
ar
X

iv
:1

71
0.

07
34

5v
1

 [
qu

an
t-

ph
]

 1
9

O
ct

 2
01

7

Automated optimization of large quantum

circuits with continuous parameters

Yunseong Nam,1,2,3 Neil J. Ross,1,2,4 Yuan Su,1,2,5

Andrew M. Childs,1,2,5 and Dmitri Maslov1,2,6

1 Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA
2 Joint Center for Quantum Information and Computer Science, University of Maryland,

College Park, MD 20742, USA
3 IonQ Inc., College Park, MD 20740, USA

4 Department of Mathematics and Statistics, Dalhousie University, Halifax, NS B3H 4R2, Canada
5 Department of Computer Science, University of Maryland, College Park, MD 20742, USA

6 National Science Foundation, Alexandria, VA 22314, USA

Abstract

We develop and implement automated methods for optimizing quantum circuits of the size and
type expected in quantum computations that outperform classical computers. We show how to handle
continuous gate parameters and report a collection of fast algorithms capable of optimizing large-scale
quantum circuits. For the suite of benchmarks considered, we obtain substantial reductions in gate
counts. In particular, we provide better optimization in significantly less time than previous approaches,
while making minimal structural changes so as to preserve the basic layout of the underlying quantum
algorithms. Our results help bridge the gap between the computations that can be run on existing
hardware and those that are expected to outperform classical computers.

1 Introduction

Quantum computers have the potential to dramatically outperform classical computers at solving certain
problems. Perhaps their best-known application is to the task of factoring integers: whereas the fastest
known classical algorithm is superpolynomial [22], Shor’s algorithm solves this problem in polynomial time
[34], providing an attack on the widely-used RSA cryptosystem.

Even before the discovery of Shor’s algorithm, quantum computers were proposed for simulating quan-
tum mechanics [11]. By simulating Hamiltonian dynamics, quantum computers can study phenomena in
condensed-matter and high-energy physics, quantum chemistry, and materials science. Useful instances of
quantum simulation are likely accessible to smaller-scale quantum computers than classically-hard instances
of the factoring problem.

These and other potential applications [19] have helped motivate significant efforts toward building a scal-
able quantum computer. Two quantum computing technologies, superconducting circuits [16] and trapped
ions [8], have matured sufficiently to enable fully programmable universal devices, albeit currently of modest
size. Several groups are actively developing these platforms into larger-scale devices, backed by significant
investments from both industry [15, 17, 24, 35] and government [10, 12, 28]. Thus, it is plausible that quan-
tum computations involving tens or even hundreds of qubits will be carried out in the not-too-distant future
[14, 20].

Experimental quantum information processing remains a difficult technical challenge, and the resources
available for quantum computation will likely continue to be expensive and severely limited for some time.

1

http://arxiv.org/abs/1710.07345v1

To make the most out of the available hardware, it is essential to develop implementations of quantum
algorithms that are as efficient as possible.

Quantum algorithms are typically expressed in terms of quantum circuits, which describe a computation
as a sequence of elementary quantum logic gates acting on qubits (see Section 2 for more details). There
are many ways of implementing a given algorithm with an available set of elementary operations, and it is
advantageous to find an implementation that uses the fewest resources. While it is imperative to develop
algorithms that are efficient in an abstract sense and to implement them with an eye toward practical
efficiency, large-scale quantum circuits are likely to have sufficient complexity to benefit from automated
optimization.

In this work, we develop software tools for reducing the size of quantum circuits, aiming to improve their
performance as much as possible at a scale where manual gate-level optimization is no longer practical. Since
global optimization of arbitrary quantum circuits is QMA-hard [18], our goal is more modest: we apply a
set of carefully chosen heuristics to reduce the gate counts, often resulting in substantial savings.

We apply our optimization techniques to several types of quantum circuits. Our benchmark circuits
include components of quantum algorithms for factoring and computing discrete logarithms, such as the
quantum Fourier transform, integer adders, and Galois field multipliers. We also consider circuits for the
product formula approach to Hamiltonian simulation [4, 23]. In all cases, we focus on circuit sizes likely
to be useful in applications that outperform classical computation. Our techniques can help practitioners
understand which implementation of an algorithm is most efficient in a given application. We detail our
methods in Section 3 and discuss our results in Section 4, before concluding in Section 5.

While there has been considerable previous work on quantum circuit optimization (as detailed in Sec-
tion 4.3), we are not aware of prior work on automated optimization that has targeted large-scale circuits
such as the ones considered here. Moreover, extrapolation of previously-reported runtimes suggests it is
unlikely that existing quantum circuit optimizers would perform well for such large circuits. We perform
direct comparisons by running our software on the same circuits optimized in Ref. [1], showing that our
approach typically finds smaller circuits in less time. In addition, to the best of our knowledge, our work is
the first to focus on automated optimization of quantum circuits with continuous gate parameters.

2 Background

A quantum circuit is a sequence of quantum gates acting on a collection of qubits. Quantum circuits are
conveniently represented by diagrams in which horizontal wires denote time evolution of qubits, with time
propagating from left to right, and boxes (or other symbols joining the wires) represent quantum gates. For
example, the diagram

• rz(θ) •

h • rz(θ
′)

• h

(1)

describes a simple three-qubit quantum circuit.
We consider a simple set of elementary gates for quantum circuits consisting of the two-qubit controlled-

not gate (abbreviated cnot, the leftmost gate in the above circuit), together with the single-qubit not

gate, Hadamard gate h, and z-rotation gate rz(θ). Unitary matrices for these gates take the form

not :=

(

0 1
1 0

)

, h :=
1√
2

(

1 1
1 −1

)

, rz(θ) :=

(

e−iθ/2 0

0 eiθ/2

)

, and cnot :=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, (2)

where θ ∈ (0, 2π] is the rotation angle. The gates s := rz(π/2) and t := rz(π/4) are known as the Phase

and t gates, respectively. When the rotation angle is irrelevant, we denote a generic z-rotation by rz.

2

While we aim to produce quantum circuits over the set of not, h, rz, and cnot gates, we consider
input circuits that may also include Toffoli gates. The Toffoli gate (the top gate in Figure 5) is described by
the mapping |x, y, z〉 7→ |x, y, z ⊕ (x ∧ y)〉 of computational basis states. We also allow Toffoli gates to have
negated controls. For example, the Toffoli gate with its top control negated (the middle gate in Figure 5)
acts as |x, y, z〉 7→ |x, y, z ⊕ (x̄ ∧ y)〉, and the Toffoli gate with both controls negated (the bottom gate in
Figure 5) acts as |x, y, z〉 7→ |x, y, z ⊕ (x̄ ∧ ȳ)〉.

The cost of performing a given quantum circuit depends on the physical system used to implement it.
The cost can also vary significantly between a physical-level (unprotected) implementation and a logical-
level (fault-tolerant) implementation. At the physical level, a two-qubit gate is typically more expensive to
implement than a single-qubit gate [8, 16]. We accommodate this by considering the cnot gate count and
optimizing the number of the cnot gates in our algorithms.

For logical-level fault-tolerant circuits, the so-called Clifford operations (generated by the Hadamard,
Phase, and cnot gates) are often relatively easy to implement, whereas non-Clifford operations incur signif-
icant overhead [5, 30]. Thus we also consider the number of rz gates in our algorithms and try to optimize
their count. In fault-tolerant implementations, rz gates are approximated over a discrete gate set, typi-
cally consisting of Clifford and t gates. Optimal algorithms for producing such approximations are known
[21, 32]. The number of Clifford+t gates required to approximate a generic rz gate depends primarily on
the desired accuracy rather than the specific angle of rotation, so it is preferable to optimize a circuit before
approximating its rz gates with Clifford+t fault-tolerant circuits.

By minimizing both the cnot and rz counts, we perform optimizations targeting both physical- and
logical-level implementations. One might expect a trade-off between these two goals, and in fact we know of
instances where such trade-offs do occur. However, in this paper we only consider optimizations aimed at
reducing both the rz and cnot counts.

