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Projections in L!-algebras and tight frames

Eckart Schulz and Keith F. Taylor

ABSTRACT. Any invertible n X n-matrix acting on R"™ admits a tight frame
generator if its determinant is not 1 or -1. However, a tight frame generator
with some degree of smoothness exists if and only if the matrix or its inverse
is expansive. These latter properties are also shown to be equivalent to rep-
resentation theoretic properties of a naturally associated semi-direct product

group

1. Introduction

In this note we provide an investigation of the connections between projections
in L}(G), for a locally compact group G and the existence of tight frames with some
degree of smoothness. To keep the discussion focussed and concise, we will study
an explicit class of examples; semi-direct product groups formed by the action of
the integers Z on R™ through the powers of an invertible matrix A and tight frames
associated with A as a dilation matrix. In section 2, we present our main theorem
which establishes direct connections.

We begin by introducing a general notion of a tight frame following the spirit
of [1], where even more general concepts are studied. Often frames in Hilbert space
are considered as discretely parametrized, but it is useful, and easy, to expand the
concept to include parametrization by a measure space.

Let H be a Hilbert space,-(€2,m) a measure space and w — 7}, a measurable
map of 2 into H. We call {n,, : w € Q} a (normalized) tight frame in H if, for any
€N,

(L1) lel? = /Q (&m0 [Pdm(w).

When {7, : w € 2} is a tight frame in H, any vector £ € H can be recovered from
the coefficients, {(£,n,) : w € }, via

(12) £ = /ﬂ (&, momodm(w),

with weak convergence of the integral (see [1]).
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For a locally compact group G, denote the left Haar integral of a function f on
G by [ f(z)dz. Let L*(G) denote the usual Banach space of absolutely integrable
complex-valued functions on G. For f,g € L}(G), the convolution f * g is defined
by

(13) frglz) = /G FW)gy z)dy,

for all z € G. With convolution as product, L*(G) is a Banach algebra. Moreover,
L*(G) carries the natural involution f — f*, where f*(z) = A(z~!)f(z~1), for all
z € G. Here A denotes the modular function of G. We refer to [4] for these and
other basic facts of harmonic analysis on locally compact groups.

Any continuous unitary representation 7= of G can be integrated to form a
*-representation of L'(G). That is, for f € LY(G),

(1.4) ()€, m) = /G f(2)(m ()€, mydz,

for all €,n € H,.

Let G denote the set of equivalence classes of irreducible unitary representations
of G, equipped with the Mackey-Fell topology (see [3], 18.1).

A function f € L*(G) is called a projection if f is a self-adjoint idempotent
(f = f* = f*f) If £is a faithful family of +representations of L}(G) and
f € LY(G), then f is a projection if and only if 7(f) is an orthogonal projection on
the Hilbert space of m, for all 7 € £. If f is a projection in L*(G), let

(1.5) s(f) ={r € G:n(f) # 0}.

It follows from (3], 3.3.2 and 3.3.7, that s(f) is a compact open subset of G. If f
is a non-zero projection, then s(f) is non-empty. (Note that G need not be Tb, so
compact subsets need not be closed.) Thus, if G is a group for which G has no non-
empty compact open subsets, then there are no non-zero projections in L(G). This
fact was used in [5] and [6] to study the existence and construction of projections
in certain semi-direct product groups.

We now define the class of groups that is our main focus in this article. This
class is relevant to the theory of tight frames and wavelet analysis as groups in the
class are composed of dilations and translations of R™. It is also close enough to
the class of groups studied in [5], that the techniques of constructing projections,
when they exist, can be adapted from [5].

