ∗ f ∗ p, p〉 = ‖f ∗ p‖22

where the fact that p = πp,p was used in the penultimate equality. Hence U :
L1(G) ∗ p→ Hσ given by U(f ∗ p) = σ(f)ξ extends to an isometry from L2(G) ∗ p
to Hσ which intertwines π and σ. In particular with choice of irreducible σ, we
see that π is necessarily irreducible as well. Since p = πp,p is integrable, π is an
integrable representation. �

The following remark gives the converse to (ii), above.

Remark. Let G be a unimodular locally compact group and π be an integrable
irreducible representation of G. Then there is a dense subspace H′π of Hπ consisting
of elements ξ for which πξ,ξ is a multiple of a projection pξ in L1(G). Furthermore,
by the calculation of [22, Lemma 2.2], each pξ is strongly minimal.

The preceding propositions give a description of strongly minimal projections. In
what follows, we will study projections in L1(G) given that they belong to certain
subspaces of the Fourier algebra. We begin with the following lemma which says
that, similar to the compact case, Aπ for a square-integrable representation π, is a
Banach ∗-algebra with respect to convolution.

Lemma 3.3. Let σ =
⊕n

i=1 πi for square-integrable representations πi of a uni-

modular locally compact group G. Then Aσ ⊆ L2(G) and
√
kσ‖ · ‖2 ≤ ‖ · ‖B(G)

on Aσ where kσ = min{kπi : i = 1, . . . , n}. Furthermore, (Aσ, k
−1
σ ‖ · ‖B(G)) is a

Banach ∗-algebra when it is equipped with convolution.
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Proof. By orthogonality relations stated in (1), for each ξ =
⊕n

i=1 ξi, η =
⊕n

i=1 ηi ∈⊕n
i=1Hπi

, σξ,η ∈ L2(G),

‖σξ,η‖22 =

n∑
i=1

1

kπi

‖ξi‖2‖ηi‖2 ≤
1

kσ

(
n∑
i=1

‖ξi‖‖ηi‖

)2

≤ 1

kσ
‖σξ,η‖2B(G),

where we used Proposition 2.1 in the last inequality. Let u =
∑∞
k=1 σξk,ηk ∈ Aσ be

represented such that ‖u‖B(G) =
∑∞
k=1 ‖ξk‖‖ηk‖. Then,

‖u‖2 ≤
∞∑
k=1

‖σξk,ηk‖2 ≤
∞∑
k=1

1√
kσ
‖σξk,ηk‖B(G) ≤

1√
kσ

∞∑
k=1

‖ξk‖‖ηk‖ =
1√
kσ
‖u‖B(G).

Therefore, Aσ ⊆ L2(G). Moreover, since G is unimodular, for every u, v ∈ Aσ,
their convolution is defined, and u ∗ v = 〈λ(·)v̌, u〉. Thus,

‖u ∗ v‖B(G) ≤ ‖u‖2‖v̌‖2 ≤ k−1σ ‖u‖B(G)‖v‖B(G).

This completes the proof. �

The following is a partial generalization of [13, Theorem 3], where conditions on
the set S(p) were assumed. We take the perspective of assuming p itself consists of
certain types of matrix coefficients.

Theorem 3.4. Let G be a unimodular locally compact group. Let π1, . . . , πn be a

family of pairwise inequivalent members of Ĝ and σ =
⊕n

i=1 πi. If p in L1(G)∩Aσ
is a projection which belongs to no Aσ′ for any proper subrepresentation σ′ of σ,
then

(i) p =
∑n
i=1 pi where each pi is a projection in L1(G) ∩ Aπi

and pi ∗ pi′ = 0
for i 6= i′;

(ii) each pi =
∑ri
j=1 pij where each pij is strongly minimal and pij ∗ pij′ = 0 if

j 6= j′;
(iii) each πi is integrable; and
(iv) S(p) = {π1, . . . , πn}.