3 Algorithms and implementation

In this section, we describe our optimization algorithms and their implementation. Throughout, we use g
to denote the number of gates appearing in a circuit. We begin in Section 3.1 by describing three distinct
representations of quantum circuits that we employ. In Section 3.2, we describe a preprocessing step used
in all versions of our algorithm. Then, in Section 3.3, we describe several subroutines that form the basic
building blocks of our approach. Section 3.4 explains how these subroutines are combined to form our main
algorithms. Finally, in Section 3.5, we present two special-purpose optimization techniques that we use to
handle particular types of circuits.

3.1 Representations of quantum circuits

We use the following three representations of quantum circuits:

• First, we store a circuit as a list of gates to be applied sequentially (a netlist). It is sometimes convenient
to specify the circuit in terms of subroutines, which we call blocks. Each block can be iterated any
number of times and applied to any subset of the qubits present in the circuit. A representation using
blocks can be especially concise since many quantum circuits exhibit a significant amount of repetition.
A block is specified as a list of gates and qubit addresses.

We input and output the netlists using the .qc format of [1] and the format produced by the quantum
programming language Quipper [13]. Both include the ability to handle blocks.

• Second, we use a directed acyclic graph (DAG) representation. The vertices of the DAG are the gates
of the circuit and the edges encode their input/output relationships. The DAG representation has the
advantage of making adjacency between gates easy to access.

• Third, we use a generalization of the phase polynomial representation of {cnot,t} circuits [2]. Unlike
the netlist and DAG representations, this last representation applies only to circuits consisting entirely
of not, cnot, and rz gates. Such circuits can be concisely expressed as the composition of an affine

3

reversible transformation and a diagonal phase transformation. Let C be a circuit consisting only of
not gates, cnot gates, and the gates rz(θ1),rz(θ2), . . . ,rz(θℓ). Then the action of C on the n-qubit
basis state |x1, x2, . . . , xn〉 has the form

|x1, x2, . . . , xn〉 7→ eip(x1,x2,...,xn)|h(x1, x2, . . . , xn)〉, (3)

where h : {0, 1}n → {0, 1}n is an affine reversible function and

p(x1, x2, . . . , xn) =

ℓ
∑

i=1

(θi mod 2π) · fi(x1, x2, . . . , xn) (4)

is a linear combination of affine Boolean functions fi : {0, 1}n → {0, 1} with the coefficients reduced
modulo 2π. We call p(x1, x2, . . . , xn) the phase polynomial associated with the circuit C. For example,
the circuit

x • • rz(θ3)

y rz(θ1) rz(θ2) rz(θ4) •
(5)

can be represented by the mapping

|x, y〉 7→ eip(x,y)|x⊕ y, y〉 (6)

where p(x, y) = θ1y + θ2(x⊕ y) + θ3x + θ4y. (In Ref. [2], the phase polynomial representation is only
considered for {cnot,t} circuits, so all θi in the expression (4) are integer multiples of π/4 and the
functions fi are linear.)

We can convert between any two of the above three circuit representations in time linear in the number
of gates in the circuit. Given a netlist, we can build the corresponding DAG gate-by-gate. Conversely,
we can convert a DAG to a netlist by standard topological sorting. To convert between the netlist and
phase polynomial representations of {not,cnot,rz} circuits, we use a straightforward generalization of the
algorithm of [2].

3.2 Preprocessing

Before running our main optimization procedures, we preprocess the circuit to make it more amenable to
further optimization. Specifically, the preprocessing applies provided the input circuit consists only of not,
cnot, and Toffoli gates (as is the case for the Quipper adders described in Section 4.1 and the t-par circuit
benchmarks described in Section 4.3). In this case, we push the not gates as far to the right as possible
by commuting them through the controls of Toffoli gates and the targets of Toffoli and cnot gates. When
pushing a not gate through a Toffoli gate control, we negate that control (or remove the negation if it was
initially negated). If this procedure leads to a pair of adjacent not gates, we remove them from the circuit.
If no such cancellation is found, we revert the control negation changes and move the not gate back to its
original position.

This not gate propagation leverages two aspects of our optimizer. First, we accept Toffoli gates that
may have negated controls and optimize their decomposition into Clifford+t circuits by exploiting freedom
in the choice of t/t† polarities (see Section 3.5). Second, since cancellations of not gates simplify the
phase polynomial representation (by making some of the functions fi in the phase polynomial representation
(4) linear instead of merely affine), such cancellations make it more likely that Routine 4 and Routine 5
in Section 3.3 will find optimizations (since those routines rely on finding matching terms in the phase
polynomial representation).

The complexity of this preprocessing step is O(g) since we simply make a single pass through the circuit.

4

h s h = s
† h s

† h s
† h = s h s

h • h

h h

=
•

•
h s s

† h

=
•

s
† s

•
h s

† s h

=
•

s s
†

Figure 1: Hadamard gate reductions. The two rules illustrated on the bottom can be applied even if the middle cnot
gate is replaced by a circuit with any number of cnot gates, provided they all share the target of the original cnot.

•
rz h h

=
•

h h rz

• •
rz r

′
z

=
• •

r
′
z rz

rz •
=

• rz

•
• =

•
•

• •
=

• • •
h • h =

•
h • h

Figure 2: Commutation rules. Top: Commuting an rz gate to the right. Bottom: Commuting a cnot gate to the
right.

3.3 Optimization subroutines

Our optimization algorithms rely on a variety of subroutines that we now describe. For each of them, we
report the worst-case time complexity as a function of the number of gates g in the circuit (for simplicity, we
neglect the dependence on the number of qubits and other parameters). We optimize practical performance
by carefully ordering and restricting the subroutines, as we discuss further below.

1. Hadamard gate reduction

Hadamard gates do not participate in phase polynomial optimization (Routine 4 and Routine 5 below)
and also tend to hinder gate commutation. Thus, we use the circuit identities pictured in Figure 1 to
reduce the Hadamard gate count. Each application of these rules reduces the h count by up to 4. For
a given Hadamard gate, we can use the DAG representation to check in constant time whether it is
involved in one of these circuit identities. Thus, we can implement this subroutine with complexity
O(g) by making a single pass through all Hadamard gates in the circuit.

2. Single-qubit gate cancellation

Using the DAG representation of a quantum circuit, it is straightforward to determine whether a gate
and its inverse are adjacent. If so, both gates can be removed to reduce the gate count. More generally,
we can cancel two single-qubit gates U and U † that are separated by a subcircuit A that commutes
with U . In general, deciding whether a gate U commutes with a circuit A may be computationally
demanding. Instead, we apply a specific set of rules that provide sufficient (but not necessary) condi-
tions for commutation. This approach is fast and appears to discover many commutations that can be
exploited to simplify quantum circuits.

Specifically, for each gate U in the circuit, the optimizer searches for possible cancellations with some
instance of U †. To do this, we repeatedly check whether U commutes through a set of consecutive
gates, as evidenced by one of the patterns in Figure 2. If at some stage we cannot move U to the right
by some allowed commutation pattern, then we fail to cancel U with a matched U †, so we restore the
initial configuration. Otherwise, we successfully cancel U with some instance of U †.

For each of the g gates U , we check whether it commutes through O(g) subsequent positions. Thus
the complexity of the overall gate cancellation rule is O(g2). We could make the complexity linear in

5

g by only considering commutations through a constant number of subsequent gates, but we do not
find this to be necessary in practice.

We also use a slight variation of this subroutine to merge rotation gates, rather than cancel inverses.
Specifically, two rotations rz(θ1) and rz(θ2) can be combined into a single rotation rz(θ1 + θ2) to
eliminate one rz gate.

3. Two-qubit gate cancellation

This routine is analogous to Routine 2, except that U is a two-qubit gate, which is always cnot in
the circuits we consider. Again its complexity is O(g2), but may be reduced to O(g) by imposing a
maximal size for the subcircuit A.