Let n be a positive integer and let A € GL,(R), the group of invertible n x n
real matrices. We consider R™ as consisting of column vectors. For k € Z and
x € R", let [k, z] denote the affine transformation given by

(1.6) [k, z]z = A"z + 2),
for all z € R™. Calculating the composition of [k, z] and [¢, y] gives

(1.7) kx|t y] = [k+ ¢, Az + 4]

This defines a group product on Z x R™ with the group inverse given by [k, x|t =

[—k,—A*z]. The resulting group is actually a semi-direct product of Z with R”,
which we will denote as G4 to emphasize how much its nature depends on the
matrix 4.
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There is a natural unitary representation p of G4 on the Hilbert space L?(R™)
that arises from the defining action of G4 on R™ as affine transformations. For
g € L?(R™) and [k,z] € G4, let

pl(k,x))g(z) = 87*g(lk,x] ' 2)
(1.8)
=§"*2g(A %z — ),

for all z € R™, where § = |det A|. The factor of §7%/2 in (1.8) is 1equired to make
pl(k, z]) unitary.

For a fixed w € L?(R"), we use p to move w around. Let wy g, for [k, ] € G4,
be defined by

(1.9) wiz = p([k, @ljw

Many of the fundamental questions in wavelet analysis involve the existence, and
construction, of w such that {wgg : k € Z,x € T'}, for an appropriate subset I' of
R™, forms a tight frame (or orthonormal basis) in L2(R™) under various conditions
on the matrix A. Here, we restrict our attention to I' = R™ and the existence of a
w such that {wy g : k € Z,z € R"} forms a tight frame. We use the product of
counting measure on Z and Lebesgue measure on R™ as the product measure on
the parameter space Z x R™. This happens to coincide with left Haar measure on
Ga.

DEFINITION 1 1. We will call w € L2(R"™) a tight frame generator for A (TFG4)
if

(110) ol = Y [ 1o una)d

k=—oc0
for all g € L2(R™).

The easiest way to check that (1.10) holds for a given w is to go to the Fourier

transform. It is convenient to let R denote {v = (y1,%2, -+ sn) : Y1, V25 - - -»Vn €
R} and, for g € L}(R"),

(11) a0 = [ gty Wy,

for all v € R™. Then g — § can be extended to a Hilbert space isomorphism of
L?(R™) onto L?(R™). A direct calculation, using the standard properties of the
Fourier transform, shows that, for w,g € L?(R™),

(112) [ Mo unaife = [ laer)Plitvat)Pay

Summing (1.12) over k € Z and noting that (1.10) must hold for all g € L*(R) in
order that w be a TFG 4, we get a variation on one of the common conditions in
the theory of frames and wavelets.

PROPOSITION 12. Let A € GL,(R) and w € L?(R™). Then w is a TFGy if
and only if

(1.13) > (vARP =1,

k=—oc0
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for almost every v € R

For o € R™, the A-orbit of v is {yA* : k € Z}. For a TFG4 w, the function
k — w(vAF) is a unit vector in £2(Z) for almost all 4 This is the source of the
importance played by the structure of the A-orbits in R™. Using that structure,
we showed in [8] that a TFGy4 exists in L2(R™) if and only if § # 1. A much
more general result on the existence of tight frame generators has since appeared
in [7]. On the other hand, condition (1.13) also appears in [5] and [6] as part of
the definition of a projection generating function. We will specialize the definition
in [6] to G4, using the realization of semi-direct products as in this note. To
simplify the formulation, recall that A(R") denotes the Fourier algebra of R™ and
for, n € A(R™), nV denotes the g € L'(R™) such that § = 7 (then (7l any = llgll)-

Moreover, for a function & : R™ — C, let & (v) = €&(vAF), forally e R™ k€ Z.

DEFINITION 1.3. A function & : R — C is called a projection generating
function relative to the matrix A (PGF,) if it has the following properties:

(1) The pointwise product £,€ € A(R™), for all k € Z.
(i) Z 5k/2”§k5||,4(11‘{n) <0

k=—o00

(i) D [E(vA")? =1, for all v € R"\ {0}

k=—o0

If € is a PGF 4, then define a function feon Gy by

(1.14) fe(lk,2]) = 672 (6 48)V (=),
for all [k,z] € Ga4. It follows from Theorem 1.2 of [6] that fe is & projection in
LY(G,).