Proof. First note that Aσ∩A(G) 6= {0}, since p ∈ L1(G)∩A(G) by Proposition 3.1.
Thanks to [1, (3.12)] there is a subrepresentation σ′ of σ for which Aσ′ = Aσ∩A(G),
but then p ∈ Aσ′ , and our assumptions ensure that σ′ = σ. In particular, for each
i, Aπi

⊆ Aσ ⊆ A(G), and hence by [5, 14.3.1] each πi is square-integrable. Thus
by Lemma 3.3, (Aσ, k

−1
σ ‖ · ‖B(G)) is an involutive Banach algebra when equipped

with convolution.
Recall that A∗σ

∼= V Nσ = `∞-
⊕n

i=1 B(Hπi
). We have the usual duality T (H)∗ ∼=

B(H) given by (η ⊗ ξ∗, T ) 7→ Tr(ξ ⊗ η∗T ) = 〈Tξ, η〉, where η ⊗ ξ∗ is the rank-one
operator on H given by ζ 7→ 〈ξ, ζ〉η. Combining these facts gives us an isometric
Banach space isomorphism

φ : Aσ → T = `1-

n⊕
i=1

T (Hπi
),

n∑
i=1

∞∑
j=1

πi,ξij ,ηij 7→
n∑
i=1

∞∑
j=1

ηij ⊗ ξ
∗
ij ,

where πi,ξij ,ηij = 〈πi(·)ξij , ηij〉. Consider the new mapping Φ as follows.

Φ : (Aσ, k
−1
σ ‖ · ‖B(G))→ T ,

n∑
i=1

∞∑
j=1

πi,ξij ,ηij 7→
n∑
i=1

1

kπi

∞∑
j=1

ηij ⊗ ξ
∗
ij ,
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where kσ is the constant from the preceding lemma. It is straightforward to check
that Φ is a continuous bijective algebra homomorphism when the domain is endowed
with the convolution product. Indeed, one checks that Φ is a homomorphism on
the dense subspace Fσ of finite sums of matrix coefficients of σ, and observes that
Φ(Fσ) is the space of finite rank operators, which is dense in T .

Now we let A = p ∗ L1(G) ∗ p. Since L1(G) ∩ Aσ is a left ideal in L1(G), A
is an involutive convolution algebra with unit p, and A ⊆ Aσ. Hence Φ(A) is a
unital involutive subalgebra of T , whence of the algebra of compact operators K =
c0-
⊕n

i=1K(Hπi
). So if P = Φ(p), P is a compact idempotent and thus it is finite

dimensional. Moreover, we have that Φ(A) ⊂ PKP which is a finite dimensional ∗-
algebra, hence semisimple and thus by Wedderburn’s theorem isomorphic to a finite

direct sum of full matrix algebras
⊕N

j=1Mrj (C). Let {Ejkl}
rj
k,l=1 be the matrix

units of Mrj (C). Note that for each j ∈ 1, . . . , N and k ∈ 1, . . . , rj , E
j
kk is a

strongly minimal projection in
⊕N

i=1Mri(C), as Ejkk(
⊕N

i=1Mri(C))Ejkk = CEjkk.

Hence, pjk := Φ−1(Ejkk) is a strongly minimal projection in A with pjk ≤ p, and
subsequently for each f ∈ L1(G) we have

pjk ∗ f ∗ pjk = pjk ∗ (p ∗ f ∗ p) ∗ pjk ∈ A.

We now appeal to Proposition 3.2, and observe that pjk must be a coefficient
function of an integrable representation. On the other hand pjk ∈ Aσ, and therefore
pjk is a coefficient function of πi for some i. In particular, πi is integrable.

In the remaining, we prove that N = n. In what follows, we assume that πi
belongs to {π1, . . . , πn}. We show the following two facts:

(a) If k 6= k′ and pjk ∈ Aπi
then pjk′ ∈ Aπi

.
(b) If j 6= j′ then pjk and pj′l do not belong to the same Aπi

.

To prove (a), fix j and k 6= k′. Towards a contradiction, assume that pjk and
pjk′ are coefficient functions of representations πi and πi′ respectively, with i 6= i′.
Since Aπi

∗ Aπi′ = {0}, for every f ∈ L1(G), we have pjk ∗ f ∗ pjk′ = 0 as f ∗ pjk′
still belongs to Aπi′ . But this is a contradiction, as for f = Φ−1(Ejkk′) we get

pjk ∗ f ∗ pjk′ = Φ−1(EjkkE
j
kk′E

j
k′k′) = f 6= 0.