4. Rotation merging using phase polynomials

Consider a subcircuit consisting of not, cnot, and rz gates. Observe that if two individual terms
of its phase polynomial expression satisfy fi(x1, x2, . . . , xn) = fj(x1, x2, . . . , xn) for some i 6= j, then
the corresponding rotations rz(θi) and rz(θj) can be merged. For example, in the circuit (5), the
first and fourth rotations are both applied to the qubit carrying the value y, as evidenced by its phase
polynomial representation. Thus (5) is equivalent to the circuit

x • • rz(θ3)

y rz(θ2) rz(θ1 + θ4) •
(7)

in which the two rotations are combined. In other words, the phase polynomial representation of
circuits reveals when two rotations—in this case, rz(θ1) and rz(θ4)—are applied to the same affine
function of the inputs, even if they appear in different parts of the circuit. Then we may combine these
rotations into a single rotation, improving the circuit.1 We have the flexibility to place the combined
rotation at any point in the circuit where the relevant affine function appears. For concreteness, we
place it at the first (leftmost) such location.

We next discuss some implementation details for Routine 4. To apply this routine, we must identify a
subcircuit consisting only of {not,cnot,rz} gates. We build this subcircuit one qubit at a time, starting
from a designated cnot gate. For the first qubit of this gate, we scan through all preceding and subsequent
not, cnot, and rz gates that act on this qubit, adding them to the subcircuit. When we encounter a
Hadamard gate or the beginning or end of the circuit, we mark a termination point and stop exploring in
that direction (so that each qubit has one beginning termination point and one ending termination point).
For each cnot gate between this qubit and some qubit that has not yet been encountered, we mark an
anchor point where the gate acts on the newly-encountered qubit. We then carry out this process with the
second qubit acted on by the initial cnot gate, and repeat the process starting from every anchor point
until no new qubits are encountered.

While the resulting subcircuit consists only of not, cnot, and rz gates, its qubit wires may not be
continuous. To apply the phase polynomial formalism, we must ensure that there are no intermediate
changes to the values on any wires that leave and re-enter the subcircuit. To achieve this, we perform the
following pruning procedure. Starting with the designated initial cnot gate, we successively consider gates
both before and after it in the netlist until we encounter a termination point. Note that we only need to
consider cnot gates, since every not and rz gate reached by this process can be included. If both the
control and target qubits of an encountered cnot gate are within the termination border, we continue. If
the control qubit is outside the termination border but the target qubit is inside, we move the termination
point of the target qubit so that the cnot gate being inspected falls outside the border, excluding it and
any subsequent gates acting on its target qubit from the subcircuit. However, when the control is inside the
border and the target is outside, we make an exception and do not move the termination point (although we

1Note that in this particular example, the simplification could have alternatively been obtained using the commutation
method described above. However, this is not the case in general.

6

• •

• •

r
1
z r

2
z r

3
z

=

• •

• •

r
3
z r

2
z r

1
z

•

• •

r
1
z r

2
z

=

•

• •

r
2
z r

1
z

Figure 3: Gate count preserving rewriting rules employed in Routine 5.

do not include the cnot gate in the subcircuit). This exception gives a larger {not,cnot,rz} subcircuit
that remains amenable to phase polynomial representation, as in the following example:

q1 h rz • • h

q2 h rz • • • rz h

q3 h rz h

(8)

In the example circuit (8), suppose we start our search from the first cnot gate acting on the top (q1)
and middle (q2) qubits. Traversing q1 to the left, we find an h gate, where we mark a termination point.
Traversing q1 to the right, we find two cnot gates, one rz gate, and then an h gate, where we mark a
termination point. Observe that neither of the encountered cnot gates joins q1 or q2 to the remaining qubit
q3. Next, we repeat the same procedure on q2 from the original cnot gate. To the left we find an rz gate
and then an h gate, where we mark a termination point. Traversing to the right, we find a cnot acting on
q2 and q3. This cnot reveals additional connectivity, so we mark an anchor point at the target of this cnot
gate. Further to the right on the q2 wire, we have three more cnot gates (none of which reveals additional
connectivity), an rz gate, and finally an h gate, where we mark a termination point. Next we examine q3.
We start from the aforementioned anchor point. To the left, we find an h gate with no further connections
to other qubits, where we mark a termination point. To the right, we immediately find an h gate and mark
a termination point.

Having built the subcircuit, we go through the netlist representation and prune it. In this pass, we
encounter the fourth cnot gate acting on q2 and q3, where we find that the control is within the border
but the target is not. In this case we continue according to the exception handling scheme described in the
pruning procedure. This ensures that we include the last cnot gate in the {not,cnot,rz} region, while
excluding the fourth cnot gate (as indicated by the dotted border in (8)). Thus we discover that the last
rz gate appearing in the circuit can be relocated to the very beginning of the circuit on the q2 line, to the
right of the leftmost h, enabling a phase-polynomial based rz merge (see below for details).

Once a valid {not,cnot,rz} subcircuit is identified, we generate its phase polynomial. For each rz gate,
we determine the associated affine function its phase is applied to and the location in the circuit where it is
applied. We then sort the list of recorded affine functions. Finally, we find and merge all rz gate repetitions,
placing the merged rz at the first location in the subcircuit that computes the desired affine function.

This procedure considers O(g) subcircuits, and the cost of processing each of these is dominated by
sorting, with complexity O(g log g), giving an overall complexity of O(g2 log g) for Routine 4. However, in
practice the subcircuits are typically smaller when there are more of them to consider, so the true complexity
is lower. In addition, when identifying a {not,cnot,rz} subcircuit, we choose to start with a cnot gate
that has not yet been included in any of the previously-identified {not,cnot,rz} subcircuits, so the number
of subcircuits can be much smaller than g in practice. If desired, the overall complexity can be lowered to
O(g) by limiting the maximal size of the subcircuit.

We now return to the description of optimization subroutines.

5. Floating rz gates

In Routine 4, we keep track of the affine functions associated with rz gates. More generally, we can

7

record all affine functions that occur in the subcircuit and their respective locations, regardless of the
presence of rz gates. Thus we can identify all possible locations where an rz gate could be placed, not
just those locations where rz gates already appear in the circuit. In this “floating” rz gate placement
picture, we employ three optimization subroutines: two-qubit gate cancellations, gate count preserving
rewriting rules, and gate count reducing rewriting rules.

The first of these subroutines is essentially identical to Routine 3, except that rz gates are now floatable
and we focus on a specific identified subcircuit. This approach allows us to place rz gates to facilitate
cancellations by keeping track of all possible rz gate locations along the way. In particular, if not
placing an rz gate at a particular location will allow two cnot gates to cancel, we simply remove that
location from the list of possible locations for the rz gate while ensuring that the reduced list remains
non-empty, and perform the cnot cancellation.

We next apply rewriting rules that preserve the gate count (see Figure 3) in an attempt to find further
optimizations. While these replacements do not eliminate gates, they modify the circuit in ways that
can enable optimizations elsewhere. The rewriting rules are provided by an external library file, and
we identify subcircuits to which they can be applied using the DAG representation. The replacements
are applied only if they lead to a reduction in the two-qubit gate count through one more round of the
aforementioned two-qubit cancellation subroutine with floatable rz gates. Note that the rewriting rules
are applicable only with certain floating rz gates at particular locations in a circuit. This subroutine
uses floating rz gates to choose those combinations of rz gate locations that lead to reduction in the
gate count.

The last subroutine applies rewriting rules that reduce the gate count (see Figure 4). These rules are
also provided via an external library file. Since these rules reduce the gate count on their own, we
always perform the rewriting whenever a suitable pattern is found.

The complexity of this three-step routine is upper bounded by O(g3) since the number of subcircuits
is O(g), and within each subcircuit, the two-qubit cancellation (Routine 3) has complexity O(g2). The
rewriting rules can be applied with complexity O(g) since, as in Routine 1, a single pass through the
gates in the circuit suffices. Again, in practice, the number of subcircuits and the subcircuit sizes are
typically inversely related, which lowers the observed complexity by about a factor of g. The complexity
can also be lowered to O(g2) by limiting the maximal size of the subcircuit. The complexity can be
further lowered to O(g log g) by limiting the maximal size of the subcircuit A in the two-qubit gate
cancellation (the sorting could still have complexity O(g log g)).