Comparing condition (iii) of a PGF 4 with (1.13), we see that, if £ € L2(R™) is
a PGF 4, then w = &Y is a TFG 4 in L?(R"). Conversely, one might hope to start
with a TFG4 w and check whether w0 is a PGF4. We will see, however, that the
three conditions for a PGF,4 cannot be simultaneously achieved unless A acts on
R™ in a particular manner.

2. Main theorem

It is standard practice in multidimensional wavelet analysis to assume that the
dilation matrix is expansive. Partly this fits the intuitive concept of dilation, but
it is also an essential component of many of the proofs in the area. The theorem
below illustrates the fundamental significance of this assumption.

DEFINITION 2.1. A matrix A € GL,(R) is called expansive if each eigenvalue
of A has absolute value greater than 1.

If either A or A™! is expansive, then, for any vy € R® \ {0}, the A-orbit of
diverges to co at one end of Z and converges to 0 at the other end. It is exactly this
property of the orbit space that permits the existence of smooth functions satisfying
(iii) of 1.2. A function ¢ on R™ is said to have compact support if there exists a
compact set K C R™ such that ¢(y) = 0, for all yeR"\ K. Let C(R™) denote
the space of infinitely differentiable complex-valued functions on R™ of compact
support.
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THEOREM 2.2. Let A € GL,(R). The following are equivalent:

(a) Either A or A~ is ezpansive.

(b) There exists a TFG4 w such that ¥ € C (R™).

(c) There exists o TFG4 w such that W has compact support
(d) There exists a non-zero projection in L*(G a).

(e) There exists a non-empty compact open subset of Ga.

PROOF. (a) = (b) This is a modification of the proof of Theorem 2.2 of [5].
Since it is the key to understanding to construction of projections, we provide the
details here. To be definite, assume that A is expansive.

Fix any norm on R™ and compute the norm of matrices as operators on R™
with this norm Let § = {y € R* : 1 < ||¥|| < ||A||}. For any v € R™, v # 0
implies kli)r_noo |¥A*|| = 0 and kli_}n;o |vA®|| = co. Thus, there exists a ko € Z such

that [|yAF~1|| < 1 and ||yA*e| > 1. Then yA¥ € S. Thus, every non-zero orbit
in R™ intersects the annulus S. Let 0 < € < 1 be fixed and let

(2.1) Se={yeR":1—e< || <[ Al +€}-

Let ¢ € C’go(]f{n) be such that ¢(~) > 0, for all v € Rn, 6(7) =0, if v ¢ S., and
¢(y) > 1, for all v € S. Define

(2:2) o)=Y le(vAF)P,

k=—o0

for all v € R™ \ {0}. Since yA* € S, for only finitely many k, the sum in (2.2) is
locally finite. Since yA¥ € S for at least one k € Z, o(y) > 1, for any v € R*\ {0}.
Define £ on R" by

o(y)~Y 1
(2.3) () = { o(v) E)’Y) 12 : é z ig

for all v € R, Then £ € C°(R™) and there exists a w € L?(R™) such that @& = £.
By (2.2) and (2.3), Y |@(yA")|® =1, for all ¥ € R™\ {0} and w is a TFG4 by

k=—o00
Proposition 1.

(b) = (¢} Obvious.

(c) = (a) Let w € L*(R™) be a TFG4 such that 1 can be represented by an,
everywhere defined, function of compact support. Let K C R™ be a compact set
such that @(y) = 0, for all v € R* \ K

Suppose A has two eigenvalues A\; and Ag such that [A;] > 1 and A2 < L.
Let V; denote corresponding minimal invariant subspaces for A; that is, V; is an
eigenspace for A if )\; is real, or a two-dimensional subspace on which A acts by
rotation and scaling if \; is complex. Endow each of these subspaces with a norm
such that [|v,A%| = |Ni||lv:ll, for all 4; € Vi, i = 1,2. Further, let V3 be the
invariant subspace complementing V; and V; that is, each v € R™ has a unique
decomposition v = v, + v, + 3 with v, € V;. Endow V3 with any norm. Define a

particular norm || - || on R™ by

(2.4) 7l = max{[lv;]l : 1 <7< 3}
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and let M = sup{||v|| : v € K} + 1. Now if v € R™ is any vector with vl = M
and ||v,]| > M then for k € Z,

(2.5) Iy AR = max{ M ¥yl Dal* vl sl 3> M,

since |\1|* > 1,if k > 0, and [Az[* > 1, if k < 0. Thus, w(vA*) = 0, for all k € Z
and all such v, so that w could not be a TFG 4.