For (b), recall that for each f ∈ L1(G), pjk∗f∗pj′l = pjk∗(p∗f∗p)∗pj′l = 0, since
Φ is a homomorphism. Now towards a contradiction, suppose that pjk = πi,ξ,ξ and
pj′l = πi,η,η for some ξ, η ∈ Hπi

. Since πi is irreducible, there is some g ∈ L1(G)
such that 〈πi(g)η, ξ〉 6= 0. Therefore,

pjk ∗ g ∗ pj′l = πi,ξ,ξ ∗ πi,η,πi(g)η = 〈ξ, πi(g)η〉πi,η,ξ 6= 0,

which is a contradiction. So with pi :=
∑ri
j=1 pij , properties (i) and (ii) hold.

To prove (iv), note that by Lemma 1.1 of [22], the support of a strongly minimal
projection is a singleton. In fact, for a nonzero L1-projection of the form πξ,ξ, we

have S(πξ,ξ) = {π}, since 〈π(πξ,ξ)ξ, ξ〉 = ‖πξ,ξ‖22 > 0. Thus for every i, S(pi) =
{πi}, since pi is a finite sum of strongly minimal projections, each of which is a
coefficient function of πi. This fact, together with the orthogonality relations for
square-integrable representations, imply that S(p) = {π1, . . . , πn}. �

Corollary 3.5. Let π be an irreducible representation of a unimodular locally com-
pact group G, and p ∈ Aπ be an L1-projection. Then p is a minimal projection if
and only if it is strongly minimal.
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Proof. By Theorem 3.4, a projection p in Aπ can be written as a finite sum of
strongly minimal projections of the form πξ,ξ. Therefore, p is minimal if and only
if it is strongly minimal. �

4. Support of projections

Recall that the support of an L1-projection p, denoted by S(p), is the collection
of all (equivalence classes of) irreducible representations π of G such that π(p) 6= 0.
In this section, we show that the support sheds some light on the structure of the
projection itself. This is evident in the abelian case, where the Fourier transform
of a projection is just the characteristic function of the conjugate of its support.
Recall that the support of a projection is always open and compact in the Fell
topology of the dual. For compact groups, the support of a projection is the finite
set of irreducible representations which are used to construct the projection. We
study similar cases (projections with finite support) for general unimodular groups
in more detail.

We start this section by a general observation linking the support of a projection
and the support of its GNS representation.

Proposition 4.1. Let G be unimodular, second countable and type I, and p be a

projection in L1(G). Then S(p) ∩ Ĝr is dense in suppπp.

Proof. We have the following Plancherel picture of the left and right regular repre-

sentations (see [8, Section 7.5]). There is a Borel subset B of Ĝ which is dense in Ĝr
and a measure µ on Ĝ which is carried by B for which we have unitary equivalences

λ ∼=
∫ ⊕
B

I ⊗ π dµ(π) and ρ ∼=
∫ ⊕
B

π ⊗ I dµ(π)

on

L2(G) ∼=
∫ ⊕
B

Hπ ⊗Hπ dµ(π).

The reader may refer to [1, 8, 5] for the theory of direct integrals of representations.
Note that the aforementioned presentation is slightly different from (but equivalent
to) the one in [5, 18.8.1]. Proposition 3.2 shows that the representation πp =
λ(·)|L2(G)∗p on the Hilbert space L2(G) ∗ p with the cyclic vector p is the Gelfand-
Naimark cyclic representation of the positive-type element p. Observe, then, that

ρ(p) =

∫ ⊕
B

π(p)⊗ I dµ(π),

so

L2(G) ∗ p = ρ(p)L2(G) =

∫ ⊕
B

π(p)Hπ ⊗Hπ dµ(π)

=

∫ ⊕
{π∈B:π(p) 6=0}

π(p)Hπ ⊗Hπ dµ(π).(5)

By [5, 8.6.8 and 8.6.9], it follows that

suppπp = cl{π ∈ B : π(p) 6= 0}

where we have used clS to denote the closure of S, so as not to conflict with notation

of conjugation. It is clear that S(p) ∩ Ĝr contains {π ∈ B : π(p) 6= 0}, while also
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that (S(p) ∩ Ĝr) ∩ (Ĝr \ cl{π ∈ B : π(p) 6= 0}) = ∅. Interchanging p and p, we
obtain the desired result. �

The following example shows that for a totally disconnected algebraic group, the
support of an L1-projection does not necessarily lie in the reduced dual. However,
we know of no connected, unimodular, second countable and type I group G for

which the support of an L1-projection does not lie in Ĝr.