To illustrate how this optimization works, consider the circuit in equation (7). Observe that rz(θ2)
may be executed on the top qubit at the end of the circuit, allowing the first two cnots to cancel,
leading to the circuit

x rz(θ3) rz(θ2)

y rz(θ1 + θ4) •
(9)

which is simplified even further.

3.4 General-purpose optimization algorithms

Our optimization algorithms simply apply the subroutines from Section 3.3 in a carefully chosen order.
We consider two versions of the optimizer that we call Light and Heavy. The Heavy version applies more
subroutines, yielding better optimization results at the cost of a higher runtime. The preprocessing step (see
Section 3.2) is used in both Light and Heavy versions of the optimizer.

The Light version of the optimizer applies the optimization subroutines in the order

1, 3, 2, 3, 1, 2, 4, 3, 2.

8

• •
• • • •

• • •
r
1
z r

2
z r

3
z r

4
z

=

• •
• •

• • •
r
3
z r

2
z r

1
z r

4
z

• •
• • • •

• • •
r
1
z r

2
z r

3
z r

4
z r

5
z

=

• •
• •

• • •
r
1
z r

3
z r

5
z r

4
z r

2
z

• •
• • •

• •
r
1
z r

2
z r

3
z r

4
z

=

• •
•

• • •
r
3
z r

2
z r

1
z r

4
z

• •
• • • •

• • •
r
1
z r

2
z r

3
z r

4
z

=

• •
• •

• • •
r
2
z r

3
z r

4
z r

1
z

• •
• • • •

• • •
r
1
z r

2
z r

3
z r

4
z

=

• •
• •

• • •
r
2
z r

3
z r

4
z r

1
z

Figure 4: Gate count reducing rewriting rules employed in Routine 5.

We then repeat this sequence until no further optimization is achieved. We chose this sequence based on
the principle that first exposing {cnot,rz} gates while reducing Hadamard gates (1) allows for greater
reduction in the cancellation routines (3, 2, 3), and in particular frees up two-qubit cnot gates to facilitate
single-qubit gate reductions and vice versa. Applying the replacement rule (1) may enable more reductions
after the first four optimization subroutines. We then look for additional single-qubit gate cancellation and
merging (2). This enables faster identification of the {not,cnot,rz} subcircuit regions to look for further
rz count optimizations (4), after which we check for residual cancellations of the gates (3, 2).

The Heavy version of the optimizer applies the sequence

1, 3, 2, 3, 1, 2, 5.

Similarly, we repeat this sequence until no further optimization is achieved. The first six steps of the Heavy
optimization sequence are identical to that of the Light optimizer. The difference is that in the Heavy
optimizer, we take advantage of floating rz gates. This allows us to find locations for the rz gates that
admit better cnot gate reductions, including the use of gate count preserving rewriting rules to expose
further gate cancellations and gate count reducing rewriting rules to remove any remaining inefficiency.

3.5 Special-purpose optimizations

In addition to the general-purpose optimization algorithms described above, we employ two specialized
optimizations to improve circuits with particular structures.

9

•

• =

• • • • t

• • t
† t

h t
† t t

† t h

• =

• • • • t

• • t
†

t
†

h t t t
†

t
† h

=

• • • • t
†

• • t
†

t
†

h t t t t h

Figure 5: Toffoli gate implementations.

• LCR optimizer: Some quantum algorithms—such as product formula simulation algorithms—involve
repeating a fixed block multiple times. To optimize such a circuit, we first run the optimizer on a single
block to obtain its optimized version, O. To find simplifications across multiple blocks, we optimize
the circuit O2 and call the result LR, where L is the maximal prefix of O in the optimization of O2.
We then optimize O3. Provided optimizations only occur near the boundaries between blocks, we can
remove the prefix L and the suffix R from the optimized version of O3, and call the remaining circuit
C. Assuming we can find such L, C, and R (which is always the case in practice), then we can simplify
Ot to LCt−2R.

• Toffoli decomposition: Many quantum algorithms are naturally described using Toffoli gates. Our
optimizer can handle Toffoli gates with both positive and negative controls. Since we ultimately aim
to express circuits over the gate set {not,cnot,h,rz}, we must decompose the Toffoli gate in terms
of these elementary gates. We take advantage of different ways of doing this to improve the quality of
optimization.

Specifically, we expand the Toffoli gates in terms of one- and two-qubit gates using the identities shown
in Figure 5, keeping in mind that we also obtain the desired Toffoli gate by exchanging t and t

† in
those circuit decompositions (because the Toffoli gate is self-inverse). Initially, the optimizer leaves
the polarity of t/t† gates (i.e., the choice of which gates include the dagger and which do not) in
each Toffoli decomposition undetermined. The optimizer symbolically processes the indeterminate
t and t

† gates by simply moving their locations in a given quantum circuit, keeping track of their
relative polarities. The optimization is considered complete when movements of the indeterminate t

and t
† gates cannot further reduce the gate count. Finally, we choose the polarities of each Toffoli

gate (subject to the fixed relationships between them) with the goal of minimizing the t count in the
optimized circuit. We perform this minimization in a greedy way, choosing polarities for each Toffoli
gate in the order of appearance of the associated t/t† gates in the nearly-optimized circuit, so as to
reduce the t count as much as possible.

Overall, this polarity selection process takes time O(g). After choosing the polarities, we run Routine 3
and Routine 2, since particular choices of polarities may lead to further cancellations of the cnot gates
and single-qubit gates that were otherwise not possible due to the presence of the indeterminate gates
blocking the desired commutations.

10

0 500 1,000 1,500 2,000

0

1 · 105

2 · 105

3 · 105

4 · 105

System size

T
o
ta
l
g
a
te

co
u
n
t

0

1,
00
0

2,
00
0

0

5 · 104

105

Figure 6: Total gate count for the approximate quantum Fourier transform (QFT, inset), Quipper library adder, and
Fourier-based adders (QFA). The points in red/blue represent gate counts before/after optimization and the symbols
square/circle/triangle represent gate counts for the Quipper library adder/QFA/QFT, respectively.

4 Results

We implemented our optimizer in the Fortran programming language and tested it using three sets of
benchmark circuits. All results were obtained using a machine with a 2.9 GHz Intel Core i5 processor and
8 GB of 1867 MHz DDR3 memory, running OS X El Capitan.

We considered quantum circuits that include components of Shor’s integer factoring algorithm, namely
the quantum Fourier transform (QFT) and the integer adders. We also considered circuits for the product

formula (PF) approach to Hamiltonian simulation [4]. In both cases, we focused on circuit sizes likely to
be useful in applications that outperform classical computation, and ran experiments with different types of
adders and product formulas. Finally, we considered a set of benchmark circuits from Ref. [1], consisting of
various arithmetic circuits (including a family of Galois field multipliers) and implementations of multiple-
control Toffoli gates. Files containing circuits before and after optimization are available at [29].

To check correctness of our optimizer, we verified the functional equivalence (i.e., equality of the corre-
sponding unitary matrices) of various test circuits before and after optimization. Of course, such a test is
only feasible for circuits with a small number of qubits. We performed this test for all 8-qubit benchmarks
in Table 1 and Table 2, all 10-qubit benchmarks in Table 3, and the following benchmarks from Table 4:
Mod 54, VBE-Adder3, CSLA-MUX3, RC-Adder6, Mod-Red21, Mod-Mult55, Toff-Barenco3..5, Toff-NC3..5,
GF(24)-Mult, and GF(25)-Mult.