On the other hand, if A has an eigenvalue A\ with |A] =1, then we choose V; to
be a corresponding minimal invariant subspace, and V5 its complementary invariant
subspace. With norm [|v]| = max{[[v,[l, [|v2ll} for v = v, + 75, v; € Vi, and M
as above, let v be an arbitrary vector with ||y, || > M. Then w(yA¥) = 0, for all
k € Z and all such ~, so that w could not be a TFG 4.

Thus, if w is a TFG 4 such that 1 has compact support, then all the eigenvalues
of A must lie on the same side of the unit circle in C. That is, either 4 or A1
must be expansive

(b) = (d) If (b) holds, then (a) also holds and our proof of (a) = (b) shows that
a TFG4, w, may be chosen so that @ € C°(R") and is supported on an annulus
Se as defined in (2.1). Since 4 or AL is expansive, there exists a positive integer
N such that if k € Z and |k| > N, then

(2.6) W(yAF)i(y) = 0, for all v € R,

For any k € Z, v — w(vA*)@(v) is a function in C°(R™). Thus, there exits a
gk € LY(R™) so that gi(v) = w(vAF)d(y), for all v € R* By (2.6, g» = 0 if
k>N

Therefore, { = b satisfies properties (i) and (ii) of a projection generating
function. Since w is a TFG 4, property (iii) is also satisfied. Thus, @ is a PGF4
and fy, as defined in (1.14), is a non-zero projection in LYG,).

(d) = (e) As remarked earlier, if f is a non-zero projection in L*(G4), then
s(f) is a non-empty compact open subset of G 4.

(e) = (a) This is a minor modification of the proof of [5], 1.3 and 1.7 O

We conclude with a few remarks.

The construction in the proof of (a) = (b) of 2.2 provides a method for gener-
ating PGF gs. :

If P(R") denotes the set of all PGF4s on R and L(G4)P denotes the set
of all projections in L'(G4), the map ¢ — f¢ from P(R™) into L}(G4)F is not
one-to-one. To illustrate this, let A = diag(2,2, ..,2), the dilation by 2 matrix.
Then the non-zero A-orbits in R? lie on rays from the origin. If ¢ € P(R”) and ¢ is
any unit circle valued C*°-function on the unit sphere in R”, with respect to any
smooth norm, then define

27) 7o) = c (i”»y) )

Iy
for v € R" \ {0} and n(0) = 0. Then f; = f,.
If A is an exponential (4 = exp(B) for some n x n real matrix B) and, thus,
A? is defined for all t € R, then one can form theA semidirect product of R acting
on R", Hy say. That is, Hy = {[t,z] : t € R, € R"} with product

(2.8) t,z][s,y] = [t + 5, Az +y).
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Projections in L'(H4) were studied in [5]. On the other hand, w € L?(R") is called
a continuous tight frame generator for A (CTFGy,) if

29) ol = [ [ V.2 dade,

for all g € L2(R™). Compare this with (1.10). Here
(2.10) wy () = 6 WAz ~ z),

for all z € R*, t € R, £ € R*. In analogy with Theorem 2.2, one can prove that
the following are equivalent:

(1

(a) Either A or A™! is expansive

(b) There exists a CTFG4 w such that w € C(R™).

(c) There exists a CTFG4 w such that @ has compact support.
(d) There exists a non-zero projection in L*(Hy).

(e) There exists a non-empty compact open subset of Hy.
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