Example 4.2. Let G = SLn(Qp) for (n ≥ 2). Then G is type I, as it is a reductive
p-adic group (see [3]). Note that G has an open compact subgroup K = SLn(Op).
Consider the projection 1K in L1(G), and note that for the trivial character 1 on

G, 1(1K) 6= 0. But 1 /∈ Ĝr, as G is not amenable.

Proposition 4.1 tells us that

πp =

∫ ⊕
B∩S(p)

I ⊗ πdµ(π).

In a particular case, when S(p) ∩ Ĝr is finite, we can describe the projection as in
the following theorem.

Theorem 4.3. Let G be unimodular, second countable and type I, and p be a

projection in L1(G). If S(p)∩ Ĝr = {π1, . . . , πn}, then p ∈ Aσ where σ =
⊕n

i=1 πi,
and S(p) = {π1, . . . , πn}.

Proof. Note that by (5), the measure representing πp is supported on {π1, . . . , πn};
hence, the Plancherel measure µ admits each πi as an atom. Then, letting σ =⊕n

i=1 πi, Proposition 3.2 shows that p ∈ Aσ. It is easy to see that for any proper
subrepresentation σ′ of σ, p 6∈ Aσ′ . This follows from the orthogonality relations
for square-integrable representations πi and the fact that the support of p contains
{π1, . . . , πn}. �

Corollary 4.4. Let G be a unimodular, second countable, type I locally compact

group with the property that every compact open subset of Ĝ is a finite subset of Ĝr.
Let p be a projection in L1(G). Then, there exist mutually inequivalent π1, · · · , πn ∈
Ĝ such that

(i) p =
∑n
i=1 pi where each pi is a projection in L1(G) ∩ Aπi and pi ∗ pi′ = 0

for i 6= i′;
(ii) each pi =

∑ri
j=1 pij where each pij is strongly minimal and pij ∗ pij′ = 0 if

j 6= j′;
(iii) each πi is integrable; and
(iv) S(p) = {π1, . . . , πn}.

Proof. Under these hypotheses, the compact open set S(p) must be a finite subset

of Ĝr. Now, combine Theorem 3.4 with Theorem 4.3. �

Remark. In the second countable case, Corollary 4.4 generalizes [13, Theorem 4]
since any almost connected nilpotent group is Type I (see [18, page 79] or [19,
Section 12.6.30]) and unimodular. It also applies to SL2(R) which is Type I and

unimodular. There is a clear description of the topology of ŜL2(R) on pages 246-

248 of [8] from which one can check that any compact open subset of ŜL2(R) is
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finite. No noncompact property (T) group enjoys this property; indeed consider
the trivial representation {1}.

Remark. The referee has pointed out that the requirement that G be second
countable in Theorem 4.3 and Corollary 4.4 may not be a major restriction because
the following process can be applied in any particular case. If G is a unimodular
type I locally compact group and p is a nonzero projection in L1(G), then there is a
σ-compact open subgroup H of G which supports p. By Proposition 3.1, p ∈ C0(H)
and thus is uniformly continuous. So, for each n ∈ N there is a neighbourhood Un
of the identity in H so that p moves by less than 1/n in the supremum norm if it
is right or left translated by elements of Un. By the theorem of Kakutani-Kodaira
(see [12, 8.7]), there is a compact normal subgroup K of H contained in all the Un
so that H/K is second countable. Then p will be constant on cosets of K. The
passage from G to H/K maintains the unimodular property and the property of
being type I (see [19, Section 12.6.30] again). What remains to be done is to verify

the property that every compact open subset of Ĝ is a finite subset of Ĝr carries
over to H/K. In any particular case, this can likely be checked and an explicit
description of p obtained. However, general inheritance of the finiteness property

for compact open subsets of Ĝ remains to be explored.

5. Application to homomorphisms of group algebras

Let p be a projection in L1(G). Following [21], define the set

Mp := {µ ∈M(G) : µ∗ ∗ µ = µ ∗ µ∗ = p and p ∗ µ = µ}.