4.1 QFT and adders

The QFT is a fundamental subroutine in quantum computation, appearing in many quantum algorithms
with exponential speedup. The standard circuit for the exact n-qubit QFT uses rz gates, some with angles
that are exponentially small in n. It is well known that one can perform a highly accurate approximate QFT
by omitting gates with very small rotation angles [7]. We choose to omit rotations by angles at most π/213,
which ensures sufficient accuracy of the approximate QFT for circuits of the sizes we consider. These small
rotations are removed before optimization, so their omission does not contribute to the improvements we
report.

11

0 500 1,000 1,500 2,000

0

20,000

40,000

60,000

80,000

System size

C
N
O
T

g
a
te

co
u
n
t

Figure 7: Number of cnot gates for Quipper library adders. The points in red/blue/green represent the gate counts
in pre-/post-Light/post-Heavy optimization, respectively.

In Figure 6 (inset) we plot total gate counts for the approximate QFT before and after optimization. We
observe a savings ratio of larger than 36% for the QFT with 512 or more qubits. The optimization comes
entirely from reducing the number of rz gates, the most expensive resource in a fault-tolerant implementation.

We consider two types of integer adders: an in-place modulo 2q adder as implemented in the Quipper
library [13] and an in-place adder based on the QFT [9] (hereafter denoted QFA). The QFA circuits use an
approximate QFT in which the rotations by angles less than π/213 are removed, as described above. Adders
are a basic component of Shor’s quantum algorithm for integer factoring [30]. We report gate counts before
and after optimization for the Quipper adders and the QFAs for circuits acting on 2L qubits, with L ranging
from 4 to 11. Adders with L = 10 are used in Shor’s algorithm for factoring 1,024-bit numbers. Recall that
the related RSA-1024 challenge remains unsolved [37].

The results of Light optimization of the adder circuits are shown in Table 1 and Figure 6. For the Quipper
library adders, we used the standard Light optimizer. For the QFA optimization, we instead used a modified
Light optimizer with the sequence of routines 1, 3, 2, 3, 1, 2, omitting the final three routines 4, 3, 2 of the
full Light optimizer. We did this because we saw no additional gate savings from those routines in small
instances (n ≤ 256).

Observe that the simplified Quipper library adder outperforms the QFA by a wide margin, suggesting
that it may be preferred in practice. For the Quipper library adder, we see a reduction in the t gate count
by a factor of up to 5.2. We emphasize that this reduction is obtained entirely by automated means, without
using any prior knowledge of the circuit structure. Since Shor’s integer factoring algorithm is dominated
by the cost of modular exponentiation, which in turn relies primarily on integer addition, this optimization
reduces the cost of executing the overall factoring algorithm by a factor of more than 5.

We also applied the Heavy optimizer to the QFT and adder circuits. For the QFT and QFA circuits,
the Heavy setting does not improve the gate counts. The results of the Heavy optimization for the Quipper
adder are shown in Table 2. We find a reduction in the cnot count by a factor of 2.7, compared to a factor
of only 1.7 for the Light optimization. Figure 7 illustrates the total cnot counts of the Quipper library
adder before optimization, after Light optimization, and after Heavy optimization, showing the reduction in
the cnot count by the two types of optimization.

12

Table 1: Light optimization of adder circuits: QFA (top) and Quipper library (bottom).

Gate Counts for Approximate QFA
Before Optimization After Optimization Software Runtime

n cnot rz h cnot rz h (seconds)

8 184 276 16 184 122 16 < 0.001
16 716 1,074 32 716 420 32 0.001
32 1,900 2,850 64 1,900 1,076 64 0.002
64 4,268 6,402 128 4,268 2,388 128 0.004
128 9,004 13,506 256 9,004 5,012 256 0.08
256 18,476 27,714 512 18,476 10,260 512 0.018
512 37,420 56,130 1024 37,420 20,756 1,024 0.045
1,024 75,308 112,962 2,048 75,308 41,748 2,048 0.115
2,048 151,084 226,626 4,096 151,084 83,732 4,096 0.215

Gate Counts for Quipper Library Adder
Before Optimization After Optimization Software Runtime

n cnot t h s cnot t h s (seconds)

8 243 266 76 0 143 56 28 12 0.001
16 547 602 172 0 319 120 60 28 0.003
32 1,155 1,274 364 0 671 248 124 60 0.014
64 2,371 2,618 748 0 1,375 504 252 124 0.057
128 4,803 5,306 1,516 0 2,783 1,016 508 252 0.244
256 9,667 10,682 3,052 0 5,599 2,040 1,020 508 1.099
512 19,395 21,434 6,124 0 11,231 4,088 2,044 1,020 5.292
1,024 38,851 42,938 12,268 0 22,495 8,184 4,092 2,044 25.987
2,048 77,763 85,946 24,556 0 45,023 16,376 8,188 4,092 145.972

4.2 Quantum simulation

The first explicit polynomial-time quantum algorithm for simulating Hamiltonian dynamics was introduced
in [23]. This approach was later generalized to higher-order product formulas [4], giving improved asymptotic
complexities. We report gate counts before and after optimization for the PF algorithms of orders 1, 2, 4,
and 6 (for orders higher than 1, the order of the standard Suzuki construction is even). For concreteness, we
implement these algorithms for a one-dimensional Heisenberg model with periodic boundary conditions in a
random, site-dependent magnetic field, evolving the system for the time proportional to its size, and choose
the algorithm parameters to ensure the Hamiltonian simulation error is at most 10−3 using known bounds
on the error of the product formula approximation.

The results of Light optimization of product formula algorithms are reported in Table 3 and illustrated in
Figure 8. For these algorithms, we find that Heavy optimization offers no further improvement. The 2nd-, 4th-
, and 6th-order algorithms admit a ∼33.3% reduction in the cnot count and a ∼28.5% reduction in the rz

count, roughly corresponding to the reductions relevant to physical-level and logical-level implementations.
The 1st-order formula algorithm did not exhibit cnot or rz gate optimization. In all product formula
algorithms, the number of Phase and Hadamard gates reduced significantly, by a factor of roughly 3 to 6.

4.3 Comparison with prior approaches

Quantum circuit optimization is already a well-developed field (see for example [1, 27, 31, 33]). However, to
the best of our knowledge, no prior work on circuit optimization has considered large-scale quantum circuits
of the kind that could outperform classical computers. For instance, in [1], the complexity of optimizing a
g-gate circuit is O(g3) (sections 6.1 and 7), making optimization of large-scale circuits unrealistic. Table 3

13

Table 2: Heavy optimization of Quipper library adder.

Gate Counts for Quipper Library Adder
Before Optimization After Optimization (H) Software Runtime

n cnot t h s cnot t h s (seconds)

8 243 266 76 0 94 56 28 12 0.006

16 547 602 172 0 206 120 60 28 0.018

32 1,155 1,274 364 0 430 248 124 60 0.066

64 2,371 2,618 748 0 878 504 252 124 0.598

128 4,803 5,306 1,516 0 1,774 1,016 508 252 4.697

256 9,667 10,682 3,052 0 3,566 2,040 1,020 508 34.431

512 19,395 21,434 6,124 0 7,150 4,088 2,044 1,020 307.141

1,024 38,851 42,938 12,268 0 14,318 8,184 4,092 2,044 2,446.336

2,048 77,763 85,946 24,556 0 28,654 16,376 8,188 4,092 23,886.841

in [27] shows running times ranging from 0.07 to 1.883 seconds for numbers of qubits from n = 10 to 35 and
gate counts from 60 to 368, whereas our optimizer ran for a comparable time when optimizing the Quipper
adders up to n = 256 with around 23,000 gates, as shown in Table 1. Reference [31] relies on peep-hole
optimization using optimal gate libraries. This is expensive, as is evidenced by the runtimes reported in
Tables I and II therein, taking already more than 100 seconds for a 20-qubit, 1,000-gate circuit.

To compare our results to those reported previously, we consider t count, cnot count, and a scalar
cost metric that accounts for the relative difficulty of performing cnot and t gates in a fault-tolerant
implementation. While the t gate is considerably more expensive due to the need for state distillation [5],
neglecting the cost of the cnot gates may lead to a significant underestimate if there are many such gates [26].
Roughly speaking, a fault-tolerant t gate may be about 10−100 times more expensive to implement than a
local, fault-tolerant cnot gate. The true overhead depends on many details, including the fault tolerance
scheme, the error model, the size of the computation, architectural restrictions, the extent to which the
implementation of the t gate can be optimized, and whether t state production happens offline so its cost
can be (partially) discounted; it is beyond the scope of this paper to account for all these factors. For a
rough comparison, we suppose that the t gate is 20 times as expensive as a typical cnot gate, and we call
the cnot gate count plus 20 times the t gate count the aggregate cost.

We directly compare our results to those reported in [1], which aims to reduce the t count and t depth
using techniques based on matroid partitioning. We refer to that approach as t-par. We use our approach
to optimize a set of benchmark circuits appearing in that work and compare the results with the t-par
optimization, as shown in Table 4.

The benchmark circuits fall into three categories. The first set consists of a selection of arithmetic
operations. For these circuits, we obtained better or matching t counts compared to [1] while also obtaining
much better cnot counts. Note that we excluded circuit CSLA-MUX3 from the comparison since we do
not believe t-par optimized it correctly (for more detail, see the first footnote in Table 4). To illustrate
the advantage of our approach using the aggregate cost metric, observe that we reduced the cost of the
RC-Adder6 circuit from 1,494 to 1,011.

The second set of benchmarks consists of multiple-control Toffoli gates. While our optimizer matched
the t count obtained by the t-par and substantially reduced the cnot count, neither our optimizer nor [1]
could find the best known implementations constructed directly in [25]. This is not surprising, given the
very different circuit structure employed in [25].

The third set of benchmarks contains Galois field multiplier circuits. We saw no advantage from the
Heavy optimizer over the Light optimizer in the cases we tested, so we did not apply the Heavy optimizer to
the four largest instances (the corresponding entries are left blank in Table 4). Our t count again matches
that of the t-par optimizer, but our cnot count is much lower, resulting in the circuits that are clearly
preferred. For example, the optimized GF(264) multiplier circuit in [1] uses 180,892 cnot gates, whereas
our optimized implementation uses only 24,765 cnot gates; the aggregate cost is thus reduced from 509,852
to 353,725 despite no change in the t count, illustrating the advantage of our approach. This comparison

14

20 40 60 80 100

0

5 · 1011

1 · 1012

1.5 · 1012

2 · 1012

System size

T
o
ta
l
g
a
te

co
u
n
t

Figure 8: Total gate count for product formula algorithms. The points in red/blue represent gate counts before/after
optimization and the symbols square/circle represent gate counts for the 2nd-/4th-order formula, respectively.

demonstrates that the discrepancy between t count and true cost predicted in theory [26] is manifested in
practice. The efficiency of our Light optimizer allowed us to optimize of the GF(2131) and GF(2163) multiplier
quantum circuits, corresponding to instances of the elliptic curve discrete logarithm problem that remain
unsolved [6]. Given the reported t-par runtimes [1], an instance of this size appears to be intractable for the
t-par optimizer.

4.4 Overall performance

Our numerical optimization results are summarized across Table 1, Table 2, Table 3, and Table 4. These
tables contain benchmarks relevant to practical quantum computations that are beyond the reach of classical
computers. In Table 1 and Table 2 these are the 1,024- and 2,048-qubit QFT and integer adders used in
classically-intractable instances of Shor’s factoring algorithm [37]. In Table 3 these include all instances with
n & 50, for which direct classical simulation of quantum dynamics is currently infeasible. In Table 4 these
are Galois field multipliers over binary fields of sizes 131 and 163, which are relevant to quantum attacks on
unsolved Certicom ECC Challenge problems [6]. This illustrates that our optimizer is capable of handling
quantum circuits that are sufficiently large to be practically relevant.

Our optimizer can be applied more generally than previous work on circuit optimization. It readily
accepts composite gates, such as Toffoli gates (which may have negated controls). It also handles gates
with continuous parameters, a useful feature for algorithms that naturally use rz gates, including Hamil-
tonian simulation and factoring. Many quantum information processing technologies natively support such
gates, including both trapped ions [8] and superconducting circuits [16], so our approach may be useful for
optimizing physical-level circuits.

Fault-tolerant quantum computations generally rely on a discrete gate set, such as Clifford+t, and
optimal Clifford+t implementations of rz gates are already known [21, 32]. Nevertheless, the ability to
optimize circuits with continuous parameters is also valuable in the fault-tolerant setting. This is because
optimizing with respect to a natural continuously-parametrized gate set before compiling into a discrete
fault-tolerant set will likely result in smaller final circuits.

Finally, unlike previous approaches [1, 27, 31], our optimizer preserves the structure of the original circuit.

15

Table 3: Optimization of product formula algorithms, showing the cnot gate count reduction (top) and the rz gate
count reduction (bottom). Software runtimes range from 0.004 s (1st-order, n = 10) to 0.137 s (6th-order, n = 100).
The Clifford gate reduction ranges from 62.5% for Hadamard and 75% for Phase gates (for the 1st-order formula,
independent of n) to 75% for Hadamard and 85% for Phase gates (for the 6th-order formula, again independent of
n). The notation “(× 1000)” indicates that the gate counts for the 1st-order formula are in units of thousands (no
rounding errors). The notation “(L)” denotes the standard Light optimization.

cnot Counts for Product Formula Algorithms
1st order 2nd order 4th order 6th order

n Before (×1000) After (L) (×1000) Before After (L) Before After (L) Before After (L)

10 9,600,024 9,600,024 49,622,280 33,081,540 82,152,000 54,768,020 833,073,000 555,382,020
20 307,200,192 307,200,192 793,571,040 529,047,400 927,468,000 618,312,040 8,376,270,000 5,584,180,040
30 2,332,800,648 2,332,800,648 4,016,805,120 2,677,870,140 3,830,076,000 2,553,384,060 32,322,240,000 21,548,160,060
40 9,830,401,536 9,830,401,536 12,694,063,680 8,462,709,200 10,477,257,600 6,984,838,480 84,262,560,000 56,175,040,080
50 30,000,003,000 30,000,003,000 30,989,866,200 20,659,910,900 22,869,948,000 15,246,632,100 177,187,560,000 118,125,040,100
60 74,649,605,184 74,649,605,184 64,258,513,920 42,839,009,400 43,278,861,600 28,852,574,520 325,230,480,000 216,820,320,120
70 161,347,208,232 161,347,208,232 119,044,086,000 79,362,724,140 74,215,289,400 49,476,859,740 543,505,116,000 362,336,744,140
80 314,572,812,288 314,572,812,288 203,080,443,840135,386,962,720118,409,788,800 78,939,859,360 847,991,544,000 565,327,696,160
90 566,870,417,496 566,870,417,496 325,291,230,720216,860,820,660178,795,738,800119,197,159,3801,255,450,374,000 836,966,916,180
100960,000,024,000 960,000,024,000 495,789,866,400330,526,577,800258,496,092,000172,330,728,2001,783,355,700,0001,188,903,800,200

rz Counts for Product Formula Algorithms
1st order 2nd order 4th order 6th order

n Before (×1000) After (L) (×1000) Before After (L) Before After (L) Before After (L)