We shall call this the intrinsic unitary group at p. Note that since L1(G) is an
ideal in M(G), we see, in fact, that Mp ⊆ L1(G). One can equip Mp with the
topology σ(L1(G), C0(G)) restricted to Mp. With convolution product, identity p,
and inverses f−1 := f∗, Mp is a semi-topological group with continuous inversion.

Let us make the assumption that G is a unimodular, second countable, type

I group, for which every compact open subset is a finite subset of Ĝr. Then by
Corollary 4.4, every L1-projection p admits the form

(6) p =

n∑
i=1

pi and pi =

ri∑
j=1

kπi
π
i,ξ

(i)
j ,ξ

(i)
j

where kπi
> 0 is the formal dimension of πi, and ξ

(i)
1 , . . . , ξ

(i)
ri are unit vectors in

Hπi
. For notational convenience, we define u ·pi, when u is a unitary matrix of size

ri, to be u · pi =
∑ri
k,`=1 uk,`kπi

π
i,ξ

(i)
k ,ξ

(i)
`

Proposition 5.1. With the assumptions given above, each intrinsic unitary group
in L1(G) is of the form of

Mp =

{
n∑
i=1

ui · pi : ui ∈ U(ri)

}
∼=

n∏
i=1

U(ri)

when p is a projection in L1(G) with p =
∑n
i=1 pi as in (6), where ri ∈ N and U(ri)

is the group ri × ri unitary matrices, for 1 ≤ i ≤ n. .

Proof. We saw in the proof of Theorem 3.4, that a direct sum of matrix alge-
bras

⊕n
i=1Mri(C) is ∗-isomorphic to p ∗L1(G) ∗ p, with the isomorphism given by
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(ai)
n
i=1 7→

∑n
i=1

∑ri
k,`=1 ak,`kπi

π
i,ξ

(i)
k ,ξ

(i)
`

. The structure of the unitary group follows

immediately. �

The value of the above result lies in its application to the problem of constructing
homomorphisms from L1(F ) to L1(G), where F is another locally compact group,
as given in [21]. Let p be given as in (6), and Mp as in Proposition 5.1. Given any
continuous homomorphism φ : F →

∏n
i=1 U(di), we can render a ∗-homomorphism

Φp : L1(F )→ L1(G) by

(7) Φp(f) =

n∑
i=1

∫
F

f(s)φ(s)i · pi ds.

We can use this to construct non-trivial homomorphisms form L1(F ) to L1(G)
where there exists no non-trivial homomorphisms form F to G. For example we
may let F = SU(n), and let G = SL2(R), the reduced Heisenberg group Hr, or
any finite group admitting an irreducible representation of dimension at least n.
Notice that if F and G are abelian and G is compact then each di = 1, and the

∗-homomorphism Φp corresponds to the piecewise affine map Ĝ→ F̂ whose domain
is {π1, . . . , πn} and is given by πi 7→ φi. In the case that G is nonabelian and some
di > 1, then ‖p‖1 > 1 and Φp is necessarily non-contractive; compare with [9].

Let us close with a modest characterization of homomorphisms described above.

Proposition 5.2. Let G satisfy the conditions of Corollary 4.4 and F be any locally
compact group. A ∗-homomorphism Φ : L1(F )→ L1(G) is of the form Φ = Φp, as
in (7), if and only if ker Φ is a modular ideal of L1(F ).

Proof. If Φ = Φp, as in (7), then Φ(L1(F )) ⊆ p ∗ L1(G) ∗ p. As in the proof of
Theorem 3.4, we see that Φ(L1(F )) is isomorphic to a ∗-subalgebra of a direct sum of
full matrix algebras, and hence is unital, whence ker Φ is a modular ideal of L1(F ).
Coversely, if L1(F )/ ker Φ admits an identity, q + ker Φ, then q∗ + ker Φ is also the
identity so p = Φ(q) is a projection in L1(G). Furthermore, Φ(L1(F )) ⊆ p∗L1(G)∗p.
Hence by the method of proof of Theorem 3.8 of [21], Φ corresponds to a bounded
homomorphism ΦM : M(F )→ p∗M(G)∗p = p∗L1(G)∗p and hence to a continuous
homomorphism φ : F →Mp, which, in turn, gives the form Φ = Φp, as in (7). �
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