10 6,400,016 6,400,016 28,946,330 20,675,960 47,922,000 34,230,010 485,959,250 347,113,760
20 204,800,128 204,800,128 462,916,440 330,654,620 541,023,000 386,445,020 4,886,157,500 3,490,112,520
30 1,555,200,432 1,555,200,432 2,343,136,320 1,673,668,830 2,234,211,000 1,595,865,030 18,854,640,000 13,467,600,030
40 6,553,601,024 6,553,601,024 7,404,870,480 5,289,193,240 6,111,733,600 4,365,524,040 49,153,160,000 35,109,400,040
50 20,000,002,000 20,000,002,000 18,077,421,950 12,912,444,300 13,340,803,000 9,529,145,050 103,359,410,000 73,828,150,050
60 49,766,403,456 49,766,403,456 37,484,133,120 26,774,380,860 25,246,002,600 18,032,859,060 189,717,780,000 135,512,700,060
70 107,564,805,488 107,564,805,488 69,442,383,500 49,601,702,570 43,292,252,150 30,923,037,320 317,044,651,000 226,460,465,070
80 209,715,208,192 209,715,208,192 118,463,592,240 84,616,851,680 69,072,376,800 49,337,412,080 494,661,734,000 353,329,810,080
90 377,913,611,664 377,913,611,664 189,753,217,920135,538,012,890104,297,514,300 74,498,224,590 732,346,051,500 523,104,322,590
100640,000,016,000 640,000,016,000 289,210,755,400206,579,111,100150,789,387,000107,706,705,1001,040,290,825,000 743,064,875,100

In particular, the set of two-qubit interactions used by the optimized circuit is a subset of those used in the
original circuit. This holds because neither the preprocessing step nor our optimizations introduce any new
two-qubit gates. By keeping the number of interactions under control (in stark contrast to t-par, which
dramatically increases the set of interactions used), our optimized implementations are better suited for
architectures with limited connectivity. For example, given a layout of the original quantum circuit on
hardware with limited connectivity, this property allows one to use the same layout for the optimized circuit.

5 Conclusions and future work

In this paper, we studied the problem of optimizing large-scale quantum circuits, namely those appearing
in quantum computations that are beyond the reach of classical computers. We developed Light and Heavy
optimization algorithms and implemented them in software. Our algorithms are based on a carefully chosen
sequence of basic optimizations, yet they achieve substantial reductions in the gate counts, improving over
more mathematically sophisticated approaches such as t-par optimization [1]. The simplicity of our approach
is reflected in very fast runtimes, especially using the Light version of the optimizer.

We expect that further improvements can lead to even greater circuit optimization, as demonstrated
by the Heavy version of our optimizer. To further improve the output, one could revise the routines for
reducing rz count by implementing more extensive (and thus more computationally demanding) algorithms
for composing stages of cnot and rz gates, possibly with some Hadamard gates included. One may also
consider incorporating template-based [27] and peep-hole [31] optimizations. It may be worthwhile to expand
the set of subcircuit rewriting rules and explore the performance of the approach on other benchmark circuits.
Finally, considering the relative cost of different resources (e.g., different types of gates, ancilla qubits) could
lead to optimizers that favorably trade off these resources.

16

Table 4: t-par comparison. The names of the algorithms are taken verbatim from Ref. [1], except that we write Toff-Barenco and Toff-NC to denote
implementations of multiple-control Toffoli gates from [3] and [30], respectively. The notation “(L)” denotes the standard Light optimization, whereas
“(H)” denotes the standard Heavy optimization. The symbol indicates that there was no improvement in the Heavy optimization over the Light
optimization.

Pre-Optimization Ref. [1] Post-Optimization Our Post-Optimization (L) Our Post-Optimization (H)
Circuit Total cnot t Total cnot t Runtime (s) Total cnot t Runtime (s) Total cnot t Runtime (s)

Mod 54 63 28 28 76 48 16 < 0.001 51 28 16 < 0.001 0.001
VBE-Adder 3 150 70 70 161 114 24 0.001 89 50 24 < 0.001 0.001
CSLA-MUX 3 170 80 70 508 425 62a 0.001 161 76 64 < 0.001 155 70 64 0.009

CSUM-MUX 9 420 168 196 593 411 112b 0.005 294 168 84 < 0.001 266 140 84 0.009
QCLA-Com 7 443 186 203 751 583 95 0.003 284 132 95 0.001 0.016
QCLA-Mod 7 884 382 413 1,572 1,185 249 0.008 636 302 237 0.004 624 292 235 0.077

QCLA-Adder 10 521 233 238 972 737 162 0.018 411 195 162 0.002 399 183 162 0.044
Adder 8 900 409 399 1,288 920 215 0.004 646 331 215 0.004 606 291 215 0.101

RC-Adder 6 200 93 77 326 234 63 0.001 142 73 47 < 0.001 140 71 47 0.004
Mod-Red 21 278 105 119 425 301 73 0.001 184 81 73 < 0.001 180 77 73 0.008
Mod-Mult 55 119 48 49 223 166 37 < 0.001 91 40 35 < 0.001 0.002

Toff-Barenco 3 58 24 28 82 54 16 < 0.001 42 20 16 < 0.001 40 18 16 0.001
Toff-NC 3 45 18 21 65 41 15 < 0.001 35 14 15 < 0.001 < 0.001

Toff-Barenco 4 114 48 56 141 90 28 < 0.001 78 40 28 < 0.001 72 34 28 0.001
Toff-NC 4 75 30 35 102 63 23 < 0.001 55 22 23 < 0.001 < 0.001

Toff-Barenco 5 170 72 84 206 132 40 0.001 114 60 40 < 0.001 104 50 40 0.003
Toff-NC 5 105 42 49 148 94 31 < 0.001 75 30 31 < 0.001 0.001

Toff-Barenco 10 450 192 224 517 328 100 0.004 294 160 100 0.001 264 130 100 0.012
Toff-NC 10 255 102 119 361 232 71 0.002 175 70 71 < 0.001 0.004

GF(24)-Mult 225 99 112 419 324 68 0.001 187 99 68 0.001 0.009
GF(25)-Mult 347 154 175 682 535 111 0.004 296 154 115 0.001 0.020
GF(26)-Mult 495 221 252 842 649 150 0.008 403 221 150 0.003 0.047
GF(27)-Mult 669 300 343 1,245 992 217 0.031 555 300 217 0.004 0.105
GF(28)-Mult 883 405 448 1,560 1,256 264 0.052 712 405 264 0.006 0.192
GF(29)-Mult 1,095 494 567 2,096 1,701 351 0.110 891 494 351 0.010 0.347
GF(210)-Mult 1,347 609 700 2,655 2,176 410 0.227 1,070 609 410 0.009 0.429
GF(216)-Mult 3,435 1,581 1,792 7,714 6,592 1,040 5.079 2,707 1,581 1,040 0.065 5.566
GF(232)-Mult 13,562 6,268 7,168 37,563 33,269 4,128 602.577 10,601 6,299 4,128 1.834 275.698
GF(264)-Mult 61,629 24,765 28,672 197,674 180,892 16,448 95,447.466 41,563 24,765 16,448 58.341
GF(2128)-Mult 246,141 98,685 114,688 N/A N/A N/A N/A 165,051 98,685 65,664 1,744.746
GF(2131)-Mult 258,065 103,616 120,127 N/A N/A N/A N/A 173,370 103,616 69,037 1,953.353
GF(2163)-Mult 399,021 159,900 185,983 N/A N/A N/A N/A 267,558 159,900 106,765 4,955.927

aOur simulation found an error in the circuit optimized by t-par. Specifically, the circuit maps |1024〉 7→
|1025〉+|1030〉+|1161〉+|1166〉

2
whereas it is supposed to

perform the mapping |1024〉 7→ |1088〉.
bNote that our software reduced the T-count of the original pre-optimization circuit used by t-par to 0. It turned out that the circuit used by t-par is incorrect. In

our optimization reported in this table, we used the correct original circuit [36, Figure 5].

1
7

Acknowledgements

This work was supported in part by the Army Research Office (grant W911NF-16-1-0349), the Canadian
Institute for Advanced Research, and the National Science Foundation (grant CCF-1526380).

This material was partially based on work supported by the National Science Foundation during DM’s
assignment at the Foundation. Any opinion, finding, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

[1] M. Amy, D. Maslov, and M. Mosca. Polynomial-time T-depth optimization of Clifford+T circuits via
matroid partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
33(10):1476–1489, 2014. Preprint available from arXiv:1303.2042v2.

[2] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-middle algorithm for fast synthesis of
depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 32(6):818–830, 2013. Preprint available from arXiv:1206.0758.

[3] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin,
and H. Weinfurter. Elementary gates for quantum computation. Physical Review A, 52(5):3457–3467,
1995. Preprint available from arXiv:quant-ph/9503016.

[4] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders. Efficient quantum algorithms for simulating sparse
Hamiltonians. Communications in Mathematical Physics, 270(2):359–371, 2007. Preprint available from
arXiv:quant-ph/0508139.

[5] S. Bravyi and A. Kitaev. Universal quantum computation with ideal Clifford gates and noisy ancillas.
Physical Review A, 71:022316, 2005. Preprint available from arXiv:quant-ph/0403025.

[6] Certicom. The Certicom ECC challenge. Last accessed: October 19, 2017.
https://www.certicom.com/...ecc-challenge.html.

[7] D. Coppersmith. An approximate Fourier transform useful in quantum factoring. 1994. Preprint
available from arXiv:quant-ph/0201067.

[8] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe. Demonstration
of a small programmable quantum computer with atomic qubits. Nature, 536:63–66, 2016. Preprint
available from arXiv:1603.04512.

[9] T. Draper. Addition on a quantum computer. 2000. Preprint available from arXiv:quant-ph/0008033.

[10] EPSRC. UK national quantum technologies programme. Last accessed: October 19, 2017.
http://uknqt.epsrc.ac.uk.

[11] R. P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics,
21(6-7):467–488, 1982.

[12] E. Gibney. Europes billion-euro quantum project takes shape. Nature, 545(7652):16, May 3, 2017.
https://www.nature.com/news/europe-s-billion-euro-quantum-project-takes-shape-1.21925.

[13] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. Quipper: A scalable quan-
tum programming language. ACM SIGPLAN Notices, 48(6):333–342, 2013. Preprint available from
arXiv:1304.3390.

[14] R. Hackett. IBM sets sight on quantum computing. Fortune, March 6, 2017.
http://fortune.com/2017/03/06/ibm-quantum-computer/.

18

http://arxiv.org/abs/1303.2042v2
http://arxiv.org/abs/1206.0758
http://arxiv.org/abs/quant-ph/9503016
http://arxiv.org/abs/quant-ph/0508139
http://arxiv.org/abs/quant-ph/0403025
https://www.certicom.com/content/certicom/en/the-certicom-ecc-challenge.html
http://arxiv.org/abs/quant-ph/0201067
http://arxiv.org/abs/1603.04512
http://arxiv.org/abs/quant-ph/0008033
http://uknqt.epsrc.ac.uk
https://www.nature.com/news/europe-s-billion-euro-quantum-project-takes-shape-1.21925
http://arxiv.org/abs/1304.3390
http://fortune.com/2017/03/06/ibm-quantum-computer/

[15] IBM. IBM makes quantum computing available on IBM cloud to accelerate innovation. May 4, 2016.
https://www-03.ibm.com/press/us/en/pressrelease/49661.wss.

[16] IBM Research. Quantum Experience. Last accessed: September 22, 2017.
http://www.research.ibm.com/quantum/.

[17] Intel. Intel invests US$50 million to advance quantum computing. September 3, 2015.
https://newsroom.intel.com/news-releases/intel-invests-us50-million-to-advance-quantum-computing/.

[18] D. Janzing, P. Wocjan, and T. Beth. Identity check is QMA-complete. 2003. Preprint available from
arXiv:quant-ph/0305050.

[19] S. P. Jordan. Quantum Algorithm Zoo. Last accessed: October 19, 2017.
http://math.nist.gov/quantum/zoo/.

[20] R. Juskalian. Practical quantum computers. MIT Technology Review, March/April 2017.
https://www.technologyreview.com/...practical-quantum-computers/.

[21] V. Kliuchnikov, D. Maslov, and M. Mosca. Fast and efficient exact synthesis of single qubit unitaries gen-
erated by Clifford and T gates. Quantum Information & Computation, 13(7–8):607–630, 2013. Preprint
available from arXiv:1206.5236v4.

[22] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard. The number field sieve. In
Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing, pages 564–572,
1990.

[23] S. Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996.

[24] J. Markoff. Microsoft spends big to build a computer out of science fiction. November 21, 2016.
https://www.nytimes.com/.../microsoft-spends-big-to-build-quantum-computer.html.

[25] D. Maslov. Advantages of using relative-phase Toffoli gates with an application to multiple control
Toffoli optimization. Physical Review A, 93:022311, 2016. Preprint available from arXiv:1508.03273.

[26] D. Maslov. Optimal and asymptotically optimal NCT reversible circuits by the gate types. Quantum

Information and Computation, 16(13-14):1096–1112, 2016. Preprint available from arXiv:1602.02627.

[27] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne. Quantum circuit simplification and
level compaction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
27(3):436–444, 2008. Preprint available from arXiv:quant-ph/0604001.

[28] National Science and Technology Council. Advancing Quantum Information Science: National Chal-
lenges and Opportunities. July, 2016. https://www.whitehouse.gov/...final.pdf.

[29] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, https://github.com/njross/optimizer.

[30] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge Uni-
versity Press, 2002.

[31] A. K. Prasad, V. V. Shende, I. L. Markov, J. P. Hayes, and K. N. Patel. Data structures and algo-
rithms for simplifying reversible circuits. ACM Journal of Emerging Technologies in Computing Systems,
2(4):277–293, 2006.

[32] N. J. Ross and P. Selinger. Optimal ancilla-free Clifford+T approximation of z -rotations. Quantum

Information & Computation, 16(11&12):901–953, 2016. Preprint available from arXiv:1403.2975.

[33] M. Saeedi and I. L. Markov. Synthesis and optimization of reversible circuits—a survey. ACM Computing

Surveys, 45(2): Article 21, 2013. Preprint available from arXiv:1110.2574.

19

https://www-03.ibm.com/press/us/en/pressrelease/49661.wss
http://www.research.ibm.com/quantum/
https://newsroom.intel.com/news-releases/intel-invests-us50-million-to-advance-quantum-computing/
http://arxiv.org/abs/quant-ph/0305050
http://math.nist.gov/quantum/zoo/
https://www.technologyreview.com/s/603495/10-breakthrough-technologies-2017-practical-quantum-computers/
http://arxiv.org/abs/1206.5236v4
https://www.nytimes.com/2016/11/21/technology/microsoft-spends-big-to-build-quantum-computer.html
http://arxiv.org/abs/1508.03273
http://arxiv.org/abs/1602.02627
http://arxiv.org/abs/quant-ph/0604001
https://www.whitehouse.gov/sites/whitehouse.gov/files/images/Quantum_Info_Sci_Report_2016_07_22%20final.pdf
https://github.com/njross/optimizer
http://arxiv.org/abs/1403.2975
http://arxiv.org/abs/1110.2574

[34] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quan-
tum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. Preprint available from
arXiv:quant-ph/9508027.

[35] T. Simonite. Google’s quantum dream machine. MIT Technology Review, December 18, 2015.
https://www.technologyreview.com/s/544421/googles-quantum-dream-machine/.

[36] R. Van Meter and K. M. Itoh. Fast quantum modular exponentiation. Physical Review A, 71:052320,
2005. Preprint available from arXiv:quant-ph/0408006.

[37] Wikipedia. RSA factoring challenge. Last accessed: October 19, 2017.
https://en.wikipedia.org/wiki/RSA Factoring Challenge.

20

http://arxiv.org/abs/quant-ph/9508027
https://www.technologyreview.com/s/544421/googles-quantum-dream-machine/
http://arxiv.org/abs/quant-ph/0408006
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

	1 Introduction
	2 Background
	3 Algorithms and implementation
	3.1 Representations of quantum circuits
	3.2 Preprocessing
	3.3 Optimization subroutines
	3.4 General-purpose optimization algorithms
	3.5 Special-purpose optimizations

	4 Results
	4.1 QFT and adders
	4.2 Quantum simulation
	4.3 Comparison with prior approaches
	4.4 Overall performance

	5 Conclusions and future